
Web 2.0 06CS832

Dept of CSE, SJBIT 1

SCHEME AND SYLLABUS

WEB 2.0 AND RICH INTERNET APPLICATIONS

Subject Code: 06CS832 IA Marks : 25

No. of Lecture Hrs./ Week : 04 Exam Hours : 03

Total No. of Lecture Hrs. : 52 Exam Marks : 100

PART - A

UNIT - 1 7 Hours

INTRODUCTION, WEB SERVICES: What is Web 2.0?, Folksonomies and Web 2.0,

Software as a Service (SaaS), Data and Web 2.0, Convergence, Iterative development, Rich

User experience, Multiple Delivery Channels, Social Networking. Web Services: SOAP,

RPC Style SOAP, Document style SOAP, WSDL, REST services, JSON format, What is

JSON?, Array literals, Object literals, Mixing literals, JSON Syntax, JSON Encoding and

Decoding, JSON versus XML.

UNIT - 2 7 Hours

BUILDING RICH INTERNET APPLICATIONS WITH AJAX-1:

Building Rich Internet Applications with AJAX: Limitations of Classic Web application

model, AJAX principles, Technologies behind AJAX, Examples of usage of AJAX,

Dynamic web applications through Hidden frames for both GET and POST methods.

UNIT – 3 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH AJAX-2:

Frames, Asynchronous communication and AJAX application model, XMLHTTP Object –

properties and methods, handling different browser implementations of XMLHTTP, The

same origin policy, Cache control, AJAX Patterns (Only algorithms – examples not

required): Predictive fetch pattern, Submission throttling pattern, Periodic refresh, Multi

stage download, Fall back patterns.

UNIT – 4 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 1: lash player, Flex

framework, MXML and Actionscript, Working with Data services, Understanding

Web 2.0 06CS832

Dept of CSE, SJBIT 2

differences between HTML and Flex applications, Understanding how Flex applications

work, Understanding Flex and Flash authoring, MXML language, a simple example.

PART - B

UNIT – 5 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 2:

Using Actionscript, MXML and Actionscript correlations. Understanding Actionscript 3.0

language syntax: Language overview, Objects and Classes, Packages and namespaces,

Variables & scope of variables, case sensitivity and general syntax rules, Operators,

Conditional, Looping, Functions, Nested functions, Functions as Objects, Function scope,

OO Programming in Actionscript: Classes, Interfaces, Inheritance, Working with String

objects, Working with Arrays, Error handling in Actionscript: Try/Catch, Working with

XML

UNIT - 6 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 3:

Framework fundamentals, Understanding application life cycle, Differentiating between

Flash player and Framework, Bootstrapping Flex applications, Loading one flex application

in to another, Understanding application domains, Understanding the preloader. Managing

layout, Flex layout overview, Working with children, Container types, Layout rules,Padding,

Borders and gaps, Nesting containers, Making fluid interfaces.

UNIT - 7 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 4:

Working with UI components: Understanding UI Components, Creating component

instances, Common UI Component properties, Handling events, Button, Value selectors,

Text components, List based controls, Data models and Model View Controller, Creating

collection objects, Setting the data provider, Using Data grids, Using Tree controls, Working

with selected values and items, Pop up controls, Navigators, Control bars Working with data:

Using data models, Using XML, Using Actionscript classes, Data Binding.

UNIT – 8 8 Hours

BUILDING ADVANCED WEB 2.0 APPLICATIONS: Definition of mash up applications,

Mash up Techniques, Building a simple mash up application with AJAX, Remote data

Web 2.0 06CS832

Dept of CSE, SJBIT 3

communication, strategies for data communication, Simple HTTPServices, URLLoader in

Flex, Web Services in Flex, Examples: Building an RSS reader with AJAX, Building an RSS

reader with Flex.

TEXT BOOKS:

1. Professional AJAX – Nicholas C Zakas et al, Wrox publications, 2006.

2. Programming Flex 2 – Chafic Kazoun, O’Reilly publications, 2007.

3. Mashups – Francis Shanahan, Wrox, 2007.

REFERENCE BOOKS:

1. Ajax: The Complete Reference – Thomas A. Powel, McGraw Hill, 2008.

2. Unleashing Web 2.0: From Concepts to Creativity – Gottfried Vossen, Stephan

Hagemann, Elsevier, 2007.

3. Essential Actionscript 3.0 – Colin Moock, O’Reilly Publications, 2007.

4. Ajax Bible - Steven Holzner, Wiley India, 2007.

5. A Web 2.0 Primer Pragmatic Ajax – Justin Gehtland et al, SPD Publications, 2006.

6. Professional Web 2.0 Programming – Eric Van derVlist et al, Wiley India, 2007.

Web 2.0 06CS832

Dept of CSE, SJBIT 4

TABLE OF CONTENT

1. INTRODUCTION, WEB SERVICES 6-19

2. BUILDING RICH INTERNET APPLICATIONS WITH AJAX-1 21-28

3. BUILDING RICH INTERNET APPLICATIONS WITH AJAX-2 30-36

4. BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 1 38-41

5. BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 2 43-61

6. BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 3 63-71

7. BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 4 73-80

8. BUILDING ADVANCED WEB 2.0 APPLICATIONS 82-86

Web 2.0 06CS832

Dept of CSE, SJBIT 5

UNIT - 1 7 Hours

INTRODUCTION, WEB SERVICES

 What is Web 2.0?

 Folksonomies and Web 2.0

 Software as a Service (SaaS)

 Data and Web 2.0

 Convergence

 Iterative development

 Rich User experience

 Multiple Delivery Channels

 Social Networking

 Web Services:

o SOAP

o RPC Style SOAP

o Document style SOAP

o WSDL

o REST services

 JSON

o What is JSON?

o Array literals

o Object literals

o Mixing literals

o JSON Syntax

o JSON Encoding and Decoding

o JSON versus XML

Web 2.0 06CS832

Dept of CSE, SJBIT 6

INTRODUCTION, WEB SERVICES

What is Web 2.0?

 The term Web 2.0 is commonly associated with web applications that facilitate
interactive systemic biases, interoperability, user-centered design, and developing the
World Wide Web.

 A Web 2.0 site allows users to interact and collaborate with each other in a social
media dialogue as consumers of user-generated content in a virtual community, in
contrast to websites where users (prosumers) are limited to the active viewing of
content that they created and controlled.

 Examples of Web 2.0 include social networking sites, blogs, wikis, video sharing
sites, hosted services, web applications, mashups and folksonomies.

Folksonomies and Web 2.0

 A folksonomy is a system of classification derived from the practice and method of
collaboratively creating and managing tags to annotate and categorize content; this
practice is also known as collaborative tagging, social classification, social
indexing, and social tagging.

 Folksonomy, a term coined by Thomas Vander Wal, is a portmanteau of folks and
taxonomy.

 Folksonomies became popular on the Web around 2004 as part of social software
applications such as social bookmarking and photograph annotation. Tagging, which
is one of the defining characteristics of Web 2.0 services, allows users to collectively
classify and find information. Some websites include tag clouds as a way to visualize
tags in a folksonomy.

Software as a Service (SaaS)

 Software as a service (SaaS), sometimes referred to as "software on demand," is
software that is deployed over the internet and/or is deployed to run behind a firewall
on a local area network or personal computer. With SaaS, a provider licenses an
application to customers either as a service on demand, through a subscription, in a
"pay-as-you-go" model, or (increasingly) at no charge.

 This approach to application delivery is part of the utility computing model where all
of the technology is in the "cloud" accessed over the Internet as a service.

Advantages

 Anytime, anywhere accessibility
 Pay as you go
 Instant scalability
 Security

Web 2.0 06CS832

Dept of CSE, SJBIT 7

 Reliability
 APIs

 SaaS was initially widely deployed for sales force automation and Customer
Relationship Management (CRM). Now it has become commonplace for many
business tasks, including accounting software, computerized billing, ERP software,
invoicing, human resource management, financials, content management,
collaboration, document management, and service desk management.

Data and Web 2.0

 The Mantra “Content is king”, has been rewritten as “data is king “.
 Allowing the users to consume data makes it possible to define an entirely a new

business and functionality other than those that were originally intended.
 Independent developers are now capable of delivering applications that would be

impossible without a large team of resources.

Convergence

 Convergence can be thought of as a trend in which different hardware devices such as
televisions, computers and telephones merge and have similar functions.

 At present, applications are diverging from the desktop and being accessed from
various device.

 The next logical step would be a convergence whereby these various access channels
become integrated.

 One of the scenarios would be: A personal media center is basically a TV hooked up
to a computer.

 You can view and record TV without the use of tapes. You can view enhanced
programming guide with links out to internet content. You can view RSS and news
headlines on this PC viewing them as TV, and so on.

Iterative development

 Web 2.0 companies operate in very short cycle of design, develop, launch, and get
feedback, repeat. Here time to market is reduced.

 How does it work?
 Companies purposefully leave features out to achieve shorter cycle times. Rather than

guess at what the users want, it’s better to launch a small subset of functionality and
then take real-world users’ feedback this feedback is then used to drive feature
definition in subsequent cycles.

 This constant loop of development and product releases is commonly referred to as
perpetual beta. It’s constantly being iterated on and refined.

Web 2.0 06CS832

Dept of CSE, SJBIT 8

Web Services: SOAP

 SOAP, originally defined as Simple Object Access Protocol, is a protocol
specification for exchanging structured information in the implementation of Web
Services in computer networks.

 It relies on Extensible Markup Language (XML) for its message format, and usually
relies on other Application Layer protocols, most notably Remote Procedure Call
(RPC) and Hypertext Transfer Protocol (HTTP), for message negotiation and
transmission.

 SOAP can form the foundation layer of a web services protocol stack, providing a
basic messaging framework upon which web services can be built.

 This XML based protocol consists of three parts: an envelope, which defines what is
in the message and how to process it, a set of encoding rules for expressing instances
of application-defined datatypes, and a convention for representing procedure calls
and responses.

 As an example of how SOAP procedures can be used, a SOAP message could be sent
to a web-service-enabled web site, for example, a real-estate price database, with the
parameters needed for a search.

 The site would then return an XML-formatted document with the resulting data, e.g.,
prices, location, features. Because the data is returned in a standardized machine-
parseable format, it could then be integrated directly into a third-party web site or
application.

 The SOAP architecture consists of several layers of specifications: for message
format, Message Exchange Patterns (MEP), underlying transport protocol bindings,
message processing models, and protocol extensibility.

 SOAP is the successor of XML-RPC, though it borrows its transport and interaction
neutrality and the envelope/header/body from elsewhere (probably from WDDX).

RPC Style SOAP and Document style SOAP

 There are two ways to structure a SOAP message. In the early versions of SOAP
(before it was publicly published), SOAP was designed to support only RPC style. By
the time the SOAP 1.0 spec was published, it was expanded to support both RPCs and
unstructured messages (document).

 When using Document style, you can structure the contents of the SOAP Body any
way you like.

 When using RPC style, the contents of the SOAP Body must conform to a structure
that indicates the method name and contains a set of parameters. It looks like this:

<env:Body>
<m:&methodName xmlns:m="someURI">
<m:¶m1>...</m:¶m1>

<m:¶m2>...</m:¶m2>
...

</m:&methodName>
</env:Body>

Web 2.0 06CS832

Dept of CSE, SJBIT 9

 The response message has a similar structure containing the return value and any
output parameters. Your parameters can be as complex as you like, so there's really
not a huge amount of difference in what you can pass. For example, you can pass a
purchase order as a document or as a parameter in a method called placeOrder. It's
your choice:

Document style:

<env:Body>
<m:purchaseOrder xmlns:m="someURI">
...

</m:purchaseOrder>
</env:Body>

RPC style:

<env:Body>
<m:placeOrder xmlns:m="someURI">
<m:purchaseOrder>
...
</m:purchaseOrder>
</m:placeOrder>
</env:Body>

WSDL

 The Web Services Description Language (WSDL, pronounced 'wiz-del') is an
XML-based language that provides a model for describing Web services. The
meaning of the acronym has changed from version 1.1 where the D stood for
Definition.

 The current version of the specification is 2.0; version 1.1 has not been endorsed by
the W3C but version 2.0 is a W3C recommendation. WSDL 1.2 was renamed WSDL
2.0 because of its substantial differences from WSDL 1.1.

 By accepting binding to all the HTTP request methods (not only GET and POST as
in version 1.1), the WSDL 2.0 specification offers better support for RESTful web
services, and is much simpler to implement.

 However support for this specification is still poor in software development kits for
Web Services which often offer tools only for WSDL 1.1.[dubious – discuss] Furthermore,
the latest version (version 2.0) of the Business Process Execution Language (BPEL)
only supports WSDL 1.1.

Web 2.0 06CS832

Dept of CSE, SJBIT 10

Representation of concepts defined by WSDL 1.1 and WSDL 2.0 documents.

 The WSDL defines services as collections of network endpoints, or ports. The WSDL
specification provides an XML format for documents for this purpose. The abstract
definitions of ports and messages are separated from their concrete use or instance,
allowing the reuse of these definitions.

 A port is defined by associating a network address with a reusable binding, and a
collection of ports defines a service. Messages are abstract descriptions of the data
being exchanged, and port types are abstract collections of supported operations.

