
R N S INSTITUTE OF TECHNOLOGY
CHANNASANDRA, BANGALORE - 98

PROGRAMMING THE WEB

NOTES FOR 7TH SEMESTER INFORMATION SCIENCE

SUBJECT CODE: 06CS73

PREPARED BY

DIVYA K

1RN09IS016

7th Semester

Information Science

1rn09is016@gmail.com

TEXT BOOK: PROGRAMMING THE WORLD WIDE WEB – Robert W Sebesta, 4th Edition, Pearson Education, 2008
Notes have been circulated on self risk. Nobody can be held responsible if anything is wrong or is improper information or insufficient information
provided in it. Please add the XHTML document structure in the beginning of all programs. All the programs are properly working & are executed.

CONTENTS:

UNIT 1, UNIT 2, UNIT 3, UNIT 4, UNIT 5, UNIT 6, UNIT 7

Contains more programs with outputs for each which is not in text book..!!!

 Visit: www.vtuplanet.com for my notes as well as Previous VTU papers.

http://www.vtuplanet.com/

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 2

UNIT 1
FUNDAMENTALS OF WEB, XHTML – 1

A BRIEF INTRODUCTION ABOUT THE INTERNET

Origins:

 1960s
o U.S. Department of Defence (DoD) became interested in developing a new large-scale computer

network
o The purposes of this network were communications, program sharing, and remote computer access for

researchers working on defence-related contracts.
o The DoD’s Advanced Research Projects Agency (ARPA) funded the construction of the first such

network. Hence it was named as ARPAnet.
o The primary early use of ARPAnet was simple text-based communications through e-mail.

 late 1970s and early 1980s
o BITNET, which is an acronym for Because It’s Time NETwork, began at the City University of New York.

It was built initially to provide electronic mail and file transfers.
o CSNET is an acronym for Computer Science NETwork. Its initial purpose was to provide electronic mail.

 1990s
o NSFnet which was created in 1986 replaced ARPAnet by 1990.
o It was sponsored by the National Science Foundation (NSF).
o By 1992 NSFnet, connected more than 1 million computers around the world.
o In 1995, a small part of NSFnet returned to being a research network. The rest became known as the

Internet.

What Is the Internet?
 The Internet is a huge collection of computers connected in a communications network.
 The Transmission Control Protocol/Internet Protocol (TCP/IP) became the standard for computer

network connections in 1982.
 Rather than connecting every computer on the Internet directly to every other computer on the

Internet, normally the individual computers in an organization are connected to each other in a local
network. One node on this local network is physically connected to the Internet.

 So, the Internet is actually a network of networks, rather than a network of computers.
 Obviously, all devices connected to the Internet must be uniquely identifiable.

Internet Protocol Addresses
 The Internet Protocol (IP) address of a machine connected to the Internet is a unique 32-bit number.
 IP addresses usually are written (and thought of) as four 8-bit numbers, separated by periods.
 The four parts are separately used by Internet-routing computers to decide where a message must go

next to get to its destination.
 Although people nearly always type domain names into their browsers, the IP works just as well.
 For example, the IP for United Airlines (www.ual.com) is 209.87.113.93. So, if a browser is

pointed at http://209.87.113.93, it will be connected to the United Airlines Web site.

Domain Names
The IP addresses are numbers. Hence, it would be difficult for the users to remember IP address. To solve this
problem, text based names were introduced. These are technically known as domain name system (DNS).

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 3

These names begin with the names of the host machine, followed by progressively larger enclosing collection of
machines, called domains. There may be two, three or more domain names.
DNS is of the form hostname.domainName.domainName . Example: rnsit.ac.in
The steps for conversion from DNS to IP:
 The DNS has to be converted to IP address before destination is reached.
 This conversion is needed because computer understands only numbers.
 The conversion is done with the help of name server.
 As soon as domain name is provided, it will be sent across the internet to contact name servers.
 This name server is responsible for converting domain name to IP
 If one of the name servers is not able to convert DNS to IP, it contacts other name server.
 This process continues until IP address is generated.
 Once the IP address is generated, the host can be accessed.
 The hostname and all domain names form what is known as FULLY QUALIFIED DOMAIN NAME.

 This is as shown below:

The World Wide Web

Origins
 Tim Berners Lee and his group proposed a new protocol for the Internet whose intention was to allow

scientists around the world to use the Internet to exchange documents describing their work.
 The proposed new system was designed to allow a user anywhere on the Internet to search for and

retrieve documents from the databases on any number of different document-serving computers.
 The system used hypertext, which is text with embedded links to text in other documents to allow non-

sequential browsing of textual material.
 The units of web are referred as pages, documents and resources.
 Web is merely a vast collection of documents, some of which are connected by links.
 These documents can be accessed by web browsers and are provided by web servers.

Web or Internet?
It is important to understand that the Internet and the Web is not the same thing.
 The Internet is a collection of computers and other devices connected by equipment that allows them

to communicate with each other.
 The Web is a collection of software and protocols that has been installed on most, if not all, of the

computers on the Internet.

WEB BROWSERS
 Documents provided by servers on the Web are requested by browsers, which are programs running

on client machines.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 4

 They are called browsers because they allow the user to browse the resources available on servers.
 Mosaic was the first browser with a graphical user interface.
 A browser is a client on the Web because it initiates the communication with a server, which waits for a

request from the client before doing anything.
 In the simplest case, a browser requests a static document from a server.
 The server locates the document among its servable documents and sends it to the browser, which

displays it for the user.
 Sometimes a browser directly requests the execution of a program stored on the server. The output of

the program is then returned to the browser.
 Examples: Internet Explorer, Mozilla Firefox, Netscape Navigator, Google Chrome, Opera etc.,

WEB SERVERS
Web servers are programs that provide documents to requesting browsers. Example: Apache

Web server operations:
 All the communications between a web client and a web server use the HTTP
 When a web server begins execution, it informs the OS under which it is running & it runs as a

background process
 A web client or browser, opens a network connection to a web server, sends information requests and

possibly data to the server, receives information from the server and closes the connection.
 The primary task of web server is to monitor a communication port on host machine, accept HTTP

commands through that port and perform the operations specified by the commands.
 When the URL is received, it is translated into either a filename or a program name.

General characteristics of web server:
 The file structure of a web server has two separate directories
 The root of one of these is called document root which stores web documents
 The root of the other directory is called the server root which stores server and its support softwares
 The files stored directly in the document root are those available to clients through top level URLs
 The secondary areas from which documents can be served are called virtual document trees.
 Many servers can support more than one site on a computer, potentially reducing the cost of each site

and making their maintenance more convenient. Such secondary hosts are called virtual hosts.
 Some servers can serve documents that are in the document root of other machines on the web; in this

case they are called as proxy servers

Apache
 Apache is the most widely used Web server.
 The primary reasons are as follows: Apache is an excellent server because it is both fast and reliable.
 Furthermore, it is open-source software, which means that it is free and is managed by a large team of

volunteers, a process that efficiently and effectively maintains the system.
 Finally, it is one of the best available servers for Unix-based systems, which are the most popular for

Web servers.
 Apache is capable of providing a long list of services beyond the basic process of serving documents to

clients.
 When Apache begins execution, it reads its configuration information from a file and sets its parameters

to operate accordingly.

IIS
 Microsoft IIS server is supplied as part of Windows—and because it is a reasonably good server—most

Windows-based Web servers use IIS.
 With IIS, server behaviour is modified by changes made through a window-based management

program, named the IIS snap-in, which controls both IIS and ftp.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 5

 This program allows the site manager to set parameters for the server.
 Under Windows XP and Vista, the IIS snap-in is accessed by going to Control Panel, Administrative Tools,

and IIS Admin.

UNIFORM RESOURCE LOCATORS
 Uniform Resource Locators (URLs) are used to identify different kinds of resources on Internet.
 If the web browser wants some document from web server, just giving domain name is not sufficient

because domain name can only be used for locating the server.
 It does not have information about which document client needs. Therefore, URL should be provided.

 The general format of URL is: scheme: object-address

 Example: http: www.vtu.ac.in/results.php
 The scheme indicates protocols being used. (http, ftp, telnet...)
 In case of http, the full form of the object address of a URL is as follows:

//fully-qualified-domain-name/path-to-document
 URLs can never have embedded spaces
 It cannot use special characters like semicolons, ampersands and colons
 The path to the document for http protocol is a sequence of directory names and a filename, all

separated by whatever special character the OS uses. (forward or backward slashes)
 The path in a URL can differ from a path to a file because a URL need not include all directories on the

path
 A path that includes all directories along the way is called a complete path.
 Example: http://www.rnsit.ac.in/index.html
 In most cases, the path to the document is relative to some base path that is specified in the

configuration files of the server. Such paths are called partial paths.
 Example: http://www.rnsit.ac.in/

MULTIPURPOSE INTERNET MAIL EXTENSIONS
 MIME stands for Multipurpose Internet Mail Extension.
 The server system apart from sending the requested document, it will also send MIME information.
 The MIME information is used by web browser for rendering the document properly.

 The format of MIME is: type/subtype

 Example: text/html , text/doc , image/jpeg , video/mpeg
 When the type is either text or image, the browser renders the document without any problem
 However, if the type is video or audio, it cannot render the document
 It has to take the help of other software like media player, win amp etc.,
 These softwares are called as helper applications or plugins
 These non-textual information are known as HYPER MEDIA
 Experimental document types are used when user wants to create a customized information & make it

available in the internet

 The format of experimental document type is: type/x-subtype

 Example: database/x-xbase , video/x-msvideo
 Along with creating customized information, the user should also create helper applications.
 This helper application will be used for rendering the document by browser.
 The list of MIME specifications is stored in configuration file of web server.

THE HYPERTEXT TRANSFER PROTOCOL

Request Phase:
The general form of an HTTP request is as follows:

http://www.vtu.ac.in/results.php
http://www.rnsit.ac.in/index.html
http://www.rnsit.ac.in/

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 6

1. HTTP method Domain part of the URL HTTP version
2. Header fields
3. Blank line
4. Message body
The following is an example of the first line of an HTTP request:
GET /storefront.html HTTP/1.1

Table 1.1 HTTP request methods

The format of a header field is the field name followed by a colon and the value of the field. There are four
categories of header fields:
1. General: For general information, such as the date
2. Request: Included in request headers
3. Response: For response headers
4. Entity: Used in both request and response headers
A wildcard character, the asterisk (*), can be used to specify that part of a MIME type can be anything.

