
First Semester B.E. 
Engineering Mathematics – I 

Model Question Paper – I 
 
Note: Answer any five full questions choosing at least two full questions   
          from each part. 

Part – A 
1. (a) Find the nth derivatives of    
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     (c) Find the pedal equation of the curve  
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4. (a) For the Cycloid )cos1(),sin( θθθ −=−= ayax , find dy
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    (b) Find the volume of the solid generated by revolving the  

          Lemniscate  about the line θ2cos22 ar = 2
πθ =

                     7 

    (c) Evaluate:  
∫

−1

0

;
log

1dx
x

xα

 given 0≥α                                        7  



 
Part – B 

 
5. (a) Solve any two 
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 (b) Find the orthogonal trajectories of the family of  
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6. (a) Discuss the convergence of 
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    (b) Test for convergence:  
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     (c) Define Absolute Convergence and Conditional Convergence.  
           Is the following series Absolutely Convergent?             
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7. (a) Show that the lines whose direction cosines satisfy the  
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 (b) Find the equation of the plane passing through the line of   
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8. (a) A particle moves on the curve  
where t  is the time. Find the components of velocity & 

acceleration at time 
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(b) Find the directional derivative of  at the point  
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First semester B E 
Engineering mathematics -1 
Model question paper -2 

Note: Answer any five full questions choosing at least two full questions. 
 

PART-A 
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10

4 −++ xxx                          6 

b) If , prove that xey
1tan−

= ( ) ( )[ ] ( ) 011121 12
2 =++−+++ ++ nnn ynnyxnyx  7 

c) With the usual notation, prove that 
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c) Find the error in the area of an ellipse if 1% error is   

    measuring the major and minor axes.              7 
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PART-B 

5. a) Solve any two:  
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b) Find the orthogonal trajectories of the family of the curves  
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7. a) Find the angle between any two diagonals of a cube.              6 

b) Find the equation of the plane passing through the points ( )1,2,2  and ( ) 
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Find the magnitude and equations of the shortest distance between the lines 
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8. a) A particle move along a curve  find the 

velocity and acceleration and their magnitudes at 
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