 The concrete protocol and data format specifications for a particular port type
constitutes a reusable binding, where the operations and messages are then bound to a
concrete network protocol and message format. In this way, WSDL describes the
public interface to the web service.

 WSDL is often used in combination with SOAP and an XML Schema to provide web
services over the Internet.

 A client program connecting to a web service can read the WSDL file to determine
what operations are available on the server. Any special datatypes used are embedded
in the WSDL file in the form of XML Schema. The client can then use SOAP to
actually call one of the operations listed in the WSDL file.

Web 2.0 06CS832

Dept of CSE, SJBIT 11

REST services

 Representational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web.

 The term Representational State Transfer was introduced and defined in 2000 by Roy
Fielding in his doctoral dissertation. Fielding is one of the principal authors of the
Hypertext Transfer Protocol (HTTP) specification versions 1.0 and 1.1.

 Conforming to the REST constraints is referred to as being ‘RESTful’.
 REST-style architectures consist of clients and servers. Clients initiate requests to

servers; servers process requests and return appropriate responses. Requests and
responses are built around the transfer of representations of resources.

 A resource can be essentially any coherent and meaningful concept that may be
addressed. A representation of a resource is typically a document that captures the
current or intended state of a resource.

 At any particular time, a client can either be in transition between application states or
"at rest". A client in a rest state is able to interact with its user, but creates no load and
consumes no per-client storage on the set of servers or on the network.

 The client begins sending requests when it is ready to make the transition to a new
state. While one or more requests are outstanding, the client is considered to be in
transition. The representation of each application state contains links that may be used
next time the client chooses to initiate a new state transition.

 REST was initially described in the context of HTTP, but is not limited to that
protocol. RESTful architectures can be based on other Application Layer protocols if
they already provide a rich and uniform vocabulary for applications based on the
transfer of meaningful representational state.

 RESTful applications maximize the use of the pre-existing, well-defined interface
and other built-in capabilities provided by the chosen network protocol, and minimize
the addition of new application-specific features on top of it.

HTTP examples

 HTTP, for example, has a very rich vocabulary in terms of verbs (or "methods"),
URIs, Internet media types, request and response codes, etc.

 REST uses these existing features of the HTTP protocol, and thus allows existing
layered proxy and gateway components to perform additional functions on the
network such as HTTP caching and security enforcement.

 An abbreviated list of claimed REST Examples is available.

Web 2.0 06CS832

Dept of CSE, SJBIT 12

SOAP RPC contrast

 SOAP RPC over HTTP, on the other hand, encourages each application designer to
define a new and arbitrary vocabulary of nouns and verbs (for example getUsers(),
savePurchaseOrder(...)), usually overlaid onto the HTTP 'POST' verb.

 This disregards many of HTTP's existing capabilities such as authentication, caching
and content type negotiation, and may leave the application designer re-inventing
many of these features within the new vocabulary. Examples of doing so may include
the addition of methods such as getNewUsersSince(Date date), savePurchaseOrder(string
customerLogon, string password, ...).

JSON format

 JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is
easy for humans to read and write. It is easy for machines to parse and generate.

 It is based on a subset of the JavaScript Programming Language, Standard ECMA-
262 3rd Edition - December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others.
These properties make JSON an ideal data-interchange language.

 JSON is built on two structures:

 A collection of name/value pairs. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

 An ordered list of values. In most languages, this is realized as an array,
vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support
them in one form or another. It makes sense that a data format that is interchangable with
programming languages also be based on these structures.

In JSON, they take on these forms:

 An object is an unordered set of name/value pairs. An object begins with { (left brace)
and ends with } (right brace). Each name is followed by : (colon) and the name/value
pairs are separated by , (comma).

Web 2.0 06CS832

Dept of CSE, SJBIT 13

 An array is an ordered collection of values. An array begins with [(left bracket) and
ends with] (right bracket). Values are separated by , (comma).

 A value can be a string in double quotes, or a number, or true or false or null, or an
object or an array. These structures can be nested.

 A string is a sequence of zero or more Unicode characters, wrapped in double quotes,
using backslash escapes. A character is represented as a single character string. A
string is very much like a C or Java string.

Web 2.0 06CS832

Dept of CSE, SJBIT 14

 A number is very much like a C or Java number, except that the octal and
hexadecimal formats are not used.

Whitespace can be inserted between any pair of tokens. Excepting a few encoding details,
that completely describes the language.

Web 2.0 06CS832

Dept of CSE, SJBIT 15

What is JSON?

 JSON (an acronym for JavaScript Object Notation) is a lightweight text-based
open standard designed for human-readable data interchange.

 It is derived from the JavaScript programming language for representing simple data
structures and associative arrays, called objects. Despite its relationship to JavaScript,
it is language-independent, with parsers available for virtually every programming
language.

 The JSON format was originally specified by Douglas Crockford, and is described in
RFC 4627. The official Internet media type for JSON is application/json. The JSON
filename extension is .json.

 The JSON format is often used for serializing and transmitting structured data over a
network connection. It is primarily used to transmit data between a server and web
application, serving as an alternative to XML.

Array literals

 JSON is a lightweight format for exchanging data between the client and server. It is
often used in Ajax applications because of its simplicity and because its format is
based on JavaScript object literals.

 We will start this lesson by learning JavaScript's object-literal syntax and then we will
see how we can use JSON in an Ajax application.

Object Literals

We saw earlier how to create new objects in JavaScript with the Object() constructor. We
also saw how we could create our constructors for our own objects. In this lesson, we'll
examine JavaScript's literal syntax for creating arrays and objects.

 Array literals are created with square brackets as shown below:

var Beatles = ["Paul","John","George","Ringo"];

 This is the equivalent of:

var Beatles = new Array("Paul","John","George","Ringo");

 Object literals are created with curly brackets:

var Beatles = {
"Country" : "England",
"YearFormed" : 1959,
"Style" : "Rock'n'Roll"

}

Web 2.0 06CS832

Dept of CSE, SJBIT 16

This is the equivalent of:

var Beatles = new Object();
Beatles.Country = "England";
Beatles.YearFormed = 1959;
Beatles.Style = "Rock'n'Roll";

Just as with all objects in JavaScript, the properties can be references using dot notation or
bracket notation.

alert(Beatles.Style); //Dot Notation
alert(Beatles["Style"]); //Bracket Notation

Mixing literals

 Arrays in Objects

Object literals can contain array literals:

var Beatles = {
"Country" : "England",
"YearFormed" : 1959,
"Style" : "Rock'n'Roll",
"Members" : ["Paul","John","George","Ringo"]

}

 Objects in Arrays

Array literals can contain object literals:

var Rockbands = [
{
"Name" : "Beatles",
"Country" : "England",
"YearFormed" : 1959,
"Style" : "Rock'n'Roll",
"Members" : ["Paul","John","George","Ringo"]

},
{
"Name" : "Rolling Stones",
"Country" : "England",
"YearFormed" : 1962,
"Style" : "Rock'n'Roll",
"Members" : ["Mick","Keith","Charlie","Bill"]

}
]

Web 2.0 06CS832

Dept of CSE, SJBIT 17

JSON Syntax

 The JSON syntax is like JavaScript's object literal syntax except that the objects
cannot be assigned to a variable. JSON just represents the data itself. So, the Beatles
object we saw earlier would be defined as follows:

{
"Name" : "Beatles",
"Country" : "England",
"YearFormed" : 1959,
"Style" : "Rock'n'Roll",
"Members" : ["Paul","John","George","Ringo"]

}

JSON Encoding and Decoding

 Encoding

For encoding, the documentation’s not all that bad. It will tell you to implement the default()
method in a subclass (of json.JSONEncoder) which takes your obect as an argument, and
returns a serializable object. By serializable, they just mean something in the form of one of
the basic serializable types. So, say you have a class with a few attributes as follows:

class MyClass:
def __init__ (my_int, my_list, my_dict):

this.my_int = my_int
this.my_list = my_list
this.my_dict = my_dict

You could write a custom encode function by mapping all the class attributes you want to
save as members of a dictionary. If there are helpful additional things you want to store as
well, that’s fine too. in this example, i use a string representation of a previously defined
datetime object to make note of when the object was saved. Of course the only thing to
remember is that when you later decode the object, you’re going to be recreating a MyClass
object from this data, and it will have to match (so, specifically, you’ll either be discarding
the date information or storing it elsewhere (or annotating your object with it on the fly)).

class MyEncoder(json.JSONEncoder):
''' a custom JSON encoder for MyClass objects '''
def default(self, my_class):

if not isinstance (my_class, MyClass):
print 'You cannot use the JSON custom MyClassEncoder for a non-MyClass object.'
return

return {'my_int': my_class.my_int, 'my_list': my_class.my_list,
'my_dict': my_class.my_dict,
'save date': the_date.ctime()}

Web 2.0 06CS832

Dept of CSE, SJBIT 18

 Decoding

Decoding is less clear than encoding. there are two ways you can customize the results
returned by the json load() or loads() functions. One is by writing an object hook, and one is
by subclassing JSONDecoder and overriding the decode() function.

When called, load/loads calls the decode() function on the json string or file pointer you pass
to it. if object_hook is also specified, then the function passed to object_hook is called after
the decode function is called.

the default behaviour of decode() is to return a python object FOR EVERY SIMPLE
OBJECT in that string. this means that if you have a hierarchy of such objects, for example a
dictionary which contains several lists, then although you only call load() once, the decode()
function gets called recursively for each python-like object in that string. here’s an example
to convince yourself of this, using the previously encoded object:

fp = open ('myclass.json')
def custom_decode(json_thread):

print json_thread
json.loads(fp, object_hook=custom_decode)

if what you want is to recover a custom object (such as the original MyClass object), this isnt
terriby useful. at this point, it becomes clear we probably have to override the default loads()
behaviour. as mentioned above, we do this by subclassing the JSONDecoder and overriding
the decode() function. It’s not clear why the lack of symmetry here with JSONEncode– we
override default() in one, and decode() in the other. but, ok.

now, your custom decode function took a python object as argument, but the decode()
function of course will receive the raw serialized string being decoded. the basic approach is
to use the generic decode capability of the JSON module to parse the string that was stored
on disk into a python dictionary object. but the decoder still doesnt know about your custom
MyClass object, so what you do is actually create a new object, initializing it with the values
in my_class_dict.

class ThreadDecoder(json.JSONDecoder):
def decode (self, json_string):

use json's generic decode capability to parse the serialized string
into a python dictionary.
my_class_dict = json.loads(json_string)
return MyClass(my_class_dict['my_int'], my_class_dict['my_list'],

my_class_dict['my_dict'])

And there you have it. This is a simple example, but objects and types can be nested
arbitrarily; you just have to be willing to unravel them as appropriate such that you are
encoding and decoding basic python types.

Web 2.0 06CS832

Dept of CSE, SJBIT 19

JSON versus XML

Why JSON?

 Essentially JSON is built for Data Structuring. When you take a look at it, JSON
takes care of the Data Architecture of the Ajax based program. It has been widely
accepted because it caters to the general need of Ajax.

 When you take a look at it, Ajax is a very broad program that needs to be harnessed.
JSON is very easy to configure and it generally answers the need of every
programmer.

 Compared to XML, JSON is also shorter to configure. In XML you could go as far as
7000 lines and could only go 75% of the data configuration. However, for JSON you
can actually reduce it to a mere 1,500 lines.

 That’s far easier and controllable. Debugging is also easy and as far as any developer
is concerned, a thousand lines could even be manually checked.

Why XML?

 As we have noted, XML takes the longer route in developing the specific program.
The reason for this is that XML is more concerned with the specifics of the program
compared to JSON.

 Besides XML is a general purpose program so you have to configure it for JavaScript.
The great thing about this program is that it gives you more freehand expression in
your Application.

 Some see it as XML’s disadvantage but the way I see it, XML’s longer version of
coding is a good thing since its full customization.

 Security is also better because surprisingly, XML is very simple. Because of its long
lines it usually requires an expert developer.

Web 2.0 06CS832

Dept of CSE, SJBIT 20

UNIT - 2 7 Hours

BUILDING RICH INTERNET APPLICATIONS WITH AJAX-1

 Building Rich Internet Applications with AJAX

 Limitations of Classic Web application model

 AJAX principles

 Technologies behind AJAX

 Examples of usage of AJAX

 Dynamic web applications through Hidden frames for both GET and POST methods.

Web 2.0 06CS832

Dept of CSE, SJBIT 21

BUILDING RICH INTERNET APPLICATIONS WITH AJAX-1:

Building Rich Internet Applications with AJAX

 Ajax (shorthand for Asynchronous JavaScript and XML) is a group of interrelated
web development methods used on the client-side to create interactive web
applications.

 With Ajax, web applications can retrieve data from the server asynchronously in the
background without interfering with the display and behavior of the existing page.

 Data is usually retrieved using the XMLHttpRequest object. Despite the name, the use
of XML is not needed, and the requests need not be asynchronous.

 Like DHTML and LAMP, Ajax is not one technology, but a group of technologies.
Ajax uses a combination of HTML and CSS to mark up and style information.

 The DOM is accessed with JavaScript to dynamically display, and to allow the user to
interact with, the information presented. JavaScript and the XMLHttpRequest object
provide a method for exchanging data asynchronously between browser and server to
avoid full page reloads.