The Host: host name request field gives the name of the host. The Host field is required for HTTP 1.1. The
If-Modified-Since: date request field specifies that the requested file should be sent only if it has been
modified since the given date. If the request has a body, the length of that body must be given with a Content-
length field. The header of a request must be followed by a blank line, which is used to separate the header
from the body of the request.

The Response Phase:
The general form of an HTTP response is as follows:
1. Status line
2. Response header fields
3. Blank line
4. Response body
The status line includes the HTTP version used, a three-digit status code for the response, and a short textual
explanation of the status code. For example, most responses begin with the following:

HTTP/1.1 200 OK

The status codes begin with 1, 2, 3, 4, or 5. The general meanings of the five categories specified by these first
digits are shown in Table 1.2.

Table 1.2 First digits of HTTP status codes

One of the more common status codes is one user never want to see: 404 Not Found, which means the
requested file could not be found.

Accept: text/plain

Accept: text/html Can be written as Accept: text/*

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 7

SECURITY
Security is one of the major concerns in the Internet. The server system can be accessed easily with basic
hardware support, internet connection & web browser. The client can retrieve very important information
from the server. Similarly, the server system can introduce virus on the client system. These viruses can
destroy the hardware and software in client.
While programming the web, following requirements should be considered:
 Privacy: it means message should be readable only to communicating parties and not to intruder.
 Integrity: it means message should not be modified during transmission.
 Authentication: it means communicating parties must be able to know each other’s identity
 Non-repudiation: it means that it should be possible to prove that message was sent and received

properly
Security can be provided using cryptographic algorithm. Ex: private key, public key
Protection against viruses and worms is provided by antivirus software, which must be updated frequently so
that it can detect and protect against the continuous stream of new viruses and worms.

THE WEB PROGRAMMER’S TOOLBOX
Web programmers use several languages to create the documents that servers can provide to browsers.

 The most basic of these is XHTML, the standard mark-up language for describing how Web documents
should be presented by browsers. Tools that can be used without specific knowledge of XHTML are
available to create XHTML documents.

 A plug-in is a program that can be integrated with a word processor to make it possible to use the

word processor to create XHTML. A filter converts a document written in some other format to
XHTML.

 XML is a meta-mark-up language that provides a standard way to define new mark-up languages.

 JavaScript is a client-side scripting language that can be embedded in XHTML to describe simple
computations. JavaScript code is interpreted by the browser on the client machine; it provides access to
the elements of an XHTML document, as well as the ability to change those elements dynamically.

 Flash is a framework for building animation into XHTML documents. A browser must have a Flash
player plug-in to be able to display the movies created with the Flash framework.

 Ajax is an approach to building Web applications in which partial document requests are handled
asynchronously. Ajax can significantly increase the speed of user interactions, so it is most useful for
building systems that have frequent interactions.

 PHP is the server-side equivalent of JavaScript. It is an interpreted language whose code is embedded
in XHTML documents. PHP is used primarily for form processing and database access from browsers.

 Servlets are server-side Java programs that are used for form processing, database access, or building
dynamic documents. JSP documents, which are translated into servlets, are an alternative approach to
building these applications. JSF is a development framework for specifying forms and their processing
in JSP documents.

 ASP.NET is a Web development framework. The code used in ASP.NET documents, which is executed
on the server, can be written in any .NET programming language.

 Ruby is a relatively recent object-oriented scripting language that is introduced here primarily
because of its use in Rails, a Web applications framework.

 Rails provides a significant part of the code required to build Web applications that access databases,
allowing the developer to spend his or her time on the specifics of the application without the drudgery
of dealing with all of the housekeeping details.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 8

ORIGINS AND EVOLUTION OF HTML AND XHTML
HTML Hyper Text Mark-up Language
XHTML eXtensible Hyper Text Mark-up Language

HTML XHTML
HTML is much easier to write XHTML requires a level of discipline many of us

naturally resist
huge number of HTML documents available on the
Web, browsers will continue to support HTML as far
as one can see into the future.

some older browsers have problems with some parts
of XHTML.

HTML has few syntactic rules, and HTML processors
(e.g., browsers) do not enforce the rules it does have.
Therefore, HTML authors have a high degree of
freedom to use their own syntactic preferences to
create documents. Because of this freedom, HTML
documents lack consistency, both in low-level syntax
and in overall structure.

XHTML has strict syntactic rules that impose a
consistent structure on all XHTML documents.
Another significant reason for using XHTML is that
when you create an XHTML document, its syntactic
correctness can be checked, either by an XML browser
or by a validation tool

Used for displaying the data Used for describing the data

BASIC SYNTAX
 The fundamental syntactic units of HTML are called tags.
 In general, tags are used to specify categories of content.
 The syntax of a tag is the tag’s name surrounded by angle brackets (< and >).
 Tag names must be written in all lowercase letters.
 Most tags appear in pairs: an opening tag and a closing tag.
 The name of a closing tag is the name of its corresponding opening tag with a slash attached to the

beginning. For example, if the tag’s name is p, the corresponding closing tag is named /p.
 Whatever appears between a tag and its closing tag is the content of the tag. Not all tags can have

content.
 The opening tag and its closing tag together specify a container for the content they enclose.
 The container and its content together are called an element.

 Example: <p> This is RNSIT Web Programming Notes. </p>

 The paragraph tag, <p>, marks the beginning of the content; the </p> tag marks the end of the content
of the paragraph element.

 Attributes, which are used to specify alternative meanings of a tag, can appear between an opening tag’s
name and its right angle bracket.

 They are specified in keyword form, which means that the attribute’s name is followed by an equal’s
sign and the attribute’s value.

 Attribute names, like tag names, are written in lowercase letters.
 Attribute values must be delimited by double quotes.
 Comments in programs increase the readability of those programs. Comments in XHTML have the same

purpose. They can appear in XHTML in the following form:
<!-- anything except two adjacent dashes -->

 Browsers ignore XHTML comments—they are for people only. Comments can be spread over as many
lines as are needed. For example, you could have the following comment:
<!-- CopyRights.html

This notes is prepared by Divya K of Information Science Department

RNSIT, Bangalore -->

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 9

Standard XHTML Document Structure
 Every XHTML document must begin with an xml declaration element that simply identifies the

document as being one based on XML. This element includes an attribute that specifies the version
number 1.0.

 The xml declaration usually includes a second attribute, encoding, which specifies the encoding used for
the document [utf-8].

 Following is the xml declaration element, which should be the first line of every XHTML document:
<?xml version = "1.0" encoding = "utf-8"?>

 Note that this declaration must begin in the first character position of the document file.
 The xml declaration element is followed immediately by an SGML DOCTYPE command, which specifies

the particular SGML document-type definition (DTD) with which the document complies, among other
things.

 The following command states that the document in which it is included complies with the XHTML 1.0
Strict standard:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

 An XHTML document must include the four tags <html>, <head>, <title>, and <body>.
 The <html> tag identifies the root element of the document. So, XHTML documents always have an

<html> tag immediately following the DOCTYPE command, and they always end with the closing html
tag, </html>.

 The html element includes an attribute, xmlns, that specifies the XHTML namespace, as shown in the
following element:

<html xmlns = "http://www.w3.org/1999/xhtml">
 Although the xmlns attribute’s value looks like a URL, it does not specify a document. It is just a name

that happens to have the form of a URL.
 An XHTML document consists of two parts, named the head and the body.
 The <head> element contains the head part of the document, which provides information about the

document and does not provide the content of the document.
 The body of a document provides the content of the document.
 The content of the title element is displayed by the browser at the top of its display window, usually in

the browser window’s title bar.

BASIC TEXT MARKUP
We will have a look at a complete XHTML document:
<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<!-- complete.html

A document which must be followed throughout the notes

-->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> My first program </title>

 </head>

 <body>

 <p>

 My Dear VTU Friends, All The Best..!! Have a Happy Reading of my notes..!!

 </p>

 </body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 10

PLEASE NOTE: From here onwards programming in XHTML will begin. Please add the following
compulsory document structure to all programs in the first 4 lines and skip the simple <html> tag of
first line because I have begun the coding part directly .

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">

Paragraphs:
It begins with <p> and ends with </p>. Multiple paragraphs may appear in a single document.
<html>

<head>

 <title> Paragraph </title>

 </head>

 <body>

 <p> Paragraph 1 </p>

 <p> Paragraph 2 </p>

 <p> Paragraph 3 </p>

 </body>

</html>

Line Breaks:
The break tag is specified as
. The slash indicates that the tag is both an opening and closing tag.
<html>

<head>

 <title> br tag </title>

 </head>

 <body>

 <p>

My Name is DIVYA K

 I am from ISE Department

 RNSIT, Bangalore

 </p>

 </body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 11

Preserving White Space
Sometimes it is desirable to preserve the white space in text—that is, to prevent the browser from eliminating
multiple spaces and ignoring embedded line breaks. This can be specified with the <pre> tag.
<html>

<head>

 <title> Pre Tag </title>

 </head>

 <body>

 <p><pre> My Name is DIVYA K

 I am from ISE Department

 RNSIT, Bangalore

 </pre></p>

 </body>

</html>

Headings:
In XHTML, there are six levels of headings, specified by the tags <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>,
where <h1> specifies the highest-level heading. Headings are usually displayed in a boldface font whose

default size depends on the number in the heading tag. On most browsers, <h1>, <h2>, and <h3> use font
sizes that are larger than that of the default size of text, <h4> uses the default size, and <h5> and <h6> use
smaller sizes. The heading tags always break the current line, so their content always appears on a new line.
Browsers usually insert some vertical space before and after all headings.
<html>

<head>

 <title> Headings </title>

 </head>

 <body>

 <h1> Heading 1 </h1>

 <h2> Heading 2 </h2>

 <h3> Heading 3 </h3>

 <h4> Heading 4 </h4>

 <h5> Heading 5 </h5>

 <h6> Heading 6 </h6>

 </body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 12

Block Quotations:
The <blockquote> tag is used to make the contents look different from the surrounding text.
<html>

<head> <title> Blockquotes </title>

</head>

<body>

 <p> Swami Vivekananda says </p>

 <blockquote>

 <p> "Arise..!! Awake..!!" </p>

 </blockquote>

 <p> He is my Role model </p>

</body>

</html>

Font Styles and Sizes:
 , <i> and <u> specifies bold, italics and underline respectively.
 The emphasis tag, , specifies that its textual content is special and should be displayed in some

way that indicates this distinctiveness. Most browsers use italics for such content.
 The strong tag, is like the emphasis tag, but more so. Browsers often set the content of

strong elements in bold.
 The code tag, <code>, is used to specify a monospace font, usually for program code.

