A) $\frac{(-1)^{n-1}(n-1)!a^n}{(ax+b)^n}$ B) $\frac{(-1)^n n!a^n}{(ax+b)^{n+1}}$ C) $\frac{n!a^n}{(ax+b)^{n+1}}$ D) Zero ii) The Taylor's theorem relates the value of the function and its B) IInd order derivatives A) Ist order derivative C) Constant D) Higher order derivatives iii) Cauchy's mean value theorem reduces to Lagrange's mean value theorem, if A) f(x) = g(x)B) f'(c) = g'(c)C) g(x) = xD) f(x) = 0iv) To find the nth derivative of a function y = f(x), its (n-1) derivatives must be a A) function of y B) function of x C) constant D) function of x & y b. If $\cos^{-1}\left(\frac{y}{h}\right) = \log\left(\frac{x}{n}\right)^n$ P rove that $x^2 y_{n+2} + (2n+1) xy_{n+1} + 2n^2 y_n = 0$ (06 Marks) c. Verify Lagrange's mean value theorem for the function $f(x) = \log x$ in the interval [1, 2] and find the value of 'C'. (04 Marks) d. Expand tanx in powers of $(x - \pi/4)$ upto third degree term. (06 Marks) a. i) L Hospital's rule implies that each differentiation reduces the order of the infinitesimals by A) unity B) two C) zero D) four ii) If two curve cuts orthogonally, then angle between their tangents is equal to B) $\pi/4$ A) zero C) $3\pi/4$ D) $\pi/2$ iii) Perpendicular distance from the pole on the tangent is equal to A) $Sin \phi$ B) $\cos \phi$ C) $r \sin \phi$ D) $r \cos \phi$ iv) The value of radius of curve remains unchanged under the change of A) ordinates B) signs C) derivatives D) none of these (04 Marks) b. Evaluate $\lim_{x\to 0} \left(\frac{1}{x} - \cot x\right)$. (04 Marks) c. Prove that the radius of curvature ρ at any point (x, y) on the curve $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$ is given by $\rho = \frac{2(ax+by)^{3/2}}{ab}.$ (06 Marks) (06 Marks)

First Semester B.E. Degree Examination, June/July 2011 **Engineering Mathematics - I**

Time: 3 hrs.

Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. PART - A a. i) If $y = (ax + b)^{-1}$, then y^{n} is 1 (04 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2

d. Find the pedal equation of the curve $\frac{2a}{r} = (1 + \cos \theta)$.

1 of 4

10MAT11

3	a. 1)	are	srement con	responds to a cha	ange of one	e of the va	riables and a	ill othe	(04 Marks)
	A)	constant		B) varving		C) increa	mented	D) (decremented
	ii)	If $x = r \cos \theta$	$\theta, y = r \sin \theta$	θ , the Jacobian	of (x, y) v	with respe	ect to (r, θ) is	s equal	l to
	A)	$\frac{1}{r}$]	Β) θ		C) r		D) z	zero
	iii)	The necess	ary condition	ons for $f(x, y)$ to	have a ma	aximum c	r minimum	at (a, ł	o).
	A)	$f_x(a, b) = 0$	1		B) $f_y($	(a, b) = 0			
	C)	$f_{xy}(a, b) =$	0	Setting Changes and	D) $f_x($	$(a, b) = f_y$	(a, b) = 0		
	1V)	In Lagrang	e's method	of undetermined	d multiplie	ers are car	not determi	ne the	nature of the
	A)	Function		B) Stationary	point	C) Multi	pliers	D) 1	None of these
	0. FI	ind the extrem	me value of	the function f(x	$\mathbf{x} = \mathbf{x}^2 + \mathbf{y}^2$	-3 a xy	, a > 0.		(06 Marks)
	c. If	$u = \log (x^3 -$	$+y^3+z^3-3$	xy) show that ($\frac{\partial}{\partial x} + \frac{\partial}{\partial y} +$	$\left(\frac{\partial}{\partial z}\right)^2 u =$	$\frac{9}{(x+y+z)}$	2	(06 Marks)
	d. Fi	ind the perc	entage erro	r in the area of	of an ellir	se when	an error o	f 10/	is made in
	m	easuring the	major and i	minor axis.	or an emp	JSC WIICH	an enor o	1 1/0	(04 Marks)
4	a. i)	Any motion	in which the	he curl of the ve	locity vect	tor is zero	is said to be	e	(04 Marks)
	A)	rotational		B) solenoidal		C) irrota	tional	D)	conservative
	ii)	The direction	onal derivation	ive of a scalar fi	inction ϕ a	t any poi	ntis	along	νφ
	A)	minimum		B) maximum	T -	C) zero		D)	00
	iii)	Gradient of	a scalar fie	ld is a		-)		2)	
	A)	constant		B) scalar		C) vector	r	D) 1	None of these
	iv)	If $\phi(x, y, z)$	= c is the e	equation of surfa	ace, then ∇	¢ is	to the su	urface.	
	A)	parallel		B) normal		C) inclin	ed	D)	not parallel
	b. Fi	ind the const	ants a,b, c s	o that the vector	function				
	Ê	=(x+2y+	az) $\hat{i} + (bx)$	$-3y - z)\hat{j} + (4)$	x + (y + 2)	z) k̂ is in	rotational		(04 Marks)
	c. Pi	rove that grad	$d \operatorname{div} F = cu$	$\operatorname{trl}\operatorname{curl}\mathrm{F}+\nabla^2\mathrm{F}.$					(06 Marks)
	d. Sl	how that the	spherical co	o-ordinate syster	n is orthog	gonal.			(06 Marks)
					0447				
_		of lange et a		<u>P</u> A	RT - B				
5	a. 1)	Any integra	al formula v	which express in	terms of	another s	imilar integr	ral in 1	lower powers
	15	intogral	Iormula	D) 1:00		1 (7			(04 Marks)
	A) ii)	Integral	nation conto	B) differential	() reduc	tion .	D) tr	rigonometric
	A)	v - axis	iation coma	B) x avia	Jwers of x	(1) hoth (2)	curve is syn	nmetri	cal about
	iii)	Surface of	solid gene	D) A -axis	tion about	C) both a	ef the ever	D) r	None of these
	X	= a. x $=$ b.	sona gene	fated by fevolu	uon auoui	л <i>—</i> аліб	or the curve	3 y -	I(x) between
	4.)	0 _ 2 1				a de a			<i>i</i> b
	A)	π y dx		B) $\int \pi x dy$		C) $\int \pi r^2$	dθ	D)	$\int 2\pi y ds$
	iv)	Leibniz's ru	ale for differ	rentiation under	integral si	gn is			
	A)	$\phi'(\mathbf{y}) = \int_{a}^{b} \frac{\partial}{\partial t}$	$\frac{\partial}{\partial y} f(x, y) dx$		B) ¢'	$(y) = \int_{a}^{b} \frac{\partial y}{\partial y}$	$\frac{\partial}{\partial y} f(x, y) dx$		
Alteri	C)	$\phi(\mathbf{y}) = \int_{a}^{b} \frac{\partial}{\partial t}$	$\frac{\partial}{\partial x} f(x, y) dx$		D) No	ne of thes	se		
	b. 0	btain the red	uction form	ula for $\int \cos^n x$	dx.				(06 Marks)