 The term Ajax has come to represent a broad group of web technologies that can be
used to implement a web application that communicates with a server in the
background, without interfering with the current state of the page.

 In the article that coined the term Ajax, Jesse James Garrett explained that the
following technologies are incorporated:

 HTML or XHTML and CSS for presentation
 the Document Object Model (DOM) for dynamic display of and

interaction with data
 XML for the interchange of data, and XSLT for its manipulation
 the XMLHttpRequest object for asynchronous communication
 JavaScript to bring these technologies together

 Since then, however, there have been a number of developments in the technologies
used in an Ajax application, and the definition of the term Ajax.

 In particular, it has been noted that JavaScript is not the only client-side scripting
language that can be used for implementing an Ajax application; other languages such
as VBScript are also capable of the required functionality. (However, JavaScript is
the most popular language for Ajax programming due to its inclusion in and
compatibility with the majority of modern web browsers.)

 Also, XML is not required for data interchange and therefore XSLT is not required
for the manipulation of data.

 JavaScript Object Notation (JSON) is often used as an alternative format for data
interchange, although other formats such as preformatted HTML or plain text can
also be used.

Web 2.0 06CS832

Dept of CSE, SJBIT 22

Limitations of Classic Web application model

 The classic web application model works like this: Most user actions in the interface
trigger an HTTP request back to a web server.

 The server does some processing —retrieving data, crunching numbers, talking to
various legacy systems —and then returns an HTML page to the client.

 It’s a model adapted from the Web’s original use as a hypertext medium, but as fans
of The Elements of User Experience know, what makes the Web good for hypertext
doesn’t necessarily make it good for software applications.

 This approach makes a lot of technical sense, but it doesn’t make for a great user
experience. While the server is doing its thing, what’s the user doing? That’s right,
waiting.

 And at every step in a task, the user waits some more. Obviously, if we were
designing the Web from scratch for applications, we wouldn’t make users wait
around.

Web 2.0 06CS832

Dept of CSE, SJBIT 23

 Once an interface is loaded, why should the user interaction come to a halt every
time the application needs something from the server? In fact, why should the user
see the application go to the server at all?

AJAX principles

 As a new web application model, Ajax is still in its infancy. However, several web
developers have taken this new development as a challenge.

 The challenge is to define what makes a good Ajax web application versus what
makes a bad or mediocre one. Michael Mahemoff (http://mahemoff.com/), a software
developer and usability expert, identified several key principles of good

 Ajax applications that are worth repeating:

 Minimal traffic: Ajax applications should send and receive as little
information as possible to and from the server. In short, Ajax can
minimize the amount of traffic between the client and the server. Making
sure that your Ajax application doesn't send and receive unnecessary
information adds to its robustness.

 No surprises: Ajax applications typically introduce different user
interaction models than traditional web applications. As opposed to the
web standard of click-and-wait, some Ajax applications use other user
interface paradigms such as drag-and-drop or double-clicking. No matter
what user interaction model you choose, be consistent so that the user
knows what to do next.

 Established conventions: Don't waste time inventing new user interaction
models that your users will be unfamiliar with. Borrow heavily from
traditional web applications and desktop applications so there is a minimal
learning curve.

 No distractions: Avoid unnecessary and distracting page elements such as
looping animations, and blinking page sections. Such gimmicks distract
the user from what he or she is trying to accomplish.

 Accessibility: Consider who your primary and secondary users will be and
how they most likely will access your Ajax application. Don't program
yourself into a corner so that an unexpected new audience will be
completely locked out. Will your users be using older browsers or special
software? Make sure you know ahead of time and plan for it.

 Avoid entire page downloads: All server communication after the initial
page download should be managed by the Ajax engine. Don't ruin the user
experience by downloading small amounts of data in one place, but
reloading the entire page in others.

 User first: Design the Ajax application with the users in mind before
anything else. Try to make the common use cases easy to accomplish and
don't be caught up with how you're going to fit in advertising or cool
effects.

Web 2.0 06CS832

Dept of CSE, SJBIT 24

 The common thread in all these principles is usability. Ajax is, primarily, about
enhancing the web experience for your users; the technology behind it is merely a
means to that end.

 By adhering to the preceding principles, you can be reasonably assured that your Ajax
application will be useful and usable.

Technologies behind AJAX

 JavaScript

 Loosely typed scripting language
 JavaScript function is called when an event in a page occurs
 Glue for the whole AJAX operation

 DOM

 API for accessing and manipulating structured documents
 Represents the structure of XML and HTML documents

 CSS

 Allows for a clear separation of the presentation style from the content and
may be changed programmatically by JavaScript

 XMLHttpRequest

 JavaScript object that performs asynchrous interaction with the server

Examples of usage of AJAX

<html>

<head>

<script type="text/javascript">

function loadXMLDoc()

{

if (window.XMLHttpRequest)

{// code for IE7+, Firefox, Chrome, Opera, Safari

xmlhttp=new XMLHttpRequest();

}

else

{// code for IE6, IE5

Web 2.0 06CS832

Dept of CSE, SJBIT 25

xmlhttp=new ActiveXObject("Microsoft.XMLHTTP");

}

xmlhttp.onreadystatechange=function()

{

if (xmlhttp.readyState==4 && xmlhttp.status==200)

{

document.getElementById("myDiv").innerHTML=xmlhttp.responseText;

}

}

xmlhttp.open("GET","ajax_info.txt",true);

xmlhttp.send();

}

</script>

</head>

<body>

<div id="myDiv"><h2>Let AJAX change this text</h2></div>

<button type="button" onclick="loadXMLDoc()">Change Content</button>

</body>

</html>

Dynamic web applications through Hidden frames for both GET and
POST methods.

 HiddenFrameGET

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<title>Get Customer Data</title>

<?php

//customer ID

$sID = $_GET["id"];

//variable to hold customer info

$sInfo = "";

Web 2.0 06CS832

Dept of CSE, SJBIT 26

//database information

$sDBServer = "localhost";

$sDBName = "ajax";

$sDBUsername = "root";

$sDBPassword = "";

//create the SQL query string

$sQuery = "Select * from Customers where CustomerId=".$sID;

//make the database connection

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

@mysql_select_db($sDBName) or $sInfo = "Unable to open database";

if($sInfo == '') {

if($oResult = mysql_query($sQuery) and mysql_num_rows($oResult) > 0) {

$aValues = mysql_fetch_array($oResult,MYSQL_ASSOC);

$sInfo = $aValues['Name']."
".$aValues['Address']."
".

$aValues['City']."
".$aValues['State']."
".

$aValues['Zip']."

Phone: ".$aValues['Phone']."
".

"".$aValues['E-mail']."";

} else {

$sInfo = "Customer with ID $sID doesn't exist.";

}

}

mysql_close($oLink);

?>

<script type="text/javascript">

window.onload = function () {

var divInfoToReturn = document.getElementById("divInfoToReturn");

top.frames["displayFrame"].displayCustomerInfo(divInfoToReturn.innerHTML);

};

</script>

Web 2.0 06CS832

Dept of CSE, SJBIT 27

</head>

<body>

<div id="divInfoToReturn"><?php echo $sInfo ?></div>

</body>

</html>

 HiddenFramePOST

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<html>

<head>

<title>Create New Customer</title>

<?php

//get information

$sName = $_POST["txtName"];

$sAddress = $_POST["txtAddress"];

$sCity = $_POST["txtCity"];

$sState = $_POST["txtState"];

$sZipCode = $_POST["txtZipCode"];

$sPhone = $_POST["txtPhone"];

$sEmail = $_POST["txtEmail"];

//status message

$sStatus = "";

//database information

$sDBServer = "localhost";

$sDBName = "ajax";

$sDBUsername = "root";

$sDBPassword = "";

//create the SQL query string

$sSQL = "Insert into Customers(Name,Address,City,State,Zip,Phone,`E-mail`) ".

" values ('$sName','$sAddress','$sCity','$sState', '$sZipCode'".

Web 2.0 06CS832

Dept of CSE, SJBIT 28

", '$sPhone', '$sEmail')";

$oLink = mysql_connect($sDBServer,$sDBUsername,$sDBPassword);

@mysql_select_db($sDBName) or $sStatus = "Unable to open database";

if($sStatus == ''){

if($oResult = mysql_query($sSQL)) {

$sStatus = "Added customer; customer ID is ".mysql_insert_id();

} else {

$sStatus = "An error occurred while inserting; customer not saved.";

}

}

mysql_close($oLink);

?>

<script type="text/javascript">

window.onload = function () {

top.frames["displayFrame"].saveResult("<?php echo $sStatus ?>");

}

</script>

</head>

<body>

</body>

</html>

Web 2.0 06CS832

Dept of CSE, SJBIT 29

UNIT - 3 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH AJAX-2

 Frames

 Asynchronous communication and AJAX application model

 XMLHTTP Object – properties and methods

 Handling different browser implementations of XMLHTTP

 The same origin policy

 Cache control

 AJAX Patterns (Only algorithms – examples not required):

o Predictive fetch pattern

o Submission throttling pattern

o Periodic refresh

o Multi stage download

o Fall back patterns.

Web 2.0 06CS832

Dept of CSE, SJBIT 30

Building Rich Internet Application with Ajax-2

Ajax Patterns

 A design pattern describes programming techniques to solve common problems.

Predictive Fetch Algorithm

 In case of traditional web applications, the application reacts only when there is an
interaction.

 This is called “fetch on demand”. The user action tells the server what data should be
retrieved.

 In the predictive fetch algorithm, the application guesses what the user is going to do
next and retrieves the appropriate data.

 Determining the future action of the user is just or guess based on the users intentions.

 For eg: say a user is reading an online article of 3 pages. It can be assumed here that if
the user is reading the 1st page for few seconds, the person will also be interested in
reading the 2nd page.

 Hence the 2nd page can be downloaded at the background before the user explicitly
clicks on the ‘Next’.

 Therefore when the user clicks on next the n2d page instantaneously appears
reducing the response time.

 Similarly the 3rd page can be downloaded when the user reads 2nd page for a few
seconds.

 This extra data being downloaded is cached on the client.
 Some approach can be applied in emails. If a person starts composing a mail, it is

logical to anticipate that the mail would be sent to someone in the address book so
this can be preloaded and kept.

 By using ajax to fetch information related to any possible next step, can overload the
server.

 Therefore this algorithm has to be implemented only when it is logical to assume that
information will be requisite to completing the user’s next request

Submission Throttling

 If retrieving data from the server is one part of the problem sending data to server is
another.

 Seince in AJAX page refreshes needs to be avoided, it is important to know when to
send user data to the server.

 One approach that could be taken is to send data to server on every user interaction.
But this results in a lot of requests submitted to the server is a short period.

Web 2.0 06CS832

Dept of CSE, SJBIT 31

 In case of submission throttling, the data to be send to the server is buffered on the
client.

 This data is then sent to the server at predefined times.
 The delay from typing to sending data is fine tuned such that it doent seem lika a

delay to the user.

 Then a client side function is invoked that begins buffering the data.
 Then a client side function is invoked that begins buffering the data.

 It can be sent at a predefined time interval.
 This determination depends on the usecase being used.
 After the data is sent, the application continous to gather data.

Periodic Refresh

 This algorithm is basically used to nofify users of updated information.

 It describes the process of checking for new server information in specific intervals.
 This approach is called ‘polling’ and it requires the browser to keep track of when

another request to the server should take place.

Multi-Stage Download

 In the modern web experience, a webpage is loaded with information, pictures,
flash animations etc. Therefore to download a page all these elements need to be
download leading to very slow speeds.

 Multistage download is an AJAX pattern wherein only the most basic
functionality is loaded into a page initially.

 Upon completion of this, the page then begins to download other components that
should appear on the page.

 If the user leaves the page befor all components all downloaded , then it is not
much of consequence as all useful info was already displayed/

 If however the user stays on the page for some extemded period of time, the extra
functionality is loaded at the background and available to the user.

 The developer decides what is downloaded at what point in time.
 This can be dealt with by providing a base and simple interface for the browser

that don’t support AJAX and a richer interface for browsers that do.

Fall Back Patterns

 All the above methods work fine when there is no problem at the server side.

 The following problems can occur:

Web 2.0 06CS832

Dept of CSE, SJBIT 32

The request might never make it to the server.
An error might occur at the server.

Cancel Pending Requests
 If error occurs on the server like a file not fount or an internal server error , then it

doesn’t make sense to trying again after a few minutes.
 Such problems needs an administrator to fix it.
 In such a situation all the pending requests are simply cancelled.

 This can be done by setting a flag somewhere in the code that says “don’t send any
more request”.

 This solution has maximum impact on the periodic refresh pattern.

Try Again
 Another option is to silently keep trying for either a specified amount of time or a

particular number of files.

 This problem is handled behind the scenes without generally notifying the user.
 Unless the ajax functionality is key to the user’s experience, it is not needed to notify

her about the failures.

XMLHTTP Object
 The xmlhttp object was created to enable developers to initiate HTTP requests from

anywhere in an application.

 These requests were intended to return an XML so the XMLHTTP object provided an
easy way to access this info in the form of an XML document.

 This XMLHTTP Object was modified to suit various browsers and this version is
known as the “XMLHTTP Request Object” or the XHR.