<html>

<head> <title> font styles and sizes </title>

</head>

<body>

 <p><pre>

 Illustration of Font Styles

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 13

 This is Bold

 <i> This is Italics </i>

 <u> This is Underline </u>

 This is Emphasis

 This is strong

 <code> Total = Internals + Externals //this is code</code>

 </pre></p>

 <p><pre>

 Illustration of Font Sizes (subscripts and superscripts)

 x₂³ + y₁²

 </pre></p>

</body>

</html>

Character Entities:
XHTML provides a collection of special characters that are sometimes needed in a document but cannot be
typed as themselves. In some cases, these characters are used in XHTML in some special way—for example, >,
<, and &. In other cases, the characters do not appear on keyboards, such as the small raised circle that
represents “degrees” in a reference to temperature. These special characters are defined as entities, which are
codes for the characters. An entity in a document is replaced by its associated character by the browser.
<html>

<head> <title> Character Entities </title>

</head>

<body>

 <p><pre>

 Illustration of character entities

 if you get > 70%, then you will get FCD

 if you get < 35%, then you are Fail

 ½ of my classmates get very good marks

 Now, the temperature in Bangalore is 30° C

 </pre></p>

</body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 14

Horizontal Rules:
The parts of a document can be separated from each other, making the document easier to read, by placing
horizontal lines between them. Such lines are called horizontal rules. The block tag that creates them is <hr />.
The <hr /> tag causes a line break (ending the current line) and places a line across the screen.
Note again the slash in the <hr /> tag, indicating that this tag has no content and no closing tag.
<html>

 <head>

 <title> Horizontal Rule </title>

 </head>

 <body>

 <p>

 RNSIT was established in the year 2001 <hr/>

 It was founded by our Chairman Dr. R N Shetty <hr/>

 Dr. H N Shivshankar is our Director <hr/>

 Dr. M K Venkatesha is our Principal <hr/>

 </p>

 </body>

</html>

The meta Element:
The meta element is used to provide additional information about a document. The meta tag has no content;
rather, all of the information provided is specified with attributes. The two attributes that are used to provide
information are name and content. The user makes up a name as the value of the name attribute and

specifies information through the content attribute. One commonly chosen name is keywords; the value of
the content attribute associated with the keywords are those which the author of a document believes
characterizes his or her document. An example is
 <meta name = "Title" content = "Programming the Web" />
 <meta name = "Author" content = "Divya K" />
Web search engines use the information provided with the meta element to categorize Web documents in
their indices.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 15

UNIT 2
XHTML - 2

IMAGES
 Image can be displayed on the web page using tag.
 When the tag is used, it should also be mentioned which image needs to be displayed. This is

done using src attribute.
 Attribute means extra information given to the browser
 Whenever tag is used, alt attribute is also used.
 Alt stands for alert.
 Some very old browsers would not be having the capacity to display the images.
 In this case, whatever is the message given to alt attribute, that would be displayed.
 Another use of alt is when image display option has been disabled by user. The option is normally

disabled when the size of the image is huge and takes time for downloading.
<html>

 <head>

 <title>display image</title>

 </head>

 <body>

 </body>

</html>

NOTE:
 JPEG Joint Photographic Experts Group
 GIF Graphic Interchange Format
 PNG Portable Network Graphics

XHTML Document Validation:
The W3C provides a convenient Web-based way to validate XHTML documents against its standards.
Step 1: The URL of the service is http://validator.w3.org/file-upload.html. Copy & paste this link.
Step 2: You will be driven to “Validate by File Upload” option automatically.
Step 3: Browse for a XHTML program file in your computer. (example: F:/complete.html)
Step 4: Click on “More Options” and select your criteria like show source
Step 5: After all the settings, click on “Check” button

Now you will be navigated to another page which shows success or failure.
In our example, the file complete.html is a valid XHTML file. So the output shows success..!!

http://validator.w3.org/file-upload.html

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 16

Output:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 17

HYPERTEXT LINKS

Links:
 Hyperlinks are the mechanism which allows the navigation from one page to another.
 The term “hyper” means beyond and “link” means connection
 Whichever text helps in navigation is called hypertext
 Hyperlinks cam be created using <a> (anchor tag)
 The attribute that should be used for <a> is href

Program: hyper.html
<html>
 <head>
 <title> hyperlink </title>
 </head>
 CLICK HERE
</html>

Program: link.html

Now, execute “hyper.html” file, you will get

After clicking on the above text, we can navigate to another page “link.html” as shown below

Targets within Documents:
If the target of a link is not at the beginning of a document, it must be some element within the document, in
which case there must be some means of specifying it. The target element can include an id attribute, which can
then be used to identify it in an href attribute. (observe the scroll bar in the outputs given)
<html>
 <head>
 <title> target link</title>
 </head>
 <body>
 <h1> Puneeth Rajkumar </h1>
 Click Here For His Autobiography
 <p><pre>
 Appu
 Abhi

<html>
 <body> This is Web Programming </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 18

 Veera Kannadiga
 Maurya
 Akaash
 Namma Basava
 Ajay
 Arasu
 Milana
 Bindaas
 Vamshi
 Raaj
 Raam
 Prithvi
 Jackie
 Hudugaru
 Paramathma
 Anna Bond
 </pre></p>
 <h2> AutoBiography </h2>
 <p id = "bottom"> <pre>
 Puneeth Rajkumar was born on 17th of March, 1975.
 His father Dr. Rajkumar is the Legend of Kannada Film Industry.
 His mother is Smt. Parvathamma Rajkumar who is a renowned producer in the industry.
 His brothers ShivaRajkumar and RaghavendraRajkumar are very popular heroes.
 He is married to Smt. Ashwini Revnath
 He has two daughters namely Dhrithi and Vanditha..
 At present, Puneeth is the greatest star of Kannada Film Industry.
 </pre></p>
 </body>
</html>

Actually, here we are not creating two separate files, but we are specifying a target within the same document
itself. If you click on the above link, you will be redirected to the bottom of the page which contains
Autobiography of Puneeth Rajkumar. This is useful for lengthy documents like e-newspaper, e-magazine etc.,

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 19

LISTS

Unordered Lists:
The tag, which is a block tag, creates an unordered list. Each item in a list is specified with an tag (li is
an acronym for list item). Any tags can appear in a list item, including nested lists. When displayed, each list
item is implicitly preceded by a bullet.
<html>
 <head>
 <title> Unordered List </title>
 </head>
 <body>
 <h1> Heroines acted with Puneeth Rajkumar </h1>

 Rakshitha
 Ramya
 Nathasha
 Meera Jasmine
 Anuradha Mehtha
 Parvathi Menon
 Hansika
 Nikitha
 Nisha Kothari
 Priya Mani
 Bhavana Menon
 Radhika Pandit
 Deepa Sannidhi

 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 20

Ordered Lists:
Ordered lists are lists in which the order of items is important. This orderedness of a list is shown in the display
of the list by the implicit attachment of a sequential value to the beginning of each item. The default sequential
values are Arabic numerals, beginning with 1.
An ordered list is created within the block tag . The items are specified and displayed just as are those in
unordered lists, except that the items in an ordered list are preceded by sequential values instead of bullets.
<html>
 <head>
 <title> ordered List </title>
 </head>
 <body>
 <h1>Chicken Masala</h1>

 For 1 kg of chicken, add 20g Teju Chicken Masala
 Fry 2 big onions with 3tbsp ghee/oil till golden brown
 Add 2 tomato, 1tsp ginger garlic paste, 2-3 green chillies and fry
 When tomato becomes soft, add chicken and 100ml water
 Add 25g coriander leaves and cook till the chicken is soft and gravy turns thick
 Ready to serve

 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 21

Nested Lists:
<html>
 <head>
 <title> nested lists </title>
 </head>

 Information Science

 OOMD
 Java & J2ee

 classes and methods
 exceptions
 applets
 servelets

 Computer Networks

 Part 1
 Part 2

 DBMS
 Operations Research

 Computer Science

 Compiler Design
 FLAT

 NFA
 DFA
 CFG

 Computer Graphics
 Artificial Intelligence

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 22

Definition Lists:
As the name implies, definition lists are used to specify lists of terms and their definitions, as in glossaries. A
definition list is given as the content of a <dl> tag, which is a block tag. Each term to be defined in the definition
list is given as the content of a <dt> tag. The definitions themselves are specified as the content of <dd> tags.
The defined terms of a definition list are usually displayed in the left margin; the definitions are usually shown
indented on the line or lines following the term.
<html>
 <head>
 <title> Definition List </title>
 </head>
 <body>
 <h1> South Indian Film Heroes </h1>
 <dl>
 <dt> Puneeth Rajkumar </dt>
 <dd>Top in Kannada Film Industry</dd>
 <dt> Mahesh Babu </dt>
 <dd>Top in Telugu Film Industry</dd>
 <dt> Suriya </dt>
 <dd>Top in Tamil Film Industry</dd>
 </dl>
 </body>
</html>

TABLES
A table is a matrix of cells. The cells in the top row often contain column labels, those in the leftmost column
often contain row labels, and most of the rest of the cells contain the data of the table. The content of a cell can
be almost any document element, including text, a heading, a horizontal rule, an image, and a nested table.