2 of 4

c. Evaluate $\int_{0}^{\pi/2} \sin^{7}\theta \cos^{6}\theta \,d\theta$.

7

(04 Marks)

d. Find the volume of the solid obtained by revolving the Astraid $x^{2/3} + y^{2/3} = a^{2/3}$ about x - axis. (06 Marks)

a. i) The degree of the differential equation $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{1}{2}}}{\frac{d^2y}{dx^2}} = C$ is 6 (04 Marks) A) Two B) Three C) One D) Zero ii) Variable separable form of the equation $\frac{y}{x}\frac{dy}{dx} = \sqrt{1 + x^2 + y^2 + x^2y^2}$ is A) $\frac{\sqrt{1+y^2}}{y} dy = \frac{\sqrt{1+x^2}}{y} dx$ B) $\frac{y}{\sqrt{1+y^2}} dy = x\sqrt{1+x^2} dx$ C) $\sqrt{1+x^2} dx + \sqrt{1+y^2} dy$ D) $\frac{y}{\sqrt{1+y^2}} dy = \frac{x}{\sqrt{1+x^2}} dx$ iii) The integrating factor of the differential equation x log x $\frac{dy}{dx} + y = \log x^2$ is A) $\log x^2$ B) $\log x$ C) $x \log x$ D) $x \log x^2$. iv) The differential equation $(x + x^8 + ay^2) dx + (y^8 - y + bxy) dy = 0$ is exact if b =_____ A) 4 B) 3x C) 2a D) 4aA) $\log x^2$ b. Solve $\frac{dy}{dx} = \frac{y}{x - \sqrt{xy}}$. (04 Marks) c. Solve $\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$. (06 Marks) d. Find the orthogonal trajectories of the family of curve $r^n \cos n\theta = a^n$. (06 Marks) a. i) The normal form of the matrix of rank r is (04 Marks) A) $\begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ B) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ C) $\begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix}$ D) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ ii) If rank of the coefficient matrix is equal to rank of the Augmented matrix then equations are A) consistence B) inconsistence C) have no solution D) have infinite number of solutions. iii) In Gauss - elimination method coefficient matrix reduces to _____ matrix. A) diagonal B) unit matrix C) triangular D) None of these iv) The system of linear homogeneous equations have trivial solution if all variable are (i = 1 ... n)A) $x_i > 0$ B) $x_i < 0$ C) $x_i = 0$ D) $x_i = \infty$ b. Investigate the value of λ and μ so that the equations 2x + 3y + 5z = 9, 7x + 3y - 2z = 8,

 $2x + 3y + \lambda z = \mu$ have i) unique solution ii) no solution iii) infinite number of solutions. (06 Marks)

10MAT11

c. Solve using the Gauss – Jordan method,

8

$A = \begin{vmatrix} 1 & 1 & 3 \\ 1 & 2 & -3 \\ -2 & -4 & -4 \end{vmatrix}$	(06 Marks)
d. Find the rank of the Matrix of A = $\begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 6 \\ 4 & 8 & 12 \\ 1 & 2 & 3 \end{bmatrix}$	3 8 16 4
a. i) Each eigen vector corresponding to a eigen A) unique B) no unique ii) The sum of the eigen values of the matrix if A) Any row B) Any C) diagonal D) Any iii) A homogeneous expression of the second A) linear form B) cubic form iv) Every square matrix satisfies its own A) quadratic B) cubic b. Find the characteristics equation and eigen vector $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$	 n value is (04 Marks) C) infinite D) None of these s the sum of the elements of column row and column. degree in any number of variables is called C) quadratic form D) None of these equation. C) algebraic D) characteristic tor of the matrix
c. Reduce the matrix A = $\begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ to the method. d. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2y$	e diagonal form using characteristic equation (06 Marks) z + 2zx – 2zy to the canonical form. (04 Marks)

•