Creating an XHR object
 Since most of the Microsoft’s implementation is on ActiveX control, the ActiveX

object class should be used in the javascript.
var oxhr=new ActiveXobject(“Microsoft.xmlHttp”);

 The signatures differ for various versions of the MSXML library.
 The various signatures are:

- Microsoft.xmlHttp
- MSXML2.xmlHttp
- MSXML2.xmlHttp.3.0
- MSXML2.xmlHttp.4.0
- MSXML2.xmlHttp.5.0
- MSXML2.xmlHttp .6.0

Web 2.0 06CS832

Dept of CSE, SJBIT 33

 The best way to find out which version is supported is to create all the probable ones.
The ActiveX Control throws an error if it is not supported.

function createXHR() {
var aVersions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”];
for (var i = 0; i < aVersions.length; i++)

{
try {

var oXHR = new ActiveXObject(aVersions[i]);
return oXHR;
} catch (oError) {

//Do nothing
}

}
throw new Error(“MSXML is not installed.”);

}
 In case of browsers apart from IE like Mozilla, Safari etc and also IE7 uses a simple

code
var oxhr=new XMLHttpeRequest();

 In order to create a cross-browser way of creating XHR objects, both the methods are
combined as shown:

function createXHR() {
if (typeof XMLHttpRequest != “undefined”) {

return new XMLHttpRequest();
} else if (window.ActiveXObject) {

var aVersions = [“MSXML2.XMLHttp.6.0”, “MSXML2.XMLHttp.3.0”];
for (var i = 0; i < aVersions.length; i++) {

try {
var oXHR = new ActiveXObject(aVersions[i]);
return oXHR;

} catch (oError) {
//Do nothing

}
}

}
throw new Error(“XMLHttp object could not be created.”);

}
 Another way of creating corss-browser XHR Objects is to use the ZXML library

which already has a cross-browser code written.
 Therefore a single function can be used to any browser.

var oxhr = zxmlhttp.createRequest();

Web 2.0 06CS832

Dept of CSE, SJBIT 34

Using XHR
 In order to send the http request from javascript, the first step is to call the open()

method which initializes the object.
 The following are the 3 arguments for this method.

Request Type: A string indicating the request type to be made-typically,GET or POST
URL: A string indicating the URL to send the request to
Async:A Boolean value indicating whether the request should be made asynchronously

 The next step is to define an ‘onreadyStateChange’ event handler.
 The XHR object has a property called ‘readyState’ that changes as the request goes

through and the response is received.
 Every time the readyState property changes from one value to another, the

readyStateChange event fires and the onreadyStateChange event handler is called.

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, true);
oXHR.onreadystatechange = function ()
{

if (oXHR.readyState == 4)
{

alert(“Got response.”);
}

};
oXHR.send(null);

 The send method is called at teh end which actually sends the request.
 If the request doesn’t have a body, then a null should be passed in.
 In the above code, after response is received, an alert is dispalayed.
 This returns the context of info.txt. if there are any errors like the file didint exist and

so on, it needs to be handled.
if (oXHR.status == 200) {

alert(“Data returned is: “ + oXHR.responseText);
} else {

alert(“An error occurred: “ + oXHR.statusText);
}

 The response Header can be accessed using the ‘getResponseHeader()’ method and
passing the name of header to be retrieved.

var sContentType = oXHR.getResponseHeader(“Content-Type”);
if (sContentType == “text/xml”) {
alert(“XML content received.”);
} else if (sContentType == “text/plain”) {
alert(“Plain text content received.”);

Web 2.0 06CS832

Dept of CSE, SJBIT 35

} else {
alert(“Unexpected content received.”);
}

 The getAllResponseHeader() method can be used to return a string containing all the
headers. Each header in this string is separated by ‘\n’ or ‘\r\n’.

var sHeaders = oXHR.getAllResponseHeaders();

var aHeaders = sHeaders.split(/\r?\n/);
for (var i=0; i < aHeaders.length; i++) {
alert(aHeaders[i]);
}

 The ‘setRequestHeader()’ method can be set headon on the request before it is sent.

var oXHR = zXmlHttp.createRequest();

oXHR.open(“get”, “info.txt”, true);
oXHR.onreadystatechange = function ()
{

if (oXHR.readyState == 4)
{

alert(“Got response.”);
}

};
oXHR.setRequestHeader(“myheader”, “myvalue”);
oXHR.send(null);

Synchronous Requests
 In case of synchronous requests, it is not required to assign the onready statechange

event handler.

 The response will have been received by the time the send() method returns.

var oXHR = zXmlHttp.createRequest();
oXHR.open(“get”, “info.txt”, false);
oXHR.send(null);
if (oXHR.status == 200) {
alert(“Data returned is: “ + oXHR.responseText);
} else
alert(“An error occurred: “ + oXHR.statusText);

}

Web 2.0 06CS832

Dept of CSE, SJBIT 36

Cache Control

 Whenever repeated calls to the same page all dealt with browser caching needs to be
considered.

 Web browsers tend to cache certain resources to improve the speed with which sites
are downloaded and displayed.

 This increases the speed on frequently visited web sites.
 Caching can be dealt with by including a header with caching information on any data

being sent from the server to the browser.
Cache_Control : no_cache
Expires : Fri, 30 Oct 1998 14:19:41 GMT

 This tells the browser not to cache the data coming from the specific URL. Instead the
browser always calls a new version from the server instead of a saved version from
its own cache.

Web 2.0 06CS832

Dept of CSE, SJBIT 37

UNIT - 4 6 Hours

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 1:

 Flash player

 Flex framework

 MXML and Actionscript

 Working with Data services

 Understanding differences between HTML and Flex applications

 Understanding how Flex applications work

 Understanding Flex and Flash authoring

 MXML language, a simple example.

Web 2.0 06CS832

Dept of CSE, SJBIT 38

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 1:

Flash player

 Flex is part of the Adobe Flash Platform, which is a set of technologies with Flash
Player at the core.

 Flex applications are intended to be deployed to Flash Player, meaning Flash Player
runs all Flex applications.

 Flash Player is one of the most ubiquitous pieces of software anywhere. Because all
the computers that have internet will be having some version of Flash Player installed
and some of the mobile devices being Flash – enabled.

Flex framework

 The Flex framework is synonymous with the Flex class library and is a collection of
ActionScript classes used by Flex applications.

 The Flex framework is written entirely in ActionScript classes, and defines controls,
containers, and managers designed to simplify building rich Internet applications.

 The Flex class library.

MXML and Actionscript

 The Flex framework provides two programming languages: ActionScript and
MXML. ActionScript 3.0 is an ECMA-compliant scripting language similar in syntax
to JavaScript and Java. MXML is an XML-based declarative language similar to
CFML.

 This is an example of an ActionScript function with variable declarations:

protected function addEmployee_clickHandler(event:MouseEvent):void { private var
firstName:String; private var lastName:String; }

 This is an example of a Button UI control declared as an MXML tag:

<s:Button id="addEmployee" label="Add Employee"
click="addEmployee_clickHandler(event)" />

 MXML tags are actually created with ActionScript under the hood. When you
compile your Flex application, the MXML is converted into ActionScript which is
then compiled into a SWF file.

 This means that your entire application could be written in ActionScript. However,
you will primarily use MXML to define your Flex application UI and ActionScript to
program your business logic.

Web 2.0 06CS832

Dept of CSE, SJBIT 39

Introducing ActionScript classes

 ColdFusion developers who are not familiar with object-oriented programming
(OOP) will need to establish a foundation in OOP concepts.

Note: The free Adobe Flex in a Week training series covers an introduction to object-
oriented programming that is specifically designed for developers to learn OOP in the
context of Flex application development.

 ActionScript is an OOP language that encapsulates all of its functionality in classes.
The Flex framework includes libraries of pre-built classes that provide data retrieval
and handling, animation, UI elements and layout, and much more. Figure 1 shows
some ActionScript 3.0 classes in a common OOP documentation format.

Working with Data services

 Data synchronization - Remove the complexity and error potential from the rich-
client data synchronization process by using a robust, high-performance data
synchronization engine between client and server.

 Publish/subscribe messaging - Publish and subscribe to message topics in real time
with the same reliability, scalability, and overall quality of service as traditional thick
client applications, enabling the creation of critical, more complex applications such
as logistics handling, inventory control, stock trading, and more.

 Data paging - Easily manage and use large record sets using a built-in, efficient
paging engine.

 Data push - Push data to thousands of concurrent users without polling, providing
up-to-the-second views of critical data such as stock trader applications, live resource
monitoring, shop floor automation, and more.

 In-context collaboration - Create applications that concurrently share in-context
information with other users, enabling new application concepts such as "co-
browsing," which allows users to share experiences and collaborate in real time with
other users.

Understanding differences between HTML and Flex applications

 What works for HTML may or may not work for Flex.
 Both traditional and Flex applications are n-tiered.
 The traditional applications have, at a minimum, a data tier , a business tier and a

presentation tier. Data tier – databases or similar resources.
 Business tier – The core business logic. Eg: accept request from client or presentation

tier, query the data tier.Presentation tier – HTML, CSS, JavaScript, JSP or similar
documents.

 A new tier called Client tier. Client tier – enables clients to offload computation from
the server. It helps in network latency and making for responsive and highly
interactive user interfaces. In case of Traditional web app client tier is state less and
non responsive.

Web 2.0 06CS832

Dept of CSE, SJBIT 40

 The flex app client is stateful, which means that it can make changes to view without
having to make a request to the server.

Understanding how Flex applications work

 Flex applications deployed on the web works differently than html applications.
 Every Flex app deployed on the web utilizes Flash Player as the deployment platform.

Should understand Flash Player to understand Flex. All Flex app use the Flex Frame
work at a minimum to compile the app.

 It is Imp to understand the relationship between the Source code files, the complier
and Flash player All Flex App require MXML or Action script class files or both.

 Flash Player does not how to interpret MXML or uncompiled Action script class files.
 It is necessary to compile the source code files to the .swf format, which flash player

can interpret. A typical Flex application compiles to just one .swf file. Deploy this
.swf file to server and when a requested, it plays back in flash player. Assets can be
embedded within a .swf file or they can be loaded at runtime.

 Embedding makes less streamlined downloading experience
and less dynamic app.

 The assets are loaded into flash player when requested by the
.swf at runtime.

 In this case asset file must be deployed to a valid URL.

Understanding Flex and Flash authoring

 Flex Authoring is a traditional tool for creating content for Flash Player. Flash
Authoring is a product that was first created in 1996 as a vector animation tool
primarily aimed at creating animation content for the web.

Web 2.0 06CS832

Dept of CSE, SJBIT 41

 While flash authoring is a fantastic tool for creating animations, it is not the ideal
tool for creating applications.The metaphors that Flash Authoring uses at its core are
simply not applicable to app development.

 Flex 2 is a product aimed primarily at creating app.Both Flex and Flash authoring
allow you to create .swf content that runs in Flash player.

 In theory we can achieve the same things using both products. Flash authoring allows
to create timeline-based animations.Flex allows to much more rapidly assemble
screens of content with transitions and data communication behaviors

MXML language, a simple example

 The structure of MXML is similar to XML and HTML.
 MXML is a Markup language used to create the user interface and to view portions of

Flex Applications.
 It uses tags to create components such as user interface controls (buttons, menus,

etc.), and to specify how those components interact with one another and with the rest
of the application.

 All MXML must appear within MXML documents, which are plain text
documents.We can use text editor to code MXML or Flex builder. It is stored as
extension .mxml.

 Structure:
<?xml version="1.0" encoding="utf-8"?>

<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute">
<mx:Button label="Example Button"></mx:Button>
</mx:Application>
Or
<?xml version="1.0" encoding="utf-8"?>
<mx:Application
xmlns:mx="http://www.adobe.com/2006/mxml"
layout="absolute">
<mx:Button label="Example Button" />

</mx:Application>

Web 2.0 06CS832

Dept of CSE, SJBIT 42

UNIT – 5 6hrs

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 2:

 Using Actionscript

 MXML and Actionscript correlations.

 Understanding Actionscript 3.0 language syntax:

o Language overview

o Objects and Classes

o Packages and namespaces

o Variables & scope of variables, case sensitivity and general syntax rules

o Operators, Conditional, Looping

o Functions, Nested functions, Functions as Objects, Function scope,

 OO Programming in Actionscript:

o Classes, Interfaces, Inheritance

o Working with String objects

o Working with Arrays

 Error handling in Actionscript:

o Try/Catch

o Working with XML

Web 2.0 06CS832

Dept of CSE, SJBIT 43

Building Rich Internet Applications With Flex-2

Actionscript introduction

 ActionScript is an object-oriented language originally developed by Macromedia Inc.

 used primarily for the development of websites and software targeting the Adobe Flash

Player platform, used on Web pages in the form of embedded SWF files.

ActionScript was initially designed for controlling simple 2D vector animations made

in Adobe Flash (formerly Macromedia Flash). Initially focused on animation, early versions

of Flash content offered few interactivity features and thus had very limited scripting

capability. Later versions added functionality allowing for the creation of Web-based games

and rich Internet applications with streaming media (such as video and audio). Today,

ActionScript is suitable for use in some database applications, and in basic robotics, as with

the Make Controller Kit.

MXML and Actionscript correlations

 MXML is a powerful way to simplify the creation of user interfaces. In most cases, it is

far better to use MXML for layout than to attempt the same thing with

ActionScript.