Basic Table Tags:
 A table is specified as the content of the block tag <table>.
 There are two kinds of lines in tables: the line around the outside of the whole table is called the border;

the lines that separate the cells from each other are called rules.
 It can be obtained using border attribute. The possible values are “border” or any number.
 The table heading can be created using <caption> tag.
 The table row can be created using <tr> tag.
 The column can be created either by using <th> tag (stands for table header which is suitable for

headings) or <td> tag (stands for table data which is suitable for other data).
<html>
 <head>
 <title> Table with text and image </title>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 23

 </head>
 <body>
 <table border = "border">
 <caption>PARAMATHMA Movie Details </caption>
 <tr>
 <th> Cast</th>
 <th> Image </th>
 </tr>
 <tr>
 <td> Puneeth Rajkumar </td>
 <td> </td>
 </tr>
 <tr>
 <td> Deepa Sannidhi</td>
 <td> </td>
 </tr>
 </table>
 </body>
</html>

The rowspan and colspan Attributes:
Multiple-level labels can be specified with the rowspan and colspan attributes.
<html>
 <head>
 <title>row-span and column-span</title>
 </head>
 <body>
 <p> Illustration of Row span</p>
 <table border="border">
 <tr>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 24

 <th rowspan="2"> RNSIT </th>
 <th>ISE</th>
 </tr>
 <tr>
 <th>CSE</th>
 </tr>
 </table>
 <p> Illustration of Column span</p>
 <table border="border">
 <tr>
 <th colspan="2"> RNSIT </th>
 </tr>
 <tr>
 <th>ISE</th>
 <th>CSE</th>
 </tr>
 </table>
 </body>
</html>

The align and valign Attributes:
The placement of the content within a table cell can be specified with the align and valign attributes in the <tr>,
<th>, and <td> tags.
The align attribute has the possible values left, right, and center, with the obvious meanings for horizontal
placement of the content within a cell. The default alignment for th cells is center; for td cells, it is left.
The valign attribute of the <th> and <td> tags has the possible values top and bottom. The default vertical
alignment for both headings and data is center.
<html>
 <head>
 <title> Align and valign </title>
 </head>
 <body>
 <p>Table having entries with different alignments</p>
 <table border="border">
 <tr align = "center">
 <th> </th>
 <th> Puneeth Rajkumar </th>
 <th> Darshan Thoogudeep</th>
 <th> Kichcha Sudeep </th>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 25

 </tr>
 <tr>
 <th> Ramya </th>
 <td align = "left"> Akaash </td>
 <td align = "center"> Datta </td>
 <td align = "right"> Ranga </td>
 </tr>
 <tr>
 <th>
Rakshitha

</th>
 <td> Appu </td>
 <td valign = "top"> Kalasipalya </td>
 <td valign = "bottom"> Kaashi from village </td>
 </tr>
 </table>
 </body>
</html>

The cellpadding and cellspacing Attributes:
Cellspacing is the distance between cells.
Cellpadding is the distance between the edges of the cell to its content.
<html>
 <head>
 <title> cell spacing and cell padding </title>
 </head>
 <body>
 <h3>Table with space = 10, pad = 50</h3>
 <table border = "7" cellspacing = "10" cellpadding = "50">
 <tr>
 <td> Divya </td>
 <td>Chethan </td>
 </tr>
 </table>
 <h3>Table with space = 50, pad = 10</h3>
 <table border = "7" cellspacing = "50" cellpadding = "10">
 <tr>
 <td> Divya </td>
 <td>Chethan </td>
 </tr>
 </table>
 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 26

Table Sections:
Tables naturally occur in two and sometimes three parts: header, body, and footer. (Not all tables have a
natural footer.) These three parts can be respectively denoted in XHTML with the thead, tbody, and tfoot
elements. The header includes the column labels, regardless of the number of levels in those labels. The body
includes the data of the table, including the row labels. The footer, when it appears, sometimes has the column
labels repeated after the body. In some tables, the footer contains totals for the columns of data above. A table
can have multiple body sections, in which case the browser may delimit them with horizontal lines that are
thicker than the rule lines within a body section.

FORMS
The most common way for a user to communicate information from a Web browser to the server is through a
form. XHTML provides tags to generate the commonly used objects on a screen form. These objects are called
controls or widgets. There are controls for single-line and multiple-line text collection, checkboxes, radio
buttons, and menus, among others. All control tags are inline tags.

The <form> Tag:
All of the controls of a form appear in the content of a <form> tag. A block tag, <form>, can have several
different attributes, only one of which, action, is required. The action attribute specifies the URL of the
application on the Web server that is to be called when the user clicks the Submit button. Our examples of form
elements will not have corresponding application programs, so the value of their action attributes will be the
empty string ("").

The <input> Tag:
Many of the commonly used controls are specified with the inline tag <input>, including those for text,
passwords, checkboxes, radio buttons, and the action buttons Reset, Submit, and plain.

 Text Box
 It is a type of input which takes the text.
 Any type of input can be created using <input>
 The type attribute indicates what type of input is needed for the text box, the value should be given as

text.
 For any type of input, a name has to be provided which is done using name attribute.
 The size of the text can be controlled using size attribute.
 Every browser has a limit on the number of characters it can collect. If this limit is exceeded, the extra

characters are chopped off. To prevent this chopping, maxlength attribute can be used. When maxlength
is used, users can enter only those many characters that is given as a value to the attribute.
<html>
 <head>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 27

 <title>Text Box</title>
 </head>
 <body>
 <form action = " ">
 <p>
 <label>Enter your Name:
 <input type = "text" name = "myname" size = "20" maxlength = "20" />
 </label>
 </p>
 </form>
 </body>
</html>

 Password Box
 If the contents of a text box should not be displayed when they are entered by the user, a password

control can be used.
 In this case, regardless of what characters are typed into the password control, only bullets or asterisks

are displayed by the browser.
<html>
 <head>
 <title>Password Box</title>
 </head>
 <body>
 <form action = " ">
 <p>
 <label>Enter the email id:
 <input type = "text" name = "myname" size = "24" maxlength = "25" />
 </label>
 </p>
 <p>
 <label>Enter the password:
 <input type = "password" name = "mypass" size = "20" maxlength = "20" />
 </label>
 </p>
 </form>
 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 28

 Radio Button
 Radio buttons are special type of buttons which allows the user to select only individual option
 Radio buttons are created using the input tag with the type attribute having the value radio.
 When radio buttons are created, values must be provided with the help of value attribute.
 All the radio buttons which are created would have same name. This is because the radio buttons are

group elements.
 If one of the radio buttons has to be selected as soon as the web page is loaded, checked attribute

should be used. The value also would be checked.
<html>
 <head>
 <title>Radio Button</title>
 </head>
 <body>
 <h3>Who is your Favourite Actor?</h3>
 <form action = " ">
 <p>
 <label><input type="radio" name="act" value="one"/>Puneeth Rajkumar</label>

 <label><input type="radio" name="act" value="two"/>Sudeep</label>

 <label><input type="radio" name="act" value="three"/>Darshan</label>

 <label><input type="radio" name="act" value="four"/>ShivaRajkumar</label>
 </p>
 </form>
 </body>
</html>

 Check Box
 Check box is a type of input using which multiple options can be selected.
 Check box can also be created using the <input> tag with the type having the value “checkbox”.
 During the creation of check box, the value should be provided using the value attribute.
 All the checkbox which are created would have the same name because they are group elements.
 If one of the check box have to be selected as soon as the page is loaded, checked attribute should be

used with the value checked.
<html>
 <head>
 <title>Check Box</title>
 </head>
 <body>
 <h3>Who is your Favourite Actress?</h3>
 <form action = " ">
 <p>
 <label><input type="checkbox" name="act" value="one"/>Ragini</label>

 <label><input type="checkbox" name="act" value="two"/>Ramya</label>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 29

 <label><input type="checkbox" name="act" value="three"/>Aindritha</label>

 <label><input type="checkbox" name="act" value="four"/>Radhika</label>

 <label><input type="checkbox" name="act" value="four"/>Rakshitha</label>
 </p>
 </form>
 </body>
</html>

The <select> Tag:
 Menu items is another type of input that can be created on the page.
 To create the menu item, <select> tag is used.
 To insert the item in the menu, <option> tag is used.

<html
<head> <title> Menu </title>
</head>
<body>
<p>
RNSIT Branches - Information Science, Computer Science, Electronics, Electrical, Mechanical
</p>
<form action = "">
<p>
With size = 1 (the default)
<select name = "branches">
<option> Information Science </option>
<option> Computer Science </option>
<option> Electronics </option>
<option> Electrical </option>
<option> Mechanical </option>
</select>
</p>
</form>
</body>
</html>

If you give <select name = "branches" size = “3”>, then you will get a scroll bar instead of drop down menu.
It is as shown in the output given below:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 30

The <textarea> Tag:
 Text area is a type of input using which multiple statements can be entered.
 Text area is created using <textarea> tag.
 Text area should have the name.
 During the creation of text area, it should be mentioned how many sentences can be entered. This is

done using rows attribute.
 Similarly, it should also be mentioned how many characters can be entered in a line. This is done using

cols attribute.
 If the value given to rows is exceeded i.e. if users enter sentences more than specified, the scroll bar

automatically appears.
<html>
 <head>
 <title> text area </title>
 </head>
 <body>
 <form action=" ">
 <h3> Enter your comments</h3>
 <p>
 <textarea name="feedback" rows="5" cols="100">
 </textarea>
 </p>
 </form>
 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 31

The Action Buttons:
The Reset button clears all of the controls in the form to their initial states. The Submit button has two actions:
First, the form data is encoded and sent to the server; second, the server is requested to execute the server-
resident program specified in the action attribute of the <form> tag. The purpose of such a server-resident
program is to process the form data and return some response to the user. Every form requires a Submit

button. The Submit and Reset buttons are created with the <input> tag.
<html>
 <head>
 <title> action buttons </title>
 </head>
 <body>
 <form action=" ">
 <p>
 <input type="SUBMIT" value="SUBMIT"/>
 <input type="RESET" value="RESET"/>
 </p>
 </form>
 </body>
</html>

NOTE: A plain button has the type button. Plain buttons are used to choose an action.

