1	A	M	1	0	1	S	0	4	3

Fourth Semester B.E. Degree Examination, June 2012 Engineering Mathematics - IV

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Using the Taylor's method, find the third order approximate solution at $\mathrm{x}=0.4$ of the 3 problem $\frac{d y}{d x}=x^{2} y+1$, with $y(0)=0$. Consider terms upto fourth degree.
(06 Marks)
b. Solve the differential equation $\frac{d y}{d x}=-x y^{2}$ under the initial condition $y(0)=2$, by using the modified Euler's method, at the points $x=0.1$ and $x=0.2$. Take the step size $h=0.1$ and carry out two modifications at each step.
(07 Marks)
c. Given $\frac{d y}{d x}=x y+y^{2} ; y(0)=1, y(0.1)=1.1169, y(0.2)=1.2773, y(0.3)=1.5049$, find $y(0.4)$ correct to three decimal places, using the Milne's predictor-corrector method. Apply the corrector formula twice.
(07 Marks)
2 a. Employing the Picard's method, obtain the second order approximate solution of the 3 following problem at $\mathrm{x}=0.2$.

$$
\begin{equation*}
\frac{d y}{d x}=x+y z ; \quad \frac{d z}{d x}=y+z x ; \quad y(0)=1, \quad z(0)=-1 \tag{06Marks}
\end{equation*}
$$

b. Using the Runge-Kutta method, solve the following differential equation at $x=0.1$ under the

1 given condition:

$$
\frac{d^{2} y}{d x^{2}}=x^{3}\left(y+\frac{d y}{d x}\right), \quad y(0)=1, \quad y^{\prime}(0)=0.5
$$

Take step length $h=0.1$.
(07 Marks)
c. Using the Milne's method, obtain an approximate solution at the point $x=0.4$ of the 4 problem $\frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0.1$. Given $y(0.1)=1.03995$, $y^{\prime}(0.1)=0.6955, y(0.2)=1.138036, y^{\prime}(0.2)=1.258, y(0.3)=1.29865, y^{\prime}(0.3)=1.873$.

3 a. Derive Cauchy-Riemann equations in polar form.
b. If $f(z)$ is a regular function of z, prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
c. If $w=\phi+$ iy represents the complex potential for an electric field and $y=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}}$ determine the function ϕ. Also find the complex potential as a function of z.
(07 Marks)

(06 Marks)
b. Find the bilinear transformation that transforms the points $z_{1}=i, z_{2}=1, z_{3}=-1$ on to the 4 points $\mathrm{w}_{1}=1, \mathrm{w}_{2}=0, \mathrm{w}_{3}=\infty$ respectively.
(07 Marks)
$\imath^{\text {c. Evaluate }} \int_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z$ where c is the circle $|z|=3$, using Cauchy's integral formula.
(07 Marks)

PART-B

5 a. Obtain the solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$ in terms of $J_{n}(x)$ and $J_{-n}(x)$.
(06 Marks)
b. Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ in terms of Legendre polynomials.
(07 Marks)
c. Prove that $\int_{-1}^{+1} P_{m}(x) \cdot P_{n}(x) d x=\frac{2}{2 n+1}, m=n$.
(07 Marks)

6 a. From five positive and seven negative numbers, five numbers are chosen at random and multiplied. What is the probability that the product is a (i) negative number and (ii) positive number?
(06 Marks)
$\frac{b}{5}$ If A and B are two events with $P(A)=\frac{1}{2}, P(B)=\frac{1}{3}, P(A \cap B)=\frac{1}{4}$, find $P(A / B), P(B / A)$, $\mathrm{P}(\overline{\mathrm{A}} / \overline{\mathrm{B}}), \mathrm{P}(\overline{\mathrm{B}} / \overline{\mathrm{A}})$ and $\mathrm{P}(\mathrm{A} / \overline{\mathrm{B}})$.
(07 Marks)
c. In a certain college, 4% of boy students and 1% of girl students are taller than 1.8 m .

2 Furthermore, 60% of the students are girls. If a student is selected at random and is found taller than 1.8 m , what is the probability that the student is a girl?
(07 Marks)
7 , a. A random variable x has the density function $P(x)=\left\{\begin{array}{cc}K x^{2}, & 0 \leq x \leq 3 \\ 0, & \text { elsewhere }\end{array}\right.$. Evaluate K, and find: i) $\mathrm{P}(\mathrm{x} \leq 1)$, (ii) $\mathrm{P}(1 \leq \mathrm{x} \leq 2)$, (iii) $\mathrm{P}(\mathrm{x} \leq 2)$, iv) $\mathrm{P}(\mathrm{x}>1)$, (v) $\mathrm{P}(\mathrm{x}>2)$. (06 Marks)
b. Obtain the mean and standard deviation of binomial distribution. (07 Marks)
c. In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation if the marks are normally distributed. It is given that $\mathrm{P}(0<\mathrm{z}<1.2263)=0.39$ and $\mathrm{P}(0<\mathrm{z}<1.4757)=0.43$.
(07 Marks)
8 a. A random sample of 400 items chosen from an infinite population is found to have a mean of 82 and a standard deviation of 18 . Find the 95% confidence limits for the mean of the population from which the sample is drawn.
(06 Marks)
b. In the past, a machine has produced washers having a thickness of 0.50 mm . To determine whether the machine is in proper working order, a sample of 10 washers is chosen for which the mean thickness is found as 0.53 mm with standard deviation 0.03 mm . Test the hypothesis that the machine is in proper working order, using a level of significance of (i) 0.05 and (ii) 0.01 .
(07 Marks)
c. Genetic theory states that children having one parent of blood type M and the other of blood type N will always be one of the three types $\mathrm{M}, \mathrm{MN}, \mathrm{N}$ and that the proportions of these types will on an average be $1: 2: 1$. A report states that out of 300 children having one M parent and one N parent, 30% were found to be of type M, 45% of type MN and the remainder of type N . Test the theory by χ^{2} (Chi square) test.
(07 Marks)
vtuplanet.com