 ActionScript is far better suited for business logic and data models.

 When you use an MXML tag to create a component instance, it is the equivalent to

calling the component class’s constructor as part of a new statement. For example, the
following MXML tag creates a new button:

<mx:Button id="button" />

That is equivalent to the following piece of ActionScript code:

var button:Button = new Button();

 If you assign property values using MXML tag attributes, that’s equivalent to setting the
object properties via ActionScript. For example, the following creates abuttonand sets

thelabel:

<mx:Button id="button" label="Click" />

The following code is the ActionScript equivalent:

Var button:Button = new Button();

button.label = "Click";

Web 2.0 06CS832

Dept of CSE, SJBIT 44

For example, the following creates a new class that extendsmx.core.Applicationand creates

one property calledButtonof typemx.controls.Button:

<?xml version="1.0" encoding="utf-8"?>

<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">

<mx:Button id="Button" />

/mx:Application>

The preceding example is essentially the same as the following ActionScript class:

package {

import mx.core.Application;

import mx.controls.Button;

public class Example extends Application {

internal var button:Button;

public function Example() {

super();

button = new Button();

addChild(button);

}

}

}

Actionscript 3.0 language syntax:

Language overview

 Objects lie at the heart of the ActionScript 3.0 language—they are its fundamental

building blocks. Every variable you declare, every function you write, and every class

instance you create is an object. You can think of an ActionScript 3.0 program as a group

of objects that carry out tasks, respond to events, and communicate with one another.

 In ActionScript 3.0, objects are simply collections of properties.

 These properties are containers that can hold not only data, but also functions or other

objects. If a function is attached to an object in this way, it is called a method.

Objects and classes

Web 2.0 06CS832

Dept of CSE, SJBIT 45

 In ActionScript 3.0, every object is defined by a class. A class can be thought of as a

template or a blueprint for a type of object. Class definitions can include variables and

constants, which hold data values, and methods, which are functions that encapsulate

behavior bound to the class. The values stored in properties can be primitive values or

other objects. Primitive values are numbers, strings, or Boolean values.

 ActionScript contains a number of built-in classes that are part of the core language.

Some of these built-in classes, such as Number, Boolean and String, represent the

primitive values available in ActionScript. Others, such as the Array, Math, and XML

classes, define more complex objects.

 All classes, whether built-in or user-defined, derive from the Object class.

var someObj:Object;

var someObj;.

 You can define your own classes using the class keyword. You can declare class

properties in three ways: constants can be defined with the const keyword, variables are

defined with the var keyword, and getter and setter properties are defined by using

the get and set attributes in a method declaration. You can declare methods with

the functionkeyword.

 You create an instance of a class by using the new operator. The following example

creates an instance of the Date class called myBirthday .

var myBirthday:Date = new Date();

Packages and namespaces

 Packages in ActionScript 3.0 are implemented with namespaces, When you declare a

package, you are implicitly creating a special type of namespace that is guaranteed to be

known at compile time. Namespaces, when created explicitly, are not necessarily known

at compile time.

 The following example uses the package directive to create a simple package containing

one class:

package samples

{

public class SampleCode

{

public var sampleGreeting:String;

Web 2.0 06CS832

Dept of CSE, SJBIT 46

public function sampleFunction()

{

trace(sampleGreeting + " from sampleFunction()");

}

}

}

 The use of packages also helps to ensure that the identifier names that you use are unique

and do not conflict with other identifier names.

 Importing a package : If the class resides in a package named samples, you must use one

of the following import statements before using the SampleCode class:

import samples.*;

import samples.SampleCode;

 Fully qualified names are useful when identically named classes, methods, or properties

result in ambiguous code, but can be difficult to manage if used for all identifiers. For

example, the use of the fully qualified name results in verbose code when you instantiate

a SampleCode class instance:

var mySample:samples.SampleCode = new samples.SampleCode();

 In situations where you are confident that ambiguous identifiers will not be a problem,

you can make your code easier to read by using simple identifiers.

var mySample:SampleCode = new SampleCode();

 When a package is created, the default access specifier for all members of that package

is internal , which means that, by default, package members are only visible to other

members of that package. If you want a class to be available to code outside the package,

you must declare that class to be public . For example, the following package contains

two classes, SampleCode and CodeFormatter:

// SampleCode.as file

package samples

{

public class SampleCode {}

}

// CodeFormatter.as file

Web 2.0 06CS832

Dept of CSE, SJBIT 47

package samples

{

class CodeFormatter {}

}

The SampleCode class is visible outside the package because it is declared as a public class.

The CodeFormatter class, however, is visible only within the samples package itself. If you

attempt to access the CodeFormatter class outside the samples package, you will generate an

error, as the following example shows:

import samples.SampleCode;

import samples.CodeFormatter;

var mySample:SampleCode = new SampleCode(); // okay, public class

var myFormatter:CodeFormatter = new CodeFormatter(); // error

 If you want both classes to be available outside the package, you must declare both

classes to be public . You cannot apply the public attribute to the package declaration.

 Fully qualified names are useful for resolving name conflicts that may occur when using

packages. Such a scenario may arise if you import two packages that define classes with

the same identifier. For example, consider the following package, which also has a class

named SampleCode:

package langref.samples

{

public class SampleCode {}

}

 If you import both classes, as follows, you will have a name conflict when referring to the

SampleCode class:

import samples.SampleCode;

import langref.samples.SampleCode;

var mySample:SampleCode = new SampleCode(); // name conflict

 The compiler has no way of knowing which SampleCode class to use. To resolve this

conflict, you must use the fully qualified name of each class, as follows:

var sample1:samples.SampleCode = new samples.SampleCode();

var sample2:langref.samples.SampleCode = new langref.samples.SampleCode();

Variables & their scope

Web 2.0 06CS832

Dept of CSE, SJBIT 48

 Variables allow you to store values that you use in your program. To declare a variable,

you must use the varstatement with the variable name. For example, the following line of

ActionScript declares a variable named i :

var i;

 If you omit the var statement when declaring a variable, you will get a compiler error in

strict mode and run-time error in standard mode. For example, the following line of code

will result in an error if the variable i has not been previously defined:

 i; // error if i was not previously defined

 To associate a variable with a data type, you must do so when you declare the variable.

Declaring a variable without designating the variable’s type is legal, but will generate a
compiler warning in strict mode. You designate a variable’s type by appending the
variable name with a colon (:), followed by the variable’s type. For example, the
following code declares a variable i that is of type int:

var i:int;

 You can assign a value to a variable using the assignment operator (=). For example, the

following code declares a variable i and assigns the value 20 to it:

var i:int;

i = 20;

 You may find it more convenient to assign a value to a variable at the same time that you

declare the variable, as in the following example:

var i:int = 20;

 The technique of assigning a value to a variable at the time it is declared is commonly

used not only when assigning primitive values such as integers and strings, but also when

creating an array or instantiating an instance of a class. The following example shows an

array that is declared and assigned a value using one line of code.

var numArray:Array = ["zero", "one", "two"];

 You can create an instance of a class by using the new operator. The following example

creates an instance of a named CustomClass , and assigns a reference to the newly

created class instance to the variable namedcustomItem :

var customItem:CustomClass = new CustomClass();

Web 2.0 06CS832

Dept of CSE, SJBIT 49

 If you have more than one variable to declare, you can declare them all on one line of

code by using the comma operator (,) to separate the variables. For example, the

following code declares three variables on one line of code:

var a:int, b:int, c:int;

 You can also assign values to each of the variables on the same line of code. For

example, the following code declares three variables (a , b, and c) and assigns each a

value:

var a:int = 10, b:int = 20, c:int = 30;

Understanding variable scope

 The scope of a variable is the area of your code where the variable can be accessed by a

lexical reference. The example shows that a global variable is available both inside and

outside the function definition.

var strGlobal:String = "Global";

function scopeTest()

{

trace(strGlobal); // Global

}

scopeTest();

trace(strGlobal); // Global

 You declare a local variable by declaring the variable inside a function definition. For

example, if you declare a variable named str2 within a function named localScope() , that

variable will not be available outside the function.

function localScope()

{

var strLocal:String = "local";

}

localScope();

trace(strLocal); // error because strLocal is not defined globally

 If the variable name you use for your local variable is already declared as a global

variable, the local definition hides (or shadows) the global definition while the local

variable is in scope

var str1:String = "Global";

Web 2.0 06CS832

Dept of CSE, SJBIT 50

function scopeTest ()

{

var str1:String = "Local";

trace(str1); // Local

}

scopeTest();

trace(str1); // Global

Conditions and looping

if..else

 The if..else conditional statement allows you to test a condition and execute a block of

code if that condition exists, or execute an alternative block of code if the condition does

not exist. For example, the following code tests whether the value of x exceeds 20,

generates a trace() function if it does, or generates a different trace() function if it does

not:

if (x > 20)

{

trace("x is > 20");

}

else

{

trace("x is <= 20");

}

 If you do not want to execute an alternative block of code, you can use the if statement

without the elsestatement.

if..else if

 You can test for more than one condition using the if..else if conditional statement. For

example, the following code not only tests whether the value of x exceeds 20, but also

tests whether the value of x is negative:

if (x > 20)

{

trace("x is > 20");

}

Web 2.0 06CS832

Dept of CSE, SJBIT 51

else if (x < 0)

{

trace("x is negative");

}

 If an if or else statement is followed by only one statement, the statement does not need

to be enclosed in braces. For example, the following code does not use braces:

if (x > 0)

trace("x is positive");

else if (x < 0)

trace("x is negative");

else

trace("x is 0");

 However, Adobe recommends that you always use braces, because unexpected behavior

can occur if statements are later added to a conditional statement that lacks braces. For

example, in the following code the value ofpositiveNums increases by 1 whether or not

the condition evaluates to true :

var x:int;

var positiveNums:int = 0;

if (x > 0)

trace("x is positive");

positiveNums++;

trace(positiveNums); // 1

switch

 The switch statement is useful if you have several execution paths that depend on the

same condition expression. It provides functionality similar to a long series of if..else

if statements, but is somewhat easier to read

 For example, the following switch statement prints the day of the week, based on the day

number returned by the Date.getDay() method:

var someDate:Date = new Date();

var dayNum:uint = someDate.getDay();

switch(dayNum)

Web 2.0 06CS832

Dept of CSE, SJBIT 52

{

case 0:

trace("Sunday");

break;

case 1:

trace("Monday");

break;

case 2:

trace("Tuesday");

break;

case 3:

trace("Wednesday");

break;

case 4:

trace("Thursday");

break;

case 5:

trace("Friday");

break;

case 6:

trace("Saturday");

break;

default:

trace("Out of range");

break;

}

Functions

Functions are blocks of code that carry out specific tasks and can be reused in your

program. There are two types of functions in ActionScript 3.0: methods and function

closures . Whether a function is a called a method or a function closure depends on the

context in which the function is defined. A function is called a method if you define it as

part of a class definition or attach it to an instance of an object. A function is called a

function closure if it is defined in any other way.

 Functions passed as arguments to another function are passed by reference and not by

value. When you pass a function as an argument, you use only the identifier and not the

Web 2.0 06CS832

Dept of CSE, SJBIT 53

parentheses operator that you use to call the method. For example, the following code

passes a function named clickListener() as an argument to theaddEventListener() method:

addEventListener(MouseEvent.CLICK, clickListener);

 For example, the following code creates two functions: foo() , which returns a nested

function named rectArea()that calculates the area of a rectangle, and bar() , which

calls foo() and stores the returned function closure in a variable named myProduct . Even

though the bar() function defines its own local variable x (with a value of 2), when the

function closure myProduct() is called, it retains the variable x (with a value of 40)

defined in functionfoo(). The bar() function therefore returns the value 160 instead of 8 .

function foo():Function

{

var x:int = 40;

function rectArea(y:int):int // function closure defined

{

return x * y

}

return rectArea;

}

function bar():void

{

var x:int = 2;

var y:int = 4;

var myProduct:Function = foo();

trace(myProduct(4)); // function closure called

}

bar(); // 160

OO Programing in Actionscript

Classes

 A class is an abstract representation of an object. A class stores information about the

types of data that an object can hold and the behaviors that an object can exhibit.

 The usefulness of such an abstraction may not be apparent when you write small scripts

that contain only a few objects interacting with one another

Web 2.0 06CS832

Dept of CSE, SJBIT 54

 ActionScript 3.0 class definitions use syntax that is similar to that used in ActionScript

2.0 class definitions

public class Shape

{

var visible:Boolean = true;

}

 One significant syntax change involves class definitions that are inside a package. For

example, the following class declarations show how the BitmapData class, which is part

of the flash.display package, is defined in ActionScript 2.0 and ActionScript 3.0:

// ActionScript 2.0

class flash.display.BitmapData {}

// ActionScript 3.0

package flash.display

{

public class BitmapData {}

}

Class attributes

 ActionScript 3.0 allows you to modify class definitions using one of the following four

attributes:

 Attribute Definition

 dynamic Allow properties to be added to instances at run time.

 final Must not be extended by another class.

 internal (default) Visible to references inside the current package.

 public Visible to references everywhere.