Example of a Complete Form:
<html>
 <head>
 <title> CompleteForm</title>
 </head>
 <body>
 <h1>Registration Form</h1>
 <form action=" ">
 <p>
 <label>Enter your email id:
 <input type = "text" name = "myname" size = "24" maxlength = "25" />
 </label>
 </p>
 <p>
 <label>Enter the password:
 <input type = "password" name = "mypass" size = "20" maxlength = "20" />
 </label>
 </p>
 <p>Sex</p>
 <p>
 <label><input type="radio" name="act" value="one"/>Male</label>
 <label><input type="radio" name="act" value="two"/>Female</label>
 </p>
 <p>Which of the following Accounts do you have?</p>
 <p>
 <label><input type="checkbox" name="act" value="one"/>Gmail</label>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 32

 <label><input type="checkbox" name="act" value="two"/>Facebook</label>
 <label><input type="checkbox" name="act" value="three"/>Twitter</label>
 <label><input type="checkbox" name="act" value="four"/>Google+</label>
 </p>
 <p> Any Suggestions?</p>
 <p>
 <textarea name="feedback" rows="5" cols="100">
 </textarea>
 </p>
 <p>Click on Submit if you want to register</p>
 <p>
 <input type="SUBMIT" value="SUBMIT"/>
 <input type="RESET" value="RESET"/>
 </p>
 </form>
 </body>
</html>

FRAMES
The browser window can be used to display more than one document at a time. The window can be divided
into rectangular areas, each of which is a frame. Each frame is capable of displaying its own document.

Framesets:

 The number of frames and their layout in the browser window are specified with the <frameset> tag.
 A frameset element takes the place of the body element in a document. A document has either a body or

a frameset but cannot have both.
 The <frameset> tag must have either a rows or a cols attribute. (or both)
 To create horizontal frames, rows attribute is used.
 To create vertical frames, cols attribute is used.
 The values for these attributes can be numbers, percentages and asterisks.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 33

 Two or more values are separated by commas & given in quoted string.
To Demonstrate Horizontal Frames
using rows Attribute
<html>
 <head>
 <title>Frameset Rows</title>
 </head>
 <frameset rows = "*,*">
 <frame src = "FrameRow1.html"/>
 <frame src = "FrameRow2.html"/>
 </frameset>
</html>

To Demonstrate Vertical Frames using
cols Attribute
<html>
 <head>
 <title>Frameset Cols</title>
 </head>
 <frameset cols = "25%,25%,25%,25%">
 <frame src = "FrameCol1.html"/>
 <frame src = "FrameCol2.html"/>
 <frame src = "FrameCol3.html"/>
 <frame src = "FrameCol4.html"/>
 </frameset>
</html>

Note: Here, the programs FrameRow1.html, FrameRow2.html, FrameCol1.html, FrameCol2.html, FrameCol3.html, FrameCol4.html are
programs to display images. They must be coded separately.
<html>
 <head>
 <title>frame row 1</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>frame col 1</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>frame col 3</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>frame row 2</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>frame col 2</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>frame col 4</title>
 </head>
 <body>

 </body>
</html>

<html>
 <head>
 <title>Frameset Rows and cols</title>
 </head>
 <frameset rows = "50,50" cols = "*,*,*">
 <frame src = "FrameCol1.html"/>
 <frame src = "FrameCol2.html"/>
 <frame src = "FrameCol3.html"/>
 <frame src = "FrameCol4.html"/>
 <frame src = "FrameRow1.html"/>
 <frame src = "FrameRow2.html"/>
</frameset>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 34

Create two frames vertically on the browser window: the first frame should occupy 20% and the next
frame should occupy 80%. In the first frame, display a document which consists of hyperlinks. When
the hyperlinks are clicked, Image should be displayed on the second frame.
Frames.html
<html>
 <head>
 <title>Frames</title>
 </head>
 <frameset cols = "20%,80%">
 <frame src = "FrameTarget.html"/>
 <frame name = "description"/>
 </frameset>
</html>

PRImage.html
<html>
 <head>
 <title>PRImage</title>
 </head>
 <body>

 </body>
</html>

FrameTarget.html
<html>
 <head>
 <title>Frames Target</title>
 </head>
 <body>
 <h2>KINGS OF</h2>
 <h3>

 SANDALWOOD
 </h3>
 <h3>

 TOLLYWOOD
 </h3>
 <h3>

 KOLLYWOOD
 </h3>
 </body>
</html>

MBImage.html
<html>
 <head>
 <title>MBImage</title>
 </head>
 <body>

 </body>
</html>

SImage.html
<html>
 <head>
 <title>SImage</title>
 </head>
 <body>

 </body>
</html>

You get this if
you click on
Sandalwood

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 35

SYNTACTIC DIFFERENCES BETWEEN HTML AND XHTML

PARAMETERS HTML XHTML

Case Sensitivity Tags and attributes names are case insensitive Tags and attributes names must be in
lowercase

Closing tags Closing tags may be omitted All elements must have closing tag

Quoted attribute
values

Special characters are quoted. Numeric values
are rarely quoted.

All attribute values must be quoted
including numbers

Explicit attribute
values

Some attribute values are implicit. For
example: <table border>. A default value for
border is assumed

All attribute values must be explicitly
stated

id and name
attributes

Both id and name attributes are encouraged Use of id is encouraged and use of name is
discouraged

Element nesting Rules against improper nesting of elements
(for example: a form element cannot contain
another form element) are not enforced.

All nesting rules are strictly enforced

You get this if
you click on
Tollywood

You get this if
you click on
Kollywood

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 36

UNIT 3
CASCADING STYLE SHEETS

INTRODUCTION
XHTML style sheets are called cascading style sheets because they can be defined at three different levels to
specify the style of a document. Lower level style sheets can override higher level style sheets, so the style of
the content of a tag is determined, in effect, through a cascade of style-sheet applications.

LEVELS OF STYLE SHEETS
 The three levels of style sheets, in order from lowest level to highest level, are inline, document level,

and external.
 Inline style sheets apply to the content of a single XHTML element.
 Document-level style sheets apply to the whole body of a document.
 External style sheets can apply to the bodies of any number of documents.
 Inline style sheets have precedence over document style sheets, which have precedence over external

style sheets.
 Inline style specifications appear within the opening tag and apply only to the content of that tag.
 Document-level style specifications appear in the document head section and apply to the entire body

of the document.
 External style sheets stored separately and are referenced in all documents that use them.
 External style sheets are written as text files with the MIME type text/css.
 They can be stored on any computer on the Web. The browser fetches external style sheets just as it

fetches documents.
 The <link> tag is used to specify external style sheets. Within <link>, the rel attribute is used to

specify the relationship of the linked-to document to the document in which the link appears. The href
attribute of <link> is used to specify the URL of the style sheet document.

EXAMPLE WHICH USES EXTERNAL STYLE SHEET
<html>
 <head>
 <title>Sample CSS</title>
 <link rel = "stylesheet" type = "text/css"
 href = "Style1.css" />
 </head>
 <h1>Puneeth Rajkumar</h1>
 </html>

Style1.css
h1
{
 font-family: 'Lucida Handwriting';
 font-size: 50pt;
 color: Red;
}

EXAMPLE WHICH USES DOCUMENT LEVEL STYLE SHEET
<html>
 <head>
 <title>Sample CSS</title>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 37

 <style type = "text/css">
 h1
 {
 font-family: 'Lucida Handwriting';
 font-size: 50pt;
 color: Red;
 }
 </style>
 </head>
 <h1>Puneeth Rajkumar</h1>
 </html>

EXAMPLE WHICH USES INLINE STYLE SHEET
<html>
 <head>
 <title>Sample CSS</title>
 </head>
 <h1 style ="font-family: 'Lucida Handwriting'; font-size: 50pt; color: Red;">
 Puneeth Rajkumar </h1>
 </html>

STYLE SPECIFICATION FORMATS

Inline Style Specification:
Style = “Property1 : Value1; Property2 : Value2; Property3 : Value3; Property_n : Value_n;”

Document Style Specification:
<style type = “text/css”>
 Rule list
</style>
Each style rule in a rule list has two parts: a selector, which indicates the tag or tags affected by the rule, and a
list of property–value pairs. The list has the same form as the quoted list for inline style sheets, except that it is
delimited by braces rather than double quotes. So, the form of a style rule is as follows:

Selector { Property1 : Value1; Property2 : Value2; Property3 : Value3; Property_n : Value_n; }
[For examples on all three levels of style sheets along with specifications, Please refer the previous examples] .

