Sixth Semester B.E. Degree Examination, May/June 2010 Analog and Mixed Mode VLSI Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain the characteristics and typical errors associated with sample and hold circuit.
 - (10 Marks)
 - b. Briefly explain the ADC specifications.

(05 Marks)

- c. Find the resolution of DAC, if the output voltage is desired to change in 1 mV increments while using a reference voltage of 4V. (05 Marks)
- 2 a. Explain qualitatively the architecture and working of charge scaling DACs. (10 Marks)
 - b. Design a 3-bit charge scaling DAC and find the value of output voltage for $D_2D_1D_0 = 100$ and 011. Assume $V_{ref} = 5V$, C = 0.5 PF. (05 Marks)
 - c. Briefly explain the architecture & working of a pipeline digital to analog coverter. (05 Marks)
- 3 a. Explain the architecture and working of a flash ADC. (08 Marks)
 - b. If a 10-bit flash ADC is designed, determine maximum offset voltage of comparators which will make INL less than ½ LSB. Assume that resister string is perfectly matched and $V_{REF} = 4V$. (04 Marks)
 - c. Briefly explain the block diagram of a 2-step flash ADC and its working.
- 4 a. Explain qualitatively preamplification and decision circuits of a CMOS comparator unit.

 Draw their CMOS circuits. (10 Marks)
 - b. Explain the principle of an analog multiplier.

(05 Marks)

(08 Marks)

c. Briefly explain CMOS analog multiplier with the help of a circuit diagram.

(05 Marks)

PART - B

- 5 a. Define SNR, effective number of bits and clock jitter in mixed signal circuits qualitatively.

 (08 Marks)
 - b. Explain the principle of averaging to improve SNR, in mixed signal circuits.

(06 Marks)

c. Briefly explain the role of decimating filters in ADCs.

(06 Marks)

- 6 a. With a neat process flow diagram, explain submicron CMOS technology and bring out the differences as compared to CMOS technology. (10 Marks)
 - b. Explain how capacitor and resister elements are fabricated in submicron technology.

(07 Marks)

c. Explain MOSFET as a switch.

(03 Marks)

- 7 a. What are delay elements? Explain how they are realized using pass transistors, inverters and C²MOS and TSPC circuits. (10 Marks)
 - b. Realize a 4-bit pipelined adder using latches and explain its operation.

(05 Marks)

c. Implement full adder using dynamic logic and explain.

(05 Marks)

8 a. Consider a small signal amplification of a floating current source shown in Fig.Q8(A). Assuming NMOS cascade o/p resistance is labeled R_{ncas} , what is the small signal resistance scan by test voltage V_{test} ? (10 Marks)

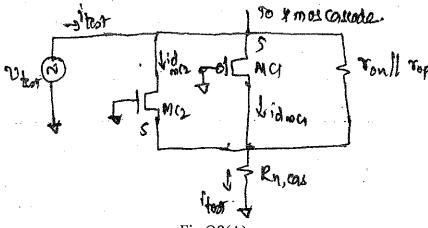


Fig.Q8(A)

b. Explain with the help of circuit diagrams, the technique of making the flow rate concern in the design of op amp.

(10 Marks)