Class body

 The class body, which is enclosed by curly braces, is used to define the variables,

constants, and methods of your class. The following example shows the declaration for

the Accessibility class in the Adobe Flash Player API:

Web 2.0 06CS832

Dept of CSE, SJBIT 55

public final class Accessibility

{

public static function get active():Boolean;

public static function updateProperties():void;

}

Interfaces

 An interface is a collection of method declarations that allows unrelated objects to

communicate with one another. For example, ActionScript 3.0 defines the

IEventDispatcher interface, which contains method declarations that a class can use to

handle event objects. The IEventDispatcher interface establishes a standard way for

objects to pass event objects to one another. The following code shows the definition of

the IEventDispatcher interface:

public interface IEventDispatcher

{

function addEventListener(type:String, listener:Function,

useCapture:Boolean=false, priority:int=0,

useWeakReference:Boolean = false):void;

function removeEventListener(type:String, listener:Function,

useCapture:Boolean=false):void;

function dispatchEvent(event:Event):Boolean;

function hasEventListener(type:String):Boolean;

function willTrigger(type:String):Boolean;

}

Inheritance

 Inheritance is a form of code reuse that allows programmers to develop new classes that

are based on existing classes. The existing classes are often referred to as base

classes or superclasses, while the new classes are usually called subclasses.

class Shape

{

public function area():Number

Web 2.0 06CS832

Dept of CSE, SJBIT 56

{

return NaN;

}

}

class Circle extends Shape

{

private var radius:Number = 1;

override public function area():Number

{

return (Math.PI * (radius * radius));

}

}

class Square extends Shape

{

private var side:Number = 1;

override public function area():Number

{

return (side * side);

}

}

var cir:Circle = new Circle();

trace(cir.area()); // output: 3.141592653589793

var sq:Square = new Square();

trace(sq.area()); // output: 1

 Because each class defines a data type, the use of inheritance creates a special

relationship between a base class and a class that extends it.

 A subclass is guaranteed to possess all the properties of its base class, which means that

an instance of a subclass can always be substituted for an instance of the base class.

Working with strings

 The String class contains methods that let you work with text strings.

Web 2.0 06CS832

Dept of CSE, SJBIT 57

 Strings are important in working with many objects. The methods described in this

chapter are useful in working with strings used in objects such as TextField, StaticText,

XML, ContextMenu, and FileReference objects.

 The String class is used to represent string (textual) data in ActionScript 3.0. ActionScript

strings support both ASCII and Unicode characters. The simplest way to create a string is

to use a string literal. To declare a string literal, use straight double quotation mark (") or

single quotation mark (') characters. For example, the following two strings are

equivalent:

var str1:String = "hello";

var str2:String = 'hello';

You can also declare a string by using the new operator, as follows:

var str1:String = new String("hello");

var str2:String = new String(str1);

var str3:String = new String(); // str3 == ""

The following two strings are equivalent:

var str1:String = "hello";

var str2:String = new String("hello");

 To use single quotation marks (') within a string literal defined with single quotation

mark (') delimiters, use the backslash escape character (\). Similarly, to use double

quotation marks (") within a string literal defined with double quotation marks (")

delimiters, use the backslash escape character (\). The following two strings are

equivalent:

var str1:String = "That's \"A-OK\"";

var str2:String = 'That\'s "A-OK"';

Working with Arrays

 To access an individual element of an indexed array, you use the array access ([])

operator to specify the index position of the element you wish to access. For example, the

following code represents the first element (the element at index 0) in an indexed array

named songTitles :

songTitles[0]

 The combination of the array variable name followed by the index in square brackets

functions as a single identifier. (In other words, it can be used in any way a variable name

Web 2.0 06CS832

Dept of CSE, SJBIT 58

can). You can assign a value to an indexed array element by using the name and index on

the left side of an assignment statement:

songTitles[1] = "Symphony No. 5 in D minor";

var oddNumbers:Array = [1, 3, 5, 7, 9, 11];

var len:uint = oddNumbers.length;

for (var i:uint = 0; i < len; i++)

{

trace("oddNumbers[" + i.toString() + "] = " + oddNumbers[i].toString());

}

Handling errors

 ActionScript 3.0 includes many tools for error handling, including:

 Error classes. ActionScript 3.0 includes a broad range of Error classes to expand the

scope of situations that may produce error objects. Each Error class helps applications

handle and respond to specific error conditions, whether they are related to system errors

(like a MemoryError condition), coding errors (like an ArgumentError condition),

networking and communication errors (like a URIError condition), or other situations.

For more information on each class, see Comparing the Error classes.

 Fewer silent failures. In earlier versions of Flash Player, errors were generated and

reported only if you explicitly used the throw statement. For Flash Player 9 and later and

Adobe AIR, native ActionScript methods and properties throw run-time errors that allow

you to handle these exceptions more effectively when they occur, and then individually

react to each exception.

 Clear error messages displayed during debugging. When you are using the debugger

version of Flash Player or Adobe AIR, problematic code or situations will generate robust

error messages, which help you easily identify reasons why a particular block of code

fails. This makes fixing errors more efficient. For more information, seeWorking with the

debugger versions of Flash Player and AIR.

 Precise errors allow for clear error messages displayed to users at run time. In previous

versions of Flash Player, the FileReference.upload() method returned a Boolean value

of false if the upload() call was unsuccessful, indicating one of five possible errors. If an

Web 2.0 06CS832

Dept of CSE, SJBIT 59

error occurs when you call the upload() method in ActionScript 3.0, you can throw one of

four specific errors, which helps you display more accurate error messages to end users.

 Refined error handling. Distinct errors are thrown for many common situations. For

example, in ActionScript 2.0, before a FileReference object has been populated,

the name property has the value null (so, before you can use or display

the name property, you need to ensure that the value is set and not null). In ActionScript

3.0, if you attempt to access the name property before it has been populated, Flash Player

or AIR throws an IllegalOperationError, which informs you that the value has not been

set, and you can usetry..catch..finally blocks to handle the error. For more information

see Using try..catch..finally statements.

 No significant performance drawbacks. Using try..catch..finally blocks to handle errors

takes little or no additional resources compared to previous versions of ActionScript.

 An ErrorEvent class that allows you to build listeners for specific asynchronous error

events. For more information see Responding to error events and status.

Working with XML

 ActionScript 3.0 includes a group of classes based on the ECMAScript for XML (E4X)

specification (ECMA-357 edition 2). These classes include powerful and easy-to-use

functionality for working with XML data. Using E4X, you will be able to develop code

with XML data faster than was possible with previous programming techniques. As an

added benefit, the code you produce will be easier to read.

 You can assign an XML literal to an XML object, as follows:

var myXML:XML =

<order>

<item id='1'>

<menuName>burger</menuName>

<price>3.95</price>

</item>

<item id='2'>

<menuName>fries</menuName>

<price>1.45</price>

Web 2.0 06CS832

Dept of CSE, SJBIT 60

</item>

</order>

 As the following snippet shows, you can also use the new constructor to create an

instance of an XML object from a string that contains XML data:

var str:String = "<order><item id='1'><menuName>burger</menuName>"

+ "<price>3.95</price></item></order>";

var myXML:XML = new XML(str);

 If the XML data in the string is not well formed (for example, if a closing tag is missing),

you will see a run-time error.

 You can also pass data by reference (from other variables) into an XML object, as the

following example shows:

var tagname:String = "item";

var attributename:String = "id";

var attributevalue:String = "5";

var content:String = "Chicken";

var x:XML = <{tagname} {attributename}={attributevalue}>{content}</{tagname}>;

trace(x.toXMLString())

// Output: <item id="5">Chicken</item>

 To load XML data from a URL, use the URLLoader class, as the following example

shows:

import flash.events.Event;

import flash.net.URLLoader;

import flash.net.URLRequest;

var externalXML:XML;

var loader:URLLoader = new URLLoader();

var request:URLRequest = new URLRequest("xmlFile.xml");

loader.load(request);

Web 2.0 06CS832

Dept of CSE, SJBIT 61

loader.addEventListener(Event.COMPLETE, onComplete);

function onComplete(event:Event):void

{

var loader:URLLoader = event.target as URLLoader;

if (loader != null)

{

externalXML = new XML(loader.data);

trace(externalXML.toXMLString());

}

else

{

trace("loader is not a URLLoader!");

}

}

Web 2.0 06CS832

Dept of CSE, SJBIT 62

UNIT 6 6 hrs

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 3:

 Framework fundamentals

 Understanding application life cycle

 Differentiating between Flash player and Framework

 Bootstrapping Flex applications

 Loading one flex application in to another

 Understanding application domains

 Understanding the preloader. Managing layout

 Flex layout overview

 Working with children

 Container types

 Layout rules,Padding, Borders and gaps

 Nesting containers

 Making fluid interfaces.

Web 2.0 06CS832

Dept of CSE, SJBIT 63

BUILDING RICH INTERNET APPLICATIONS WITH FLEX - 3:

Framework fundamentals

Flex applications are designed as follows :

Understanding application life cycle

The following flow diagram represents the process that is abstracted within the Flex
framework when the addChild() command is made to create and make a visual component
visible on the stage, or when the properties of the component and/or it parent

Web 2.0 06CS832

Dept of CSE, SJBIT 64

change

Differentiating between Flash player and Framework

 Flex provides the ability to create a SWF file (flash player files) that runs on the Adobe
Flash Player in any web browser.

Web 2.0 06CS832

Dept of CSE, SJBIT 65

 Just like the Flash was created to enable animators and illustrators to provide visually
appealing experiences on the web, Flex was design for the same purpose, but Flex is
Flash’s “big brother”, it’s the same “technology” but the way applications are built is
different and allow much more complicated applications to be built by software engineers
instead of animators.

 Flex is not a new language (it does use MXML, but that is converted to Actionscript and
most of the hard work is done in Actionscript), it uses Actionscript just like flash does,
but it comes with a lot of extra features, to make more intelligent applications.

Loading one flex application in to another

 The SWFLoader control lets you load one Flex application into another Flex application
as a SWF file.

 It has properties that let you scale its contents. It can also resize itself to fit the size of its
contents.

 By default, content is scaled to fit the size of the SWFLoader control. The SWFLoader
control can also load content on demand programmatically, and monitor the progress of a
load operation.

 The SWFLoader control also lets you load the contents of a GIF, JPEG, PNG, SVG, or
SWF file into your application, where the SWF file does not contain a Flex application,
or a ByteArray representing a SWF, GIF, JPEG, or PNG.

 Creating a SWFLoader control

SWFLoader control is defined in MXML by using the <mx:SWFLoader> tag, as the
following example shows. Specify an id value if you intend to refer to a component
elsewhere in your MXML, either in another tag or in an ActionScript block:

<?xml version="1.0"?>
<!-- controls\swfloader\SWFLoaderSimple.mxml-->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:SWFLoader id="loader1" source="FlexApp.swf"/>
</mx:Application>

 The following example, in the file FlexApp.mxml, shows a simple Flex application that
defines two Label controls, a variable, and a method to modify the variable:

<?xml version="1.0"?>
<!-- controls\swfloader\FlexApp.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"

height="200" width="200">

<mx:Script>
<![CDATA[

[Bindable]
public var varOne:String = "This is a public variable.";

Web 2.0 06CS832

Dept of CSE, SJBIT 66

public function setVarOne(newText:String):void {
varOne=newText;

}
]]>

</mx:Script>

<mx:Label id="lblOne" text="I am here."/>
<mx:Label text="{varOne}"/>

<mx:Button label="Nested Button" click="setVarOne('Nested button pressed.');"/>

</mx:Application>

Understanding application domains

 The ApplicationDomain class is a container for discrete groups of class definitions.

 Application domains are used to partition classes that are in the same security domain.

 They allow multiple definitions of the same class to exist and allow children to reuse

parent definitions.

 Application domains are used when an external SWF file is loaded through the Loader

class. All ActionScript 3.0 definitions in the loaded SWF file are stored in the

application domain, which is specified by the applicationDomain property of the

LoaderContext object that you pass as a context parameter of the Loader object's

load() or loadBytes() method. The LoaderInfo object also contains an

applicationDomain property, which is read-only.

 All code in a SWF file is defined to exist in an application domain.

 The current application domain is where your main application runs. The system domain

contains all application domains, including the current domain, which means that it

contains all Flash Player classes.

 Every application domain, except the system domain, has an associated parent domain.

 The parent domain of your main application's application domain is the system domain.

Loaded classes are defined only when their parent doesn't already define them. You

cannot override a loaded class definition with a newer definition.

Understanding the preloader

Flex layout overview

Web 2.0 06CS832

Dept of CSE, SJBIT 67

 One of the key features of Flex is its ability to simplify application layout. Traditional

application development requires writing layout code, or working with layout

components in a nonintuitive manner.

 With MXML and Flex’s layout containers, you can produce most applications without

having to write a single line of custom layout code.

 Container components are the basis of how Flex provides layout logic. At the most

 basic level, the Application class is a container, and subitems within the Application

 class (tag) are called children. In MXML, placing nodes within a container declaration

 signifies that the objects are instantiated and are added to the container as children,

 and the container automatically handles their positioning and sizing.

 For example, in the following code two children are added to the Application container

 —a TextInput instance and a Button instance:

<?xml version="1.0" encoding="utf-8"?>
<mx: Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx: TextInput/>
<mx: Button label="Submit"/>

</mx: Application>

In the preceding code, you added two children to the Application container by simply

splacing the children as subnodes of the container using MXML.