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 38

SELECTOR FORMS

Simple Selector Forms:
In case of simple selector, a tag is used. If the properties of the tag are changed, then it reflects at all the places
when used in the program. The selector can be any tag. If the new properties for a tag are not mentioned within
the rule list, then the browser uses default behaviour of a tag.
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">
 p
 {
 font-family: 'Lucida Handwriting';
 font-size: 50pt;
 color: Red;
 }
 </style>
 </head>
 <body>
 <p>Puneeth Rajkumar</p>
 <p>Mahesh Babu</p>
 <p>Suriya</p>
 </body>
 </html>

Class Selectors:
In class selector, it is possible to give different properties for different elements
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">
 p.one
 {
 font-family: 'Lucida Handwriting';
 font-size: 25pt;
 color: Red;
 }
 p.two
 {
 font-family: 'Monotype Corsiva';
 font-size: 50pt;
 color: green;
 }
 </style>
 </head>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 39

 <body>
 <p class = "one">Puneeth Rajkumar</p>
 <p class = "two">Puneeth Rajkumar</p>
 </body>
 </html>

Generic Selectors:
In case of generic selector, when the class is created, it would not be associated to any particular tag. In other
words, it is generic in nature.
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">
 .one
 {
 font-family: 'Monotype Corsiva';
 color: green;
 }
 </style>
 </head>
 <body>
 <p class = "one">Puneeth Rajkumar</p>
 <h1 class = "one">Puneeth Rajkumar</h1>
 <h6 class = "one">Puneeth Rajkumar</h6>
 </body>
 </html>

id Selectors:
An id selector allows the application of a style to one specific element.
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">
 #one
 {
 font-family: 'lucida calligraphy';
 color: purple;
 }

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 40

 #two
 {
 font-family: 'comic sans ms';
 color: orange;
 }
 </style>
 </head>
 <body>
 <p id = "two">Puneeth Rajkumar</p>
 <h1 id = "one">Puneeth Rajkumar</h1>
 </body>
 </html>

Universal Selectors:
The universal selector, denoted by an asterisk (*), applies its style to all elements in a document.
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">

 *
 {
 font-family: 'lucida calligraphy';
 color: purple;
 }
 </style>
 </head>
 <body>
 <h1>Puneeth Rajkumar</h1>
 <h2>Puneeth Rajkumar</h2>
 <h3>Puneeth Rajkumar</h3>
 <p>Puneeth Rajkumar</p>
 </body>
 </html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 41

Pseudo Classes:
Pseudo class selectors are used if the properties are to be changed dynamically. For example: when mouse
movement happens, in other words, hover happens or focus happens.
<html>
 <head>
 <title>Sample CSS</title>
 <style type = "text/css">
 input:focus
 {
 font-family: 'lucida calligraphy';
 color: purple;
 font-size:100;
 }
 input:hover
 {
 font-family: 'lucida handwriting';
 color: violet;
 font-size:40;
 }
 </style>
 </head>
 <body>
 <form action = " ">
 <p>
 <label>
 NAME:
 <input type = "text" />
 </label>
 </p>
 </form>
 </body>
 </html>
STEP 1: Initial

STEP 3: Enter the data

STEP 2:After placing mouse pointer on text area

STEP 4: After taking away the mouse pointer

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 42

PROPERTY VALUE FORMS
CSS includes 60 different properties in seven categories: fonts, lists, alignment of text, margins, colours,
backgrounds, and borders. Property values can appear in a variety of forms.
 Keyword property values are used when there are only a few possible values and they are predefined.
 A number value can be either an integer or a sequence of digits with a decimal point and can be

preceded by a sign (+ or -).
 Length values are specified as number values that are followed immediately by a two-character

abbreviation of a unit name. The possible unit names are px, for pixels; in, for inches; cm, for
centimeters; mm, for millimeters; pt, for points.

 Percentage values are used to provide a measure that is relative to the previously used measure for a
property value. Percentage values are numbers that are followed immediately by a percent sign
(%).Percentage values can be signed. If preceded by a plus sign, the percentage is added to the previous
value; if negative, the percentage is subtracted.

 There can be no space between url and the left parenthesis.
 Color property values can be specified as color names, as six-digit hexadecimal numbers, or in RGB

form. RGB form is just the word rgb followed by a parenthesized list of three numbers that specify the
levels of red, green, and blue, respectively. The RGB values can be given either as decimal numbers
between 0 and 255 or as percentages. Hexadecimal numbers must be preceded with pound signs (#), as
in #43AF00.

FONT PROPERTIES

Font Families:
The font-family property is used to specify a list of font names. The browser uses the first font in the list
that it supports. For example, the property:

font-family: Arial, Helvetica, Futura

tells the browser to use Arial if it supports that font. If not, it will use Helvetica if it supports it. If the browser
supports neither Arial nor Helvetica, it will use Futura if it can. If the browser does not support any of the
specified fonts, it will use an alternative of its choosing.
If a font name has more than one word, the whole name should be delimited by single quotes, as in the
following example:

font-family: ‘Times New Roman’

Font Sizes:
The font-size property does what its name implies. For example, the following property specification sets
the font size for text to 10 points:

font-size: 10pt

Many relative font-size values are defined, including xx-small, x-small, small, medium, large, x-
large, and xx-large. In addition, smaller or larger can be specified. Furthermore, the value can be a
percentage relative to the current font size.

Font Variants:
The default value of the font-variant property is normal, which specifies the usual character font. This
property can be set to small-caps to specify small capital characters. These characters are all uppercase,
but the letters that are normally uppercase are somewhat larger than those that are normally lowercase.

Font Styles:
The font-style property is most commonly used to specify italic, as in

font-style: italic

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 43

Font Weights:
The font-weight property is used to specify the degree of boldness, as in

font-weight: bold

Besides bold, the values normal, bolder, and lighter can be specified. Specific numbers also can be given
in multiples of 100 from 100 to 900, where 400 is the same as normal and 700 is the same as bold.

Font Shorthands:
If more than one font property must be specified, the values can be stated in a list as the value of the font
property. The order in which the property values are given in a font value list is important. The order must
be as follows: The font names must be last, the font size must be second to last, and the font style, font variant,
and font weight, when they are included, can be in any order but must precede the font size and font names.

font: bold 14pt ‘Times New Roman’

<html>
 <head>
 <title>Font Properties</title>
 <style type = "text/css">
 p.one
 {
 font-family: 'lucida calligraphy';
 font-weight:bold;
 font-size:75pt;
 color: purple;
 }
 h1.two
 {
 font-family: 'cambria';
 color: violet;
 font-style:italics;
 }
 p.three
 {
 font: small-caps italic bold 50pt 'times new roman'
 }
 </style>
 </head>
 <body>
 <p class = "one">Puneeth Rajkumar</p>
 <h1 class = "two">Puneeth Rajkumar</h1>
 <p class = "three">Puneeth Rajkumar</p>
 </body>
 </html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 44

Text Decoration:
The text-decoration property is used to specify some special features of text. The available values are
line-through, overline, underline, and none, which is the default.
<html>
 <head>
 <title>Text Decoration</title>
 <style type = "text/css">
 h1.one
 {text-decoration: line-through;}
 h1.two
 {text-decoration: overline;}
 h1.three
 {text-decoration: underline;}
 </style>
 </head>
 <body>
 <h1 class = "one">Puneeth Rajkumar</h1> <p>[This is line-through]</p>

 <h1 class = "two">Puneeth Rajkumar</h1> <p>[This is overline]</p>

 <h1 class = "three">Puneeth Rajkumar</h1><p>[This is underline]</p>

 </body>
 </html>

LIST PROPERTIES
Two presentation details of lists can be specified in XHTML documents: the shape of the bullets that precede
the items in an unordered list and the sequencing values that precede the items in an ordered list. The list-
style-type property is used to specify both of these.
The list-style-type property of an unordered list can be set to disc, circle, square, or none.

<html>
 <head>
 <title>CSS Bullets</title>
 <style type = "text/css">
 li.one {list-style-type:disc}
 li.two{list-style-type:square}
 li.three{list-style-type:circle}
 </style>
 </head>
 <body>
 <h3>South Indian Kings</h3>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 45

 <li class = "one"> Puneeth Rajkumar
 <li class = "two"> Mahesh Babu
 <li class = "three"> Suriya

 </body>
</html>

Bullets in unordered lists are not limited to discs, squares, and circles. Any image can be used in a list item
bullet. Such a bullet is specified with the list-style-image property, whose value is specified with the
url form.
<html>
 <head>
 <title>CSS Bullets-Image</title>
 <style type = "text/css">
 li.image {list-style-image: url(bullet.png); font-size:25pt;}
 </style>
 </head>
 <body>
 <h1>South Indian Kings</h1>

 <li class = "image"> Puneeth Rajkumar
 <li class = "image"> Mahesh Babu
 <li class = "image"> Suriya

 </body>
</html>

The following example illustrates the use of different sequence value types in nested lists:
<html>
 <head>
 <title> CSS nested lists </title>
 <style type = "text/css">
 ol {list-style-type:upper-roman;}
 ol ol {list-style-type:upper-alpha;}
 ol ol ol {list-style-type:decimal;}
 </style>
 </head>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 46

 Information Science

 OOMD
 Java & J2ee

 classes and methods
 exceptions
 applets
 servelets

 Computer Networks

 Part 1
 Part 2

 DBMS
 Operations Research

 Computer Science

 Compiler Design
 FLAT

 NFA
 DFA
 CFG

 Computer Graphics
 Artificial Intelligence

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 47

COLOR

Color Groups:
Three levels of collections of colours might be used by an XHTML document. The smallest useful set of colours
includes only those that have standard names and are guaranteed to be correctly displayable by all browsers on
all color monitors. This collection of 17 colours is called the named colours.

Larger set of colors, called the Web palette, consists of 216 colors. The colors of the Web palette can be viewed
at http://www.web-source.net/216_color_chart.htm

Color Properties:
The color property is used to specify the foreground color of XHTML elements.
<html>
 <head>
 <title>Colours</title>
 <style type = "text/css">
 p.one
 {color: pink; }
 p.two
 {color: # 9900FF; }
 p.three
 {background-color:#99FF00;}
 </style>
 </head>
 <body>
 <p class = "one">Puneeth Rajkumar</p>
 <p class = "two">Puneeth Rajkumar</p>
 <p class = "three">Puneeth Rajkumar</p>
 </body>
 </html>

http://www.web-source.net/216_color_chart.htm

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 48

ALIGNMENT OF TEXT
 The text-indent property can be used to indent the first line of a paragraph. This property takes

either a length or a percentage value. The text-align property, for which the possible keyword values
are left, center, right, and justify, is used to arrange text horizontally.

 The float property is used to specify that text should flow around some element, often an image or a
table. The possible values for float are left, right, and none, which is the default.

