Fifth Semester B.E. Degree Examination, Dec.09-Jan. 10 Dynamics of Machines

Time: 3 hrs.
Max. Marks:100

Note:1. Answer atzy FIVE full questions, choosing atleast TWO questions form each part.

 2. Use of drawing sheets is permitted.PART - A

1 a. A body shown in fig. Ql (a) is subjected to tluee forces F_{1}, F_{2} and F_{3}. State the conditions for the static equilibrium of the body. If force F_{1} is completely known, F_{2} known in direction only and F_{3} is completely unknown, explain how the problem can be solved.
(05 Marks)
b. For the mechanism shown in fig. Ql(b), find the magnitude and direction of input torque T_{2} for the static equilibrium. Take $A B=70 \mathrm{~mm}, \mathrm{BC}=150 \mathrm{~mm}, \mathrm{BD}=100 \mathrm{~mm}$ and $\mathrm{CD}=70 \mathrm{~mm}$, $\triangle A B C=90^{\circ}$. Also determine the forces at pinjoints A, B and C.
(15 Marks)

2 a. Derive an expression for the maximum fluctuation of energy of a flywheel in terms of mean kinetic energy and coefficient of iluctuation of speed.
(OS Marks)
b. The torque delivered by a two stroke engine is represented by
$T=(1000+300 \sin 2 \theta-500 \cos 2 \theta) N-m$,
where θ is the angle tumed by the crank from inner dead center. The engine speed is 250 rpm . The mass of the fly wheel is 400 kg and radius of gyration is 400 mm . Detennine i) the power developed ii) the total percentage fluctuation of speed iii) the angular accelcration of flywheel when the crank has turned through an angle of 60° from IDC.

3 a. Define static and dynamic friction and state the laws of dry friction.
(06 Marks)
b. A leather belt is required to transmit 9 kW from a pulley 1.2 m in diameter running at 200 rpm. The angle embraced is $165^{\prime \prime}$ and the coefficient of friction between leather belt and pulley is 0.3 . The safe working siress for the leather belt is $1.4 \mathrm{~N} / \mathrm{mm}^{2}$, the mass of leather is $0.001 \mathrm{gm} / \mathrm{mm}^{3}$ and the thickness of the belt is 10 mum . Determine the width of the belt taking centrifigal tension into account.
(14 Marks)
4 a. What do you mean by static balancing and dynamic balancing?
(06 Marks)
b. A shaft carries four rotating masses A, B, C and D which are completely balanced. The masses B, C and D are $50 \mathrm{~kg}, 80 \mathrm{~kg}$ and 70 kg respectively. The masses C and D make angles of 90° and 195° respectively with mass B in the same sence. The masses $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are concentrated at radius $75 \mathrm{~mm}, 100 \mathrm{~mm}, 50 \mathrm{~mm}$ and 90 mm respectively. The plane of rotation of masses B and C are 250 num apart. Deternine \quad i) mass A and its angular position
ii) Position of planes of A and D.
(14 Marks)
1 of 2

PART-13

5 A four cylinder vertical engine has cranks 300 mm long. The planes of rotation of the first, third and fourth cranks are $750 \mathrm{~mm}, 1050 \mathrm{~mm}$ and 1650 mm respectively from that of the second crank and their reciprocating masses are $150 \mathrm{~kg}, 400 \mathrm{~kg}$ and 250 kg respectively. Find the mass of the reciprocating parts for the second cylinder and the relative angular positions of the crank in order that the engine may $b c$ in complete primary balance. If each connecting rod of all four cylinders is 1.35 m long and the speed is 300 rpm , find the maximum unbalanced secondary force and couple.
(20 Marks)
6 a. Define the following terms in connection with governors : i) Sensitiveness ii) Isochronism iii) Governor effort and iv) Governor power.
(08 Marks)
b. The mass of each ball of a lartnell type gnetnor is 1.4 kg . The length of ball arm of the bell - crank lever is 100 mm whereas the length of arm towards sleeve is 50 mm . The distance of the fulcrum of belt - crank leter from the axis of rotation is 80 mm . The exteme radii of rotation of the balls are 75 mm and 112.5 mm . The maximum equilibrium speed is 6% greater than the minimun ecquilibrium speed which is 300 rpm . Determine i) stiffness of the spring and ii) equilibrium speed when radius of rotation of the ball is 90 mm . Neglect the obliquity of the anns.
(12 Marks)

7 a. With neat sketches, explain the effect of gyroseepic couple on pitching, steering and rolling of a ship.
(06 Marks)
b. A four - wheeled trolley car has a total mass of 3000 kg . Each axle with its two wheels and gears has a total MI of $32 \mathrm{kgm}^{2}$ Each wheel is of 450 mm radius. The centre distance between two whecls is 1.4n. Each axle is driven by a motor with speed ratio of 1:3. Each motor along with its gear bas a moment of inertia of $16 \mathrm{~kg}-\mathrm{m}^{2}$ and rotates in the opposite direction to that of axle. The center of mass of the car is lm above the rails. Calculate the limiting speed of the car when it has to trasel around a curve of 250 m radius without the wheels leaving the rails.
(14 Marks)
8 The following particulars relate to a symmetrical tangent cam having a roller follower :
Minimum radius of the cam $=40 \mathrm{~mm}$; Lifi $=20 \mathrm{~mm} ;$ Speed $=360 \mathrm{rpm}$; Roller diameter $=44 \mathrm{~mm}$; Angle of ascent $=60^{\prime \prime}$. Calculate the acceicration of the follewer :
i) at beginning of lift ii) when the roller just touches the nose.
(20 Marks)

