
Unit-2

FINITE AUTOMATA, REGULAR EXPRESSIONS: An application of finite automata;

Finite automata with Epsilon-transitions; Regular expressions; Finite Automata and Regular

Expressions; Applications of Regular Expressions.

Application of finite automata

Finding Strings in Text
A common problem in the age of the Web and other on-line text repositories is the following,
given a set of words, find all documents that contain one (or all) of those words. A search engine
is a popular example of this process. The search engine uses a particular technology, called
inverted indexes, where for each word appearing on the Web (there are 100,000,000 different
words), a list of all the places where that word occurs is stored.
The documents to be searched cannot be cataloged. For example: Amazon.com does not make it
easy for crawlers to find all the pages for all the books that the company sells. Rather, these
pages are generated “'on the fly" in response to queries.

Finite Automata With Epsilon-Transitions

This is another extension of the finite automaton. The new "feature" is that we allow a transition
on e, the empty string. In effect, an NFA is allowed to make a transition spontaneously, without
receiving an input symbol. Like the non determinism, this new capability does not expand the
class of languages that can be accepted by finite automata, but it does give us some added
"programming convenience."

Uses of e-Transitions

Example Given an e-NFA that accepts decimal numbers consisting of:
1. An optional + or — sign,
2. A string of digits,
3. A decimal point, and
4. Another string of digits. Either this string of digits or the string (2) can be empty, but at least
one of the two strings of digits must be nonempty

Example: Using e transitions to help recognize keywords

The Formal Notation for an e-NFA
We may represent an e-NFA exactly as we do an NFA, with one exception: the transition
function must include information about transitions on t. Formally, we represent an e-NFA A by
A=(Q, ∑ ,q0,F,), where all components have their same interpretation as for an NFA, except
that is now a function that takes as arguments:
1. A state in Q, and
2. A member of ∑ U {e}, that is, either an input symbol, or the symbol e.
We require that e. the symbol for the empty string, cannot be a member of the alphabet so no
confusion results.

Epsilon-Closures
We shall proceed to give formal definitions of an extended transition function for e-NFA's,
which leads to the definition of acceptance of st rings and languages by these automata, and
eventually lets us explain why e-NFA:s can be simulated by DFA's. However, we first need to
learn a central definition, called the e-closure of a state. Informally, wo f close a state q by
following all transitions out of q that are labeled e. However, when we get to other states by
following c, we follow the e-transitions out of those states, and so on, eventually finding every
state that can be reached from q along any path whose arcs are all labeled e. Formally, we define
the e-closure ECLOSE(Q) recursively, as follows:

BASIS: State q is in ECLOSE(q).
INDUCTION: If state p is in ECLOSE(q), and there is a transition from state p to state r labeled
e, then r is in ECLOSE(q). More precisely, if  is the transition function of the e-NFA
involved, and p is in ECLOSE(q), then ECLOSE(q) also contains all the states (p, e).

Example

For the above given automaton , each state is its own e-closure, with two exceptions:
ECLOSE(q0) = {q0,q1) and ECLOSE(q3) = {q3,q5}- The reason is that there are only two e-
transitions, one that adds qi to ECLOSE(q0) and the other that adds q5 to ECLOSE(q3)
ECLOSE(1) = {1,2,3,4,6}

Extended Transitions and Languages for e-NFA's
The e-closure allows us to explain easily what the transitions of an e-NFA look like when given
a sequence of (non-e) inputs. Suppose that E = (Q, ∑, . qo, F) is an e-NFA. We first define ’,
the extended transition function, to reflect what happens on a sequence of inputs. The intent is
that ’ (q. w) is the set of states that can be reached along a path whose labels, when
concatenated, form the string w. As always, e's along this path do not contribute to w. The
appropriate recursive definition of ’ is:
B A S I S : ’ (q, e) = ECLOSE(q), That is, if the label of the path is e, then we can follow only
e-labeled arcs extending from state q: that is exactly what ECLOSE does.
INDUCTION: Suppose w is of the form xa, where a is the last symbol of w. Note that a is a
member of ∑; it cannot be e, which is not in ∑. We compute ’(q, w) as follows:

1. Let {p1 ,p2….pk} be ’(q, a;). That is, the pi's are all and only the states that we can
reach from q following a path labeled x. This path may end with one or more transitions
labeled e. and may have other e- transit ions, as well.