<html>
 <head>
 <title>Text Alignment</title>
 <style type = "text/css">
 h1.one
 {text-align: center}
 p.two
 {text-indent: 0.5in; text-align: justify;}
 img{float:right}
 </style>
 </head>
 <body>
 <h1 class = "one">Kannadada Kotyadhipathi</h1>
 <p>

 </p>

 <p class = "two">Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by the power
star of Kannada cinema Mr. Puneet Rajkumar. This is the biggest game show ever on Kannada
Television. This show will be aired on Suvarna TV. This show gives the common man an opportunity to
win Rs 1 crore. Kannadada Kotyadipathi is a Kannada primetime quiz and human drama show hosted
by matinee idol Puneeth Rajkumar on Suvarna TV. Contestants participate in a game that allows them
to win up to Rs. 1 crore. Short-listed contestants play a ‘Fastest Finger First’ round to make it to the
main game. From there on, they play rounds with increasing levels of difficulty, and winning higher
amounts of money, culminating in the Rs. 1 crore prize. Contestants can stop at any time having viewed
the next question. Or they can avail of a 'Lifeline' and play on. Welcome to the world of high stakes chills
and thrills! Welcome to the world of the crorepati!</p>

 </body>
 </html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 49

THE BOX MODEL
 On a given web page or a document, all the elements can have borders.
 The borders have various styles, color and width.
 The amount of space between the content of the element and its border is known as padding.
 The space between border and adjacent element is known as margin.

Borders:

Border-style
It can be dotted, dashed, double

 Border-top-style
 Border-bottom-style
 Border-left-style
 Border-right-style

Border-width
It can be thin, medium, thick or any length value

 Border-top-width
 Border-bottom-width
 Border-left-width
 Border-right-width

Border-color
 Border-top-color
 Border-bottom-color
 Border-left-color
 Border-right-color

<html>
 <head>
 <title> Table with border effects </title>
 <style type = "text/css">
 table
 {
 border-width:thick;
 border-top-color:red;
 border-left-color:orange;
 border-bottom-color:violet;
 border-right-color:green;
 border-top-style:dashed;

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 50

 border-bottom-style:double;
 border-right-style:dotted;
 }
 </style>
 </head>
 <body>
 <table border = "border">
 <caption>PARAMATHMA </caption>
 <tr>
 <td> Puneeth Rajkumar </td>
 <td> </td>
 </tr>
 </table>
 </body>
</html>

 Margins and Padding:
The margin properties are named margin, which applies to all four sides of an element: margin-left,
margin-right, margin-top, and margin-bottom. The padding properties are named padding, which
applies to all four sides: padding-left, padding-right, padding-top, and padding-bottom.
<html>
 <head>
 <title> Margins and Padding </title>
 <style type = "text/css">
 p.one
 {
 margin:0.1in;
 padding:0.5in;
 background-color:#FF33FF;
 border-style:dotted;
 }
 p.two
 {
 margin:0.5in;
 padding:0.1in;
 background-color:#00FF33;
 border-style:dashed;
 }
 p.three
 {

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 51

 margin:0.3in;
 background-color:#FFFF00;
 }
 p.four
 {
 padding:0.3in;
 background-color:#FF9900;
 }
 </style>
 </head>
 <body>
 <p class = "one"> Puneeth Rajkumar is the Power Star of Sandalwood

 [margin=0.1in, padding=0.5in]</p>
 <p class = "two"> Puneeth Rajkumar is the Power Star of Sandalwood

 [margin=0.5in, padding=0.1in]</p>
 <p class = "three"> Puneeth Rajkumar is the Power Star of Sandalwood

 [margin=0.3in, no padding, no border]</p>
 <p class = "four"> Puneeth Rajkumar is the Power Star of Sandalwood

 [no margin, padding=0.3in, no border]</p>
 </body>
</html>

BACKGROUND IMAGES
The background-image property is used to place an image in the background of an element.
<html>
 <head>
 <title>Background Image</title>
 <style type = "text/css">
 body {background-image:url(bg3.jpg);}
 p
 {text-align: justify; color:white;font-size:25pt;}
 </style>
 </head>
 <body>
 <p >Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by the power star of Kannada
cinema Mr. Puneet Rajkumar. This is the biggest game show ever on Kannada Television. This show will be
aired on Suvarna TV. This show gives the common man an opportunity to win Rs 1 crore. Kannadada
Kotyadipathi is a Kannada primetime quiz and human drama show hosted by matinee idol Puneeth Rajkumar
on Suvarna TV. Contestants participate in a game that allows them to win up to Rs. 1 crore. Short-listed

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 52

contestants play a ‘Fastest Finger First’ round to make it to the main game. From there on, they play rounds
with increasing levels of difficulty, and winning higher amounts of money, culminating in the Rs. 1 crore prize.
Contestants can stop at any time having viewed the next question. Or they can avail of a 'Lifeline' and play on.
Welcome to the world of high stakes chills and thrills! Welcome to the world of the crorepati!</p>
 </body>
 </html>

In the example, notice that the background image is replicated as necessary to fill the area of the element. This
replication is called tiling. Tiling can be controlled with the background-repeat property, which can take
the value repeat (the default), no-repeat, repeat-x, or repeat-y. The no-repeat value specifies that
just one copy of the image is to be displayed. The repeat-x value means that the image is to be repeated

horizontally; repeat-y means that the image is to be repeated vertically. In addition, the position of a non-
repeated background image can be specified with the background-position property, which can take a
large number of different values. The keyword values are top, center, bottom, left, and right, all of
which can be used in many different combinations.

THE AND <div> TAGS
In many situations, we want to apply special font properties to less than a whole paragraph of text. The
 tag is designed for just this purpose.
<html>
 <head> <title>span</title>
 <style type = "text/css">
 .spanviolet {font-size:25pt;font-family:'lucida calligraphy';color:violet;}
 </style>
 </head>
 <body>
 <p >Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by
Puneeth Rajkumar , the power star of Kannada cinema </p>
 </body>
 </html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 53

It is more convenient, however, to be able to apply a style to a section of a document rather than to each
paragraph. This can be done with the <div> tag. As with , there is no implied layout for the content of

the <div> tag, so its primary use is to specify presentation details for a section or division of a document.
<html>
 <head>
 <title>div</title>
 <style type = "text/css">
 .one
 {font-size:20pt;font-family:'lucida calligraphy';color:violet;}
 .two
 {font-size:25pt;font-family:'comic sans ms';color:green;}
 </style>
 </head>
 <body>
 <div class = "one">
 <p>Paragragh 1 under division 1</p>
 <p>Paragragh 2 under division 1</p>
 <p>Paragragh 3 under division 1</p>
 </div>
 <div class = "two">
 <p>Paragragh 1 under division 2</p>
 <p>Paragragh 2 under division 2</p>
 <p>Paragragh 3 under division 2</p>
 </div>
 </body>
 </html>

CONFLICT RESOLUTION
 Sometimes on a web page, there can be two different values for the same property on the same element

leading to conflict.
 h3 {color: blue;}

body h3 {color: red;}
 The browser has to resolve this conflict.
 There can be one or more type of conflict: i.e. when style sheets at 2 or more levels specify different

value for same property on some element.
 This conflict is resolved by providing priority to the different levels of style sheets.
 The inline level gets the highest priority over the document level.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 54

 The document level gets the higher priority over the external level
 But the browser must be able to resolve the conflict in the first example using same technique.
 There can be several different origins of the specification of property values.
 One of the value may come from a style sheet created by the author or it can be specified by the user

using the options provided by the browser.
 The property values with different origin have different precedence.
 The precedence can also be set for a property by marking it as important.
 p.special {font-style: italic !important; font-size: 14}
 This means that font-style:italic is important [this is known as weight of specification]
 The process of conflict resolution is a multi-stage sorting process.
 The first step is to gather information about levels of style sheet.
 Next, all the origins and weights are sorted. The following rules are considered:

1. Important declarations with user origin
2. Important declarations with author origin
3. Normal declarations with author origin
4. Normal declarations with user origin
5. Any declarations with browser (or other user agent) origin

 If there are other conflicts even after sorting, the next step is sorting by specificity. Rules are:
1. id selectors
2. Class and pseudo class selectors
3. Contextual selectors (more element type names means that they are more specific)
4. Universal selectors

 If there still conflicts, they are resolved by giving precedence to most recently seen specification.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 55

UNIT 4
JAVASCRIPT

OVERVIEW OF JAVASCRIPT

ORIGINS

 JavaScript, which was developed by Netscape, was originally named Mocha but soon was renamed
LiveScript.

 In late 1995 LiveScript became a joint venture of Netscape and Sun Microsystems, and its name again
was changed, this time to JavaScript.

 A language standard for JavaScript was developed in the late 1990s by the European Computer
Manufacturers Association (ECMA) as ECMA-262.

 The official name of the standard language is ECMAScript.
 JavaScript can be divided into three parts: the core, client side, and server side.
 The core is the heart of the language, including its operators, expressions, statements, and

subprograms.
 Client-side JavaScript is a collection of objects that support the control of a browser and interactions

with users.
 Server-side JavaScript is a collection of objects that make the language useful on a Web server.

JAVASCRIPT AND JAVA

JAVA JAVASCRIPT

Java is programming language JavaScript is a scripting language

It is strongly typed language It is dynamically typed language

Types are known at compile time Compile time type checking is impossible

Objects in java are static JavaScript objects are dynamic

Collection of data members and methods is fixed at
compile time

The number of data members and methods of an
object can change during execution

Object oriented programming language Object based language

USES OF JAVASCRIPT

 The JavaScript was initially introduced to provide programming capability at both the server and client
ends of web connection

 JavaScript therefore is implemented at 2 ends:
 Client end
 Server end

 The client side JavaScript is embedded in XHTML documents and is interpreted by the browser
 It also provides some means of computation, which serves as an alternative for some tasks done at the

server side
 Interactions with users through form elements, such as buttons and menus, can be conveniently

described in JavaScript. Because button clicks and mouse movements are easily detected with
JavaScript, they can be used to trigger computations and provide feedback to the user.

 For example, when a user moves the mouse cursor from a text box, JavaScript can detect that movement
and check the appropriateness of the text box’s value (which presumably was just filled by the user).

 Even without forms, user interactions are both possible and simple to program in JavaScript. These
interactions, which take place in dialog windows, include getting input from the user and allowing the

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 56

user to make choices through buttons. It is also easy to generate new content in the browser display
dynamically.

 This transfer of task ensures that the server is not overloaded and performs only required task
 But client side JavaScript cannot replace serves side JavaScript; because server side software supports

file operations, database access, security, networking etc
 JavaScript is also used as an alternative to java applets.
 Programming in JavaScript is much simpler than compared to java
 JavaScript support DOM [Document Object Model] which enables JavaScript to access and modify CSS

properties and content of any element of a displayed XHTML document

EVENT-DRIVEN COMPUTATION OF JAVASCRIPT

 In JavaScript, the actions are often executed in response to actions of the users of documents like mouse
clicks and form submissions.