In the example added to the container’s display list, which, under the hood, is the same

display list Flash Player uses. Containers allow for several different types of layout

management

Working with children, Container types

 Containers provide a hierarchical structure that lets you control the layout characteristics
of child components.

 . There are two types of containers: layout and navigator.
 Containers have predefined navigation and layout rules, so you do not have to spend time

defining these. Instead, you can concentrate on the information that you deliver, and the
options that you provide for your users, and not worry about implementing all the details
of user action and application response.

 Predefined layout rules also offer the advantage that your users soon grow accustomed to
them. That is, by standardizing the rules of user interaction, your users do not have to

Web 2.0 06CS832

Dept of CSE, SJBIT 68

think about how to navigate the application, but can instead concentrate on the content
that the application offers.

 Different containers support different layout rules:

 All containers, except the Canvas container, support automatic layout
 The Canvas container, and optionally the Application and Panel containers, use

absolute layout, where you explicitly specify the children's x and y positions.
 Absolute layout provides a greater level of control over sizing and positioning than

does automatic layout; for example,

About layout containers and navigator containers

Flex defines two types of containers:

Layout containers

 Control the sizing and positioning of the child controls and child containers defined
within them. For example, a Grid layout container sizes and positions its children in a
layout similar to an HTML table.

 Layout containers also include graphical elements that give them a particular style or
reflect their function.

 The DividedBox container, for example, has a bar in the center that users can drag to
change the relative sizes of the two box divisions.

 The TitleWindow control has an initial bar that can contain a title and status
information.

Navigator containers

 Control user movement, or navigation, among multiple child containers.
 The individual child containers, not the navigator container, control the layout and

positioning of their children.
 For example, an Accordion navigator container lets you construct a multipage form

from multiple Form layout containers.
 Although you can create an entire Flex application by using a single container, typical

applications use multiple containers.

A. Parent HBox layout container B. Child VBox layout container

Web 2.0 06CS832

Dept of CSE, SJBIT 69

 A VBox container arranges its children in a single vertical stack, or column, and
oversees the layout of its own children. The following image shows the preceding
example with the outermost container changed to a VBox layout container:

A. Parent VBox layout container B. Child VBox layout container

Class hierarchy for containers

Flex containers are implemented as a hierarchy in an ActionScript class library, as the
following image shows:

Container example
<?xml version="1.0"?>
<!-- containers\intro\Panel3Children.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Panel title="My Application"
layout="vertical" horizontalAlign="center"
paddingLeft="10" paddingRight="10"
paddingTop="10" paddingBottom="10">

<mx:TextInput id="myinput" text="enter zip code"/>

Web 2.0 06CS832

Dept of CSE, SJBIT 70

<mx:Button id="mybutton" label="GetWeather"/>
<mx:TextArea id="mytext" height="20"/>

</mx:Panel>
</mx:Application>

Padding, Borders and gaps, Nesting containers

 The rectangular region of a container encloses its content area, the area that contains its
child components.

 The size of the region around the content area is defined by the container padding and
the width of the container border.

 A container has top, bottom, left, and right padding, each of which you can set to a pixel
width. A container also has properties that let you specify the type and pixel width of the
border.

 The following image shows a container and its content area, padding, and borders:

A. Left padding B. Right padding C. Container D. Content area E. Top padding F. Bottom
padding

Making fluid interfaces

 Fluid layout makes your application resize and fit to the size of the browser everytime the
browser is resized. This is also called elastic or liquid layout sometimes.

One way of achieving it is by using percentage for the dimensions of your container
objects viz. HBox.

 Use percentage for the children of this container too as this will help the layout manager
in auto resizing the child container according to the new size of its parent container.
e.g.

<mx:vbox id="parentContainer"width="100%" height="100%"
horizontalscrollpolicy="off" >

<mx:hbox id="childContainer" width="100%" height="20%"
horizontalscrollpolicy="off" stylename="titleBox"/>
</mx:vbox>

Web 2.0 06CS832

Dept of CSE, SJBIT 71

To make the repainting much smoother, we are going to add the function mentioned below
private function resizeHandler():void
{
stage.addEventListener(Event.RESIZE, onStageResize);

}
private function onStageResize(e:Event):void
{

validateNow();
}

Web 2.0 06CS832

Dept of CSE, SJBIT 72

UNIT – 7 6hrs

BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 4:

 Working with UI components:

o Understanding UI Components

o Creating component instances

o Common UI Component properties

o Handling events

o Button, Value selectors, Text components, List based controls

o Data models and Model View Controller

o Creating collection objects, Setting the data provider

o Using Data grids

o Using Tree controls

o Working with selected values and items

o Pop up controls, Navigators, Control bars

 Working with data:

o Using data models

o Using XML

o Using Actionscript classes

o Data Binding.

Web 2.0 06CS832

Dept of CSE, SJBIT 73

 BUILDING RICH INTERNET APPLICATIONS WITH FLEX – 4:

Working with UI components:

Understanding UI Components

 Flex includes a component-based development model that you use to develop your
application and its user interface. You can use the prebuilt visual components included
with Flex, extend components to add new properties and methods, and create components
as required by your application.

 Visual components are extremely flexible and provide you with a great deal of control
over the component's appearance, how the component responds to user interactions, the
font and size of any text included in the component, the size of the component in the
application, and many other characteristics.

 The characteristics of visual components include the following:
 Size - Height and width of a component. All visual components have a default size.

You can use the default size, specify your own size, or let Flex resize a component as
part of laying out your application.

 Events - Application or user actions that require a component response. Events
include component creation, mouse actions such as moving the mouse over a
component, and button clicks.

 Styles - Characteristics such as font, font size, and text alignment. These are the same
styles that you define and use with Cascading Style Sheets (CSS).

 Behaviors - Visible or audible changes to the component triggered by an application
or user action. Examples of behaviors are moving or resizing a component based on a
mouse click.

 Skins - Classes that control a visual component's appearance.

Commonly used UIComponent properties

The following table lists only the most commonly used properties of components that extend
the UIComponent class:

Property Type Description

doubleClickEnabled Boolean

Setting to true lets the component dispatch a
doubleClickEvent when a user presses and
releases the mouse button twice in rapid
succession over the component.

enabled Boolean

Setting to true lets the component accept
keyboard focus and mouse input. The default
value is true.

If you set enabled to false for a container,
Flex dims the color of the container and all of its
children, and blocks user input to the container

Web 2.0 06CS832

Dept of CSE, SJBIT 74

and to all its children.

height Number

The height of the component, in pixels.

In MXML tags, but not in ActionScript, you can
set this property as a percentage of available
space by specifying a value such as 70%; in
ActionScript, you must use the
percentHeight property.

The property always returns a number of pixels.
In ActionScript, you use the perCent

id String

Specifies the component identifier. This value
identifies the specific instance of the object and
should not contain any white space or special
characters. Each component in a Flex document
must have a unique id value. For example, if you
have two custom components, each component
can include one, and only one Button control with
the id "okButton".

percentHeight Number

The height of the component as a percentage of
its parent container, or for
<mx:Application> tags, the full height of
the browser. Returns NaN if a percent-based
width has never been set or if a width property
was set after the percentWidth was set.

percentWidth Number

The width of the component as a percentage of its
parent container, or for <mx:Application>
tags, the full span of the browser. Returns NaN if
a percent-based width has never been set or if a
width property was set after the
percentWidth was set.

styleName String
Specifies the style class selector to apply to the
component.

toolTip String
Specifies the text string displayed when the
mouse pointer hovers over that component.

visible Boolean
Specifies whether the container is visible or
invisible. The default value is true, which
specifies that the container is visible.

width Number

The width of the component, in pixels.

In MXML tags, but not in ActionScript, you can
set this property as a percentage of available
space by specifying a value such as 70%; in
ActionScript, you must use the percentWidth

Web 2.0 06CS832

Dept of CSE, SJBIT 75

property.

The property always returns a number of pixels.

x Number

The component's x position within its parent
container. Setting this property directly has an
effect only if the parent container uses absolute
positioning.

y Number

The component's y position within its parent
container. Setting this property directly has an
effect only if the parent container uses absolute
positioning.

Handling events

EventDispatcher class

 Event handling in ActionScript 3.0 depends heavily on the EventDispatcher class.
 Although this class isn't entirely new to ActionScript, it is the first time it has been

included as a core part of the ActionScript language
 ActionScript 2.0, you define the event handler within the object receiving the event—

giving the function the name of the event being received. For example, to react to an
"onPress" event for a button named submitButton in ActionScript 2.0, you would
use:

submitButton.onPress = function() { ... }

 Using EventDispatcher, the same elements are at play; an object receiving an event,
an event name, and a function that reacts to an event—only the process is slightly
different. The code using EventDispatcher looks like this:

function pressHandler(){ ... }
submitButton.addEventListener("onPress", pressHandler);

 This process adds what appears to be an extra step, but it allows for more flexibility.
Since you are using a function to add event handlers instead of defining them directly
on the target object itself, you can now add as many handlers as you like to "listen" to
a single event.

 Removing events in ActionScript 2.0 just meant deleting the handler:

delete submitButton.onPress;

EventDispatcher methods

Here is a summary of the methods in EventDispatcher for ActionScript 3.0. Many of these
methods are similar to the methods in the ActionScript 2.0 version:

Web 2.0 06CS832

Dept of CSE, SJBIT 76

 addEventListener(type:String, listener:Function, useCapture:Boolean = false, priority:int = 0,
useWeakReference:Boolean = false):void

 removeEventListener(type:String, listener:Function, useCapture:Boolean = false):void
 dispatchEvent(event:Event):Boolean
 hasEventListener(type:String):Boolean
 willTrigger(type:String):Boolean

 addEventListener(): Adds an event handler function to listen to an event so that when
that event occurs, the function will be called.

 removeEventListener(): Removes an event handler added to a listeners list using
addEventListener. The same first 3 arguments used in addEventListener must be used in
removeEventListener to remove the correct handler.

 dispatchEvent(): Sends the passed event to all listeners in the listeners list of an object
that relates to the event type. This method is most commonly used when creating custom
events.

 hasEventListener(): Determines whether or not an object has listeners for a specific type
of event.

 willTrigger(): Determines whether or not an object or any of its parent containers have
listeners for a specific type event. This is much like hasEventListener but this method
checks the current object as well as all objects that might be affected from the
propagation of the event.

Button, Value selectors, Text components, List based controls

 The Button control is a commonly used rectangular button.
 Button controls look like they can be pressed, and have a text label, an icon, or both on

their face. You can optionally specify graphic skins for each of several Button states.
 You can create a normal Button control or a toggle Button control. A normal Button

control stays in its pressed state for as long as the mouse button is down after you select
it. A toggle Button controls stays in the pressed state until you select it a second time.

 Buttons typically use event listeners to perform an action when the user selects the
control. When a user clicks the mouse on a Button control, and the Button control is
enabled, it dispatches a click event and a buttonDown event. A button always dispatches
events such as the mouseMove, mouseOver, mouseOut, rollOver, rollOut, mouseDown,
and mouseUp events whether enabled or disabled.

 You define a Button control in MXML by using the <mx:Button> tag, as the following
example shows. Specify an id value if you intend to refer to a component elsewhere in
your MXML, either in another tag or in an ActionScript block. The following code
creates a Button control with the label "Hello world!":

<?xml version="1.0"?>
<!-- controls\button\ButtonLabel.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Button id="button1" label="Hello world!" width="100"/>
</mx:Application>

Web 2.0 06CS832

Dept of CSE, SJBIT 77

 You use Flex text-based controls to display text and to let users enter text into your
application. The following table lists the controls, and indicates whether the control can
have multiple lines of input instead of a single line of text, and whether the control can
accept user input:

Control Multiline Allows
user Input

Label No No
TextInput No Yes
Text Yes No
TextArea Yes Yes
RichTextEditor Yes Yes

 All controls except the RichTextEditor control are single components with a simple text
region; for example, the following image shows a TextInput control in a simple form:

<?xml version="1.0"?>
<!-- textcontrols/FormItemLabel.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" >

<mx:Form id="myForm" width="500" backgroundColor="#909090">
<!-- Use a FormItem to label the field. -->
<mx:FormItem label="First Name">

<mx:TextInput id="ti1" width="150"/>
</mx:FormItem>

</mx:Form>
</mx:Application>

Using Data grids and Using Tree controls

The DataGrid control provides the following features:

 Resizable, sortable, and customizable column layouts, including hidable columns
 Optional customizable column and row headers, including optionally wrapping

header text
 Columns that the user can resize and reorder at run time
 Selection events
 Ability to use a custom item renderer for any column
 Support for paging through data
 Locked rows and columns that do not scroll

<?xml version="1.0"?>
<!-- dpcontrols/DataGridSimple.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:DataGrid>
<mx:ArrayCollection>

<mx:Object>
<mx:Artist>Pavement</mx:Artist>
<mx:Price>11.99</mx:Price>
<mx:Album>Slanted and Enchanted</mx:Album>

Web 2.0 06CS832

Dept of CSE, SJBIT 78

</mx:Object>
<mx:Object>

<mx:Artist>Pavement</mx:Artist>
<mx:Album>Brighten the Corners</mx:Album>
<mx:Price>11.99</mx:Price>

</mx:Object>
</mx:ArrayCollection>

</mx:DataGrid>
</mx:Application>

 You define a Tree control in MXML by using the <mx:Tree> tag.
 The Tree class extends the List class and Tree controls take all of the properties and

methods of the List control
 The Tree control normally gets its data from a hierarchical data provider, such as an

XML structure. If the Tree represents dynamically changing data, you should use a
collection, such as the standard ArrayCollection or XMLListCollection object, as the data
provider.