2. Let Ui=1 (pi, a) be the set {r1, r2…..rm }. That is, follow all transitions labeled a from
states we can reach from q along paths labeled x. The rj's are some of the states we can
reach from q along paths labeled w. The additional states we can reach are found from the
rj’s by following e-labeled arcs in step (3), below.

3. Then ’(q,w)=Uj=1 ECI.OSE (rj). This additional closure step includes all the paths from
q labeled w, by considering the possibility that there arc additional e-labeled arcs that we
can follow after making a transition on the final "real" symbol, a.
Regular Expressions and Languages

Regular Expressions

Definition: A regular expression is recursively defined as follows.

1.  is a regular expression denoting an empty language.
2. -(epsilon) is a regular expression indicates the language containing an empty string.
3. a is a regular expression which indicates the language containing only {a}
4. If R is a regular expression denoting the language LR and S is a regular expression

denoting the language LS, then
a. R+S is a regular expression corresponding to the language LRULS.
b. R.S is a regular expression corresponding to the language LR.LS..
c. R* is a regular expression corresponding to the language LR

*.
5. The expressions obtained by applying any of the rules from 1-4 are regular expressions.

Regular
expressions

Meaning

(a+b)* Set of strings of a’s and b’s of any length
including the NULL string.

(a+b)*abb Set of strings of a’s and b’s ending with the
string abb

ab(a+b)* Set of strings of a’s and b’s starting with the
string ab.

(a+b)*aa(a+b) Set of strings of a’s and b’s having a sub string

* aa.
a*b*c* Set of string consisting of any number of

a’s(may be empty string also) followed by any
number of b’s(may include empty string)
followed by any number of c’s(may include
empty string).

a+b+c+ Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one ‘c’.

aa*bb*cc* Set of string consisting of at least one ‘a’
followed by string consisting of at least one ‘b’
followed by string consisting of at least one ‘c’.

(a+b)* (a +
bb)

Set of strings of a’s and b’s ending with either a
or bb

(aa)*(bb)*b Set of strings consisting of even number of a’s
followed by odd number of b’s

(0+1)*000 Set of strings of 0’s and 1’s ending with three
consecutive zeros(or ending with 000)

(11)* Set consisting of even number of 1’s

The Operators of Regular Expressions

1. The union of two languages L and M, denoted L U M, is the set of strings that are in
either L or M, or both. For example, if L— {001,10,111} and M = {e, 001}, then LUM =
{e, 10,001, 111}.

2. The concatenation of languages L and M is the set of strings that can be formed by taking
any string in L and concatenating it with any string in M. For example, if L =
{001,10,111} and M = {e,001}, then L.M, or just LM, is {001,10, 111,
001001,10001,111001}. The first three strings in LM are the strings in L concatenated
with e. Since e is the identity for concatenation, the resulting strings are the same as the
strings of L. However, the last three strings in LM are formed by taking each string in L
and concatenating it with the second string in M, which is 001. For instance, 10 from L
concatenated with 001 from M gives us 10001 for LM.

3. The closure (or star, or Kleene closure)1 of a language L is denoted L* and represents the
set of those strings that can be formed by taking any number of strings from L, possibly
with repetitions (i.e., the same string may be selected more than once) and concatenating
all of them. For instance, if L= {0,1}, then L* is all strings of O's and l's. If L = {0,11},
then L* consists of those strings of 0's and l's such that the l's come in pairs, e.g., 011,
11110, and e, but not 01011 or 101.

Building Regular Expressions

1. If E and F are regular expressions, then E + F iIs a regular expression denoting the
union of L(E) and L(F). That is, L(E + F) = L{E) U L{F).

2. If E and F are regular expressions, then EF is a regular expression denoting the
concatenation of L(E) and L(F). That is, L(EF) = L(E)L{F).

3. If E is a regular expression, then E* is a regular expression, denoting the closure of
L(E).

4. If E is a regular expression, then (E), a parenthesized E, is also a regular expression,
denoting the same language as E.

Precedence of Regular-Expression Operators
1. The star operator is of highest precedence.
2. Next in precedence comes the concatenation or "dot" operator.
3. Finally, all unions (+ operators) are grouped with their operands.

Finite Automata and Regular Expressions

Every language defined by one of these automata is also defined by a regular expression.
Every language defined by a regular expression is defined by one of these automata.

From DFA's to Regular Expressions

Applications of Regular Expressions
1. Regular Expressions in UNIX
2. Lexical Analysis
3. Finding Patterns in Text