 The Tree control uses a data descriptor to parse and manipulate the data provider content.
By default, the Tree control uses a DefaultDataDescriptor instance, but you can create
your own class and specify it in the Tree control's dataDescriptor property.

The following code contains a single Tree control that defines the tree shown in the image in
Tree control.

<?xml version="1.0"?>
<!-- dpcontrols/TreeSimple.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Tree id="tree1" labelField="@label" showRoot="true" width="160">
<mx:XMLListCollection id="MailBox">

<mx:XMLList>
<folder label="Mail">

<folder label="INBOX"/>
<folder label="Personal Folder">

<Pfolder label="Business" />
<Pfolder label="Demo" />

<Pfolder label="Personal" isBranch="true" />
<Pfolder label="Saved Mail" />

</folder>
<folder label="Sent" />
<folder label="Trash" />

</folder>
</mx:XMLList>

</mx:XMLListCollection>
</mx:Tree>

</mx:Application>

Web 2.0 06CS832

Dept of CSE, SJBIT 79

Working with data

 Data binding is the process of tying the data in one object to another object. It
provides a convenient way to pass data between the different layers of the application.

 Data binding requires a source property, a destination property, and a triggering event
that indicates when to copy the data from the source to the destination.

 An object dispatches the triggering event when the source property changes.
 Adobe Flex provides three ways to specify data binding: the curly braces ({}) syntax

in MXML, the <mx:Binding> tag in MXML, and the BindingUtils methods in
ActionScript.

 The following example uses the curly braces ({}) syntax to show a Text control that
gets its data from a TextInput control's text property:

<?xml version="1.0"?>
<!-- binding/BasicBinding.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:TextInput id="myTI" text="Enter text here"/>
<mx:Text id="myText" text="{myTI.text}"/>

</mx:Application>

Using ActionScript expressions in curly braces

Binding expressions in curly braces can contain an ActionScript expression that returns a
value. For example, you can use the curly braces syntax for the following types of binding.

 A single bindable property inside curly braces
 To cast the data type of the source property to a type that matches the destination

property
 String concatenation that includes a bindable property inside curly braces
 Calculations on a bindable property inside curly braces
 Conditional operations that evaluate a bindable property value

The following example shows a data model that uses each type of binding expression:

<?xml version="1.0"?>
<!-- binding/AsInBinding.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">

<mx:Model id="myModel">
<myModel>
<!-- Perform simple property binding. -->
<a>{nameInput.text}
<!-- Perform string concatenation. -->
This is {nameInput.text}
<!-- Perform a calculation. -->
<c>{(Number(numberInput.text)) * 6 / 7}</c>

Web 2.0 06CS832

Dept of CSE, SJBIT 80

<!-- Perform a conditional operation using a ternary operator. -->
<d>{(isMale.selected) ? "Mr." : "Ms."} {nameInput.text}</d>

</myModel>
</mx:Model>

<mx:Form>
<mx:FormItem label="Last Name:">

<mx:TextInput id="nameInput"/>
</mx:FormItem>
<mx:FormItem label="Select sex:">

<mx:RadioButton id="isMale"
label="Male"
groupName="gender"
selected="true"/>

<mx:RadioButton id="isFemale"
label="Female"
groupName="gender"/>

</mx:FormItem>
<mx:FormItem label="Enter a number:">

<mx:TextInput id="numberInput" text="0"/>
</mx:FormItem>

</mx:Form>

<mx:Text
text="{'Calculation: '+numberInput.text+' * 6 / 7 = '+myModel.c}"/>

<mx:Text text="{'Conditional: '+myModel.d}"/>
</mx:Application>

Web 2.0 06CS832

Dept of CSE, SJBIT 81

UNIT – 8 8hrs

BUILDING ADVANCED WEB 2.0 APPLICATIONS

 Definition of mash up applications

 Mash up Techniques

 Building a simple mash up application with AJAX

 Remote data communication, strategies for data communication

 Simple HTTPServices

 URLLoader in Flex

 Web Services in Flex

 Examples:

o Building an RSS reader with AJAX

o Building an RSS reader with Flex.

Web 2.0 06CS832

Dept of CSE, SJBIT 82

BUILDING ADVANCED WEB 2.0 APPLICATIONS

Definition of Mash up applications
 A mashup is similar to a remix. You might have heard examples again from the music

world where elements of Led Zeppelin are combined with Jayzee, for example, to
form a weird rap/rock song. That’s a mashup. The same can be done with data from
the Internet.

Mashup Techniques - Mashing on the Web Server
 Every site sits on a Web server. It’s the thing that serves up the page, typically

Internet Information Server (IIS) in the Microsoft world.

Understanding the Architecture How it works
This use case is definitely the most straightforward:

 The Web browser communicates with the server, requesting a page using straight
HTTP or HTTPS.

 That page is constructed by the Web server, which reaches out to what I’ll call the
source or partner sites (for example, Amazon, Yahoo, or Google, and so on). The
first request in this example is to Amazon using the Simple Object Access Protocol
(SOAP) over HTTP.

 Amazon returns back a SOAP response.
 The second request in this example is to Yahoo using a Representational State

Transfer style approach.
 Yahoo responds with Plain Old XML over HTTP.
 Lastly, the Web server aggregates the responses, combining and rationalizing the data

in whatever manner makes sense.
 The resulting data is bound to the HTML and inserted into the response, which is sent

back to the browser.

Pros and Cons
 The benefits of this approach are that the browser is decoupled entirely from the

partner sites supplying the data. The Web server acts as a proxy and aggregator for
the responses.

 Disadvantages of this approach are that the browser requests an entire page, which
typically is acceptable.

 Second, the Web server is doing all the work in terms of data manipulation. Though
this is good in terms of maintenance, it’s not so good in terms of scalability. When
your mashup gains popularity and starts being viewed by thousands of users, the
amount of work the server’s doing increases, while the browser residing at the client
is relatively idle.

Remote Data Communication
 Remote data communication occurs at runtime.
 Flex applications support a variety of remote data communication techniques built on

standards.

Web 2.0 06CS832

Dept of CSE, SJBIT 83

 There are three basic categories of Flex application remote data communication:

HTTP request/response-style communication
 This category consists of several overlapping techniques. Utilizing the Flex

framework HTTPService component or the Flash Player API URLLoader class, you
can send and load uncompressed data such as text blocks, URL encoded data, and
XML packets Each technique achieves the similar goal of sending requests and
receiving responses using HTTP or HTTPS.

Real-time communication
 This category consists of persistent socket connections. Flash Player supports

two types of socket connections: those that require a specific format for packets
(XMLSocket) and those that allow raw socket connections (Socket)

File upload/download communication
 This category consists of the FileReference API which is native to Flash Player and

allows file upload and download directly within Flex applications.

Understanding Strategies for Data Communication
 When you build Flex applications that utilize data communication, it’s important to

understand the strategies available for managing those communications and how to
select the right strategy for an application. All Flex applications run in Flash Player.
With the exception of some Flex applications created using Flex Data Services,
almost all Flex applications are composed of precompiled .swf files that are loaded in
Flash Player on the client.

 Because Flex applications are stateful and self-contained, they don’t require new page
requests and wholesale screen refreshes to make data requests and handle responses.

 The Flex framework provides components for working with data communication
using standard HTTP requests as well as SOAP requests.

Working with Request/Response Data Communication
 You can work with request/response data communication in three basic ways: via

simple HTTP services, web services, and Flash Remoting.

Simple HTTP Services
 The most basic type of HTTP request/response communication uses what we call

simple HTTP services. These services include things such as text and XML
resources, either in static documents or dynamically generated by something such as a
ColdFusion page, a servlet, or an ASP.NET page.

HTTPService
 HTTPService is a component that allows you to make requests to simple HTTP

services such as text files, XML files, or scripts and pages that return dynamic data.
You must always define a value for the url property of an HTTPService object.

 The following example uses MXML to create an HTTPService object that loads text
from a file called data.txt saved in the same directory as the compiled .swf file:
<mx:HTTPService id="textService" url="data.txt" />

Web 2.0 06CS832

Dept of CSE, SJBIT 84

Sending requests
 Creating an HTTPService object does not automatically make the request to load the

data. In order to make the request, you must call the send() method. If you want to
load the data when the use clicks a button, you can call the send() method in
response to a click event:

textService.send();

Handling results
 The send() method makes the request, but a response is not likely to be returned

instantaneously. Instead, the application must wait for a result event. The following
example displays an alert when the data loads:

<mx:HTTPService id="textService" url="data.txt" result="mx.controls.Alert.show('Data loaded')" />

Sending parameters
 When you want to pass parameters to the service, you can use the request property of

the HTTPService instance. The request property requires an Object value. By
default, the name/value pairs of the object are converted to URL-encoded format and
are sent to the service using HTTP GET.

 The default value is object, which yields the default behavior you’ve already seen.
You can optionally specify any of the following values:

text
The data is not parsed at all, but is treated as raw text.

flashvars
The data is assumed to be in URL-encoded format, and it will be parsed
into an object with properties corresponding to the name/value pairs.

array
The data is assumed to be in XML format, and it is parsed into objects much
the same as with the object settings. However, in this case, the result is always
an array. If the returned data does not automatically parse into an array, the
parsed data is placed into an array.

xml
The data is assumed to be in XML format, and it is interpreted as XML using
the legacy XMLNode ActionScript class.

e4x
The data is assumed to be in XML format, and it is interpreted as XML using
the ActionScript 3.0 XML class (E4X).

Using HTTPService with ActionScript
 Although the simplest and quickest way to use an HTTPService object is to primarily

use MXML, this technique is best-suited to nonenterprise applications in which the
data communication scenarios are quite simple.

 Because HTTPService components provide significant data conversion advantages
(such as automatic serialization of data), it is still frequently a good idea to use an
HTTPService object within a remote proxy. However, it is generally necessary to

Web 2.0 06CS832

Dept of CSE, SJBIT 85

then work with the HTTPService component entirely with ActionScript, including
constructing the object and handling the responses.

URLLoader
 HTTPService allows you to use requests and handle responses to and from simple

HTTP services. You can optionally use the Flash Player class called
flash.net.URLLoader to accomplish the same tasks entirely with ActionScript, but at a
slightly lower level.

 The first step when working with a URLLoader object is always to construct the
object using the constructor method, as follows:
var loader:URLLoader = new URLLoader();

 Once you’ve constructed the object, you can do the following:
• Send requests.
• Handle responses.
• Send parameters.

Sending requests
 You can send requests using the load() method of a URLLoader object. The load()

method requires that you pass it a flash.net.URLRequest object specifying at a
minimum what URL to use when making the request. The following makes a request
to a text file called data.txt:
loader.load(new URLRequest("data.txt"));

Handling responses
 URLLoader objects dispatch complete events when a response has been returned.

Any return value is stored in the data property of the URLLoader object.
Sending parameters

 You can send parameters using URLLoader as well. In order to send parameters, you
assign a value to the data property of the URLRequest object used to make the
request. The URLRequest object can send binary data or string data.

Web Services
 Flash Player has no built-in support for SOAP web services. However, Flex provides

a WebService component that uses built-in HTTP request/response support as well as
XML support to enable you to work with SOAP-based web services. There are two
ways you can work with the WebService components: using MXML and using
ActionScript.

Using WebService Components with MXML
 You can create a WebService component instance using MXML. When you do, you

should specify an id and a value for the wsdl property.\
 Eg: <mx:WebService id="statesService" wsdl="http://www.rightactionscript.com/states/

webservice/StatesService.php?wsdl" />

Web 2.0 06CS832

Dept of CSE, SJBIT 86

 Web services define one or more methods or operations. You must define the
WebService instance so that it knows about the operations using nested operation
tags. The operation tag requires that you specify the name at a minimum.

Calling web service methods
 All operations that you define for a WebService component instance are accessible as

properties of the instance. For example, in the preceding section, we created a
WebService instance called statesService with an operation called getCountries. That
means you can use ActionScript to reference the operation as statesService.
getCountries.

 You can then call getCountries just as though it were a method of statesService:
statesService.getCountries();

Handling results
 When a web service operation returns a result, you can handle it in one of two ways:

explicitly handle the result event or use data binding. Then, once a result is returned,
you can retrieve the result value from the lastResult property of the operation.

Using WebService Components with ActionScript
 You can use a WebService component using ActionScript instead of MXML. This is

useful in cases where you want to fully separate the view from the controller and the
model, such as in the recommended remote proxy approach.

 The MXML version of the WebService component is an instance of
mx.rpc.soap.mxml.WebService, which is a subclass of mx.rpc.soap.WebService.
When you use the component directly from ActionScript you should instantiate
mx.rpc.soap.WebService directly:

// Assume the code already has an import statement for mx.rpc.soap.WebService.
var exampleService:WebService = new WebService();

 Next, you must call a method called loadWSDL(). You must call the method prior to
calling any of the web service operations. Assuming you set the wsdl property, you
don’t need to pass any parameters to loadWSDL():
exampleService.loadWSDL();