 This form of computation supports user interactions through the XHTML form elements on the client
display

 One of the common uses of JavaScript is to check the values provided in forms by users to determine
whether the values are sensible.

 The program or script on the server that processes the form data must check for invalid input data.
 When invalid data is found, the server must transmit that information back to the browser.
 Since this process is time consuming, we can perform input checks at the client side itself which saves

both server time and internet time.
 However, validity checking is done on the server side because client side validity checking can be

subverted by an unscrupulous user.

BROWSERS AND XHTML/JAVASCRIPT DOCUMENTS
 If an XHTML document does not include embedded scripts, the browser reads the lines of the document

and renders its window according to the tags, attributes, and content it finds.
 When a JavaScript script is encountered in the document, the browser uses its JavaScript interpreter to

“execute” the script.
 Output from the script becomes the next markup to be rendered.
 When the end of the script is reached, the browser goes back to reading the XHTML document and

displaying its content.
 There are two different ways to embed JavaScript in an XHTML document: implicitly and explicitly.
 In explicit embedding, the JavaScript code physically resides in the XHTML document.
 The JavaScript can be placed in its own file, separate from the XHTML document. This approach, called

implicit embedding, has the advantage of hiding the script from the browser user.
 When JavaScript scripts are explicitly embedded, they can appear in either part of an XHTML

document—the head or the body—depending on the purpose of the script.

OBJECT ORIENTATION AND JAVASCRIPT
 JavaScript is an object-based language
 It supports prototype-based inheritance
 Without class-based inheritance, JavaScript cannot support polymorphism.
 A polymorphic variable can reference related methods of objects of different classes within the same

class hierarchy

JAVASCRIPT OBJECTS
 In JavaScript, objects are collections of properties, which correspond to the members of classes in Java

and C++.
 Each property is either a data property or a function or method property.
 Data properties appear in two categories: primitive values and references to other objects.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 57

 JavaScript uses non-object types for some of its simplest types; these non-object types are called
primitives.

 Primitives are used because they often can be implemented directly in hardware, resulting in faster
operations on their values.

 All objects in a JavaScript program are indirectly accessed through variables.
 All primitive values in JavaScript are accessed directly—these are like the scalar types in Java and C++.

These are often called value types.
 The properties of an object are referenced by attaching the name of the property to the variable that

references the object.
 A JavaScript object appears, both internally and externally, as a list of property–value pairs.
 The properties are names; the values are data values or functions.
 All functions are objects and are referenced through variables.
 The collection of properties of a JavaScript object is dynamic: Properties can be added or deleted at any

time.

GENERAL SYNTACTIC CHARACTERISTICS
 Scripts can appear directly as the content of a <script> tag.
 The type attribute of <script> must be set to “text/javascript”.
 The JavaScript script can be indirectly embedded in an XHTML document with the src attribute of a

<script> tag, whose value is the name of a file that contains the script—for example,
<script type = “text/javascript” src = “tst_number.js” >

</script>

 Notice that the script element requires the closing tag, even though it has no content when the src
attribute is included.

 In JavaScript, identifiers, or names, must begin with a letter, an underscore (_), or a dollar sign ($).
Subsequent characters may be letters, underscores, dollar signs, or digits. There is no length limitation
for identifiers.

 JavaScript has 25 reserved words

 In addition, JavaScript has a large collection of predefined words, including alert, open, java, and

self.
 JavaScript has two forms of comments, both of which are used in other languages. First, whenever two

adjacent slashes (//) appear on a line, the rest of the line is considered a comment. Second, /* may be
used to introduce a comment, and */ to terminate it, in both single- and multiple-line comments.

 The XHTML comment used to hide JavaScript uses the normal beginning syntax, <!--.
 The following XHTML comment form hides the enclosed script from browsers that do not have

JavaScript interpreters, but makes it visible to browsers that do support JavaScript:

 The use of semicolons in JavaScript is unusual. The JavaScript interpreter tries to make semicolons

unnecessary, but it does not always work.
 When the end of a line coincides with what could be the end of a statement, the interpreter effectively

inserts a semicolon there. But this can lead to problems. For example,

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 58

return

x;

 The interpreter will insert a semicolon after return, making x an invalid orphan.
 The safest way to organize JavaScript statements is to put each on its own line whenever possible and

terminate each statement with a semicolon. If a statement does not fit on a line, be careful to break the
statement at a place that will ensure that the first line does not have the form of a complete statement.

PRIMITIVES, OPERATIONS, AND EXPRESSIONS

PRIMITIVE TYPES
 JavaScript has five primitive types: Number, String, Boolean, Undefined, and Null.
 Each primitive value has one of these types.
 JavaScript includes predefined objects that are closely related to the Number, String, and Boolean types,

named Number, String, and Boolean, respectively.

 These objects are called wrapper objects.
 Each contains a property that stores a value of the corresponding primitive type.
 The purpose of the wrapper objects is to provide properties and methods that are convenient for use

with values of the primitive types.
 The difference between primitives and objects is shown in the following example.

NUMERIC AND STRING LITERALS
 All numeric literals are values of type Number. The Number type values are represented internally in

double-precision floating-point form.
 Integer literals are strings of digits.
 Floating-point literals can have decimal points, exponents, or both.
 Exponents are specified with an uppercase or lowercase e and a possibly signed integer literal.
 The following are valid numeric literals:

72 7.2 .72 72. 7E2 7e2 .7e2 7.e2 7.2E-2

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 59

 Integer literals can be written in hexadecimal form by preceding their first digit with either 0x or 0X.
 A string literal is a sequence of zero or more characters delimited by either single quotes (‘) or double

quotes (“).
 String literals can include characters specified with escape sequences, such as \n and \t. If you want an

actual single-quote character in a string literal that is delimited by single quotes, the embedded single
quote must be preceded by a backslash:

„You\‟re the most lovely person I\‟ve ever met‟

 A double quote can be embedded in a double-quoted string literal by preceding it with a backslash. An
actual backslash character in any string literal must be itself back-slashed, as in the following example:

“D:\\bookfiles”

 There is no difference between single-quoted and double-quoted literal strings.
 The null string (a string with no characters) can be denoted with either ‘‘or “.

OTHER PRIMITIVE TYPES
 The only value of type Null is the reserved word null, which indicates no value.

 The only value of type Undefined is undefined.
 The only values of type Boolean are true and false.

DECLARING VARIABLES
A variable can be declared either by assigning it a value, in which case the interpreter implicitly declares it to be
a variable, or by listing it in a declaration statement that begins with the reserved word var. Initial values can
be included in a var declaration, as with some of the variables in the following declaration:

A variable that has been declared but not assigned a value, has the value undefined.

NUMERIC OPERATORS
 JavaScript has the typical collection of numeric operators: the binary operators + for addition, - for

subtraction, * for multiplication, / for division, and % for modulus.

 The unary operators are plus (+), negate (-), decrement (--), and increment (++). The increment and
decrement operators can be either prefix or postfix.

 For example, if the variable a has the value 7, the value of the following expression is 24:
(++a) * 3

 But the value of the following expression is 21:
(a++) * 3

 In both cases, a is set to 8.
 All numeric operations are done in double-precision floating point.
 The precedence rules of a language specify which operator is evaluated first when two operators with

different precedence are adjacent in an expression.
 The associativity rules of a language specify which operator is evaluated first when two operators with

the same precedence are adjacent in an expression.

THE Math OBJECT
The Math object provides a collection of properties of Number objects and methods that operate on Number
objects. The Math object has methods for the trigonometric functions, such as sin (for sine) and cos (for
cosine), as well as for other commonly used mathematical operations.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 60

Among these are floor, to truncate a number; round, to round a number; and max, to return the largest of
two given numbers.

THE NUMBER OBJECT
The Number object includes a collection of useful properties that have constant values. Table 4.3 lists the
properties of Number. These properties are referenced through Number.

Property Meaning

MAX_VALUE Largest representable number

MIN_VALUE Smallest representable number

NaN Not a number

POSITIVE_INFINITY Special value to represent infinity
NEGATIVE_INFINITY Special value to represent negative infinity

PI The value of 𝜋

Any arithmetic operation that results in an error (e.g., division by zero) or that produces a value that cannot be
represented as a double-precision floating-point number, such as a number that is too large (an overflow),
returns the value “not a number,” which is displayed as NaN. If NaN is compared for equality against any
number, the comparison fails. The Number object has a method, toString, which it inherits from Object but
overrides. The toString method converts the number through which it is called to a string. Example:
var price = 427,

str_price;

...

str_price = price.toString();

THE STRING CATENATION OPERATOR
JavaScript strings are not stored or treated as arrays of characters; rather, they are unit scalar values. String
catenation is specified with the operator denoted by a plus sign (+). For example, if the value of first is “Divya”,
the value of the following expression is “Divya Gowda”:

first + “ Gowda”

IMPLICIT TYPE CONVERSIONS
The JavaScript interpreter performs several different implicit type conversions. Such conversions are called
coercions. If either operand of a + operator is a string, the operator is interpreted as a string catenation
operator. If the other operand is not a string, it is coerced to a string.
Example1: “August ” + 1977 “August 1997”

Example2: 7 * “3” 21 & will not be evaluated as string

EXPLICIT TYPE CONVERSIONS
Strings that contain numbers can be converted to numbers with the String constructor, as in the following
code:
 var str_value = String(value);

This conversion could also be done with the toString method, which has the advantage that it can be given a
parameter to specify the base of the resulting number.

var num = 6;

var str_value = num.toString(); //the result is “6”

var str_value_binary = num.toString(2); //the result is “110”

A number also can be converted to a string by catenating it with the empty string. Also,
 var number = Number(aString);

The number in the string cannot be followed by any character except a space. JavaScript has two predefined
string functions that do not have this problem.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 61

 The parseInt function searches its string parameter for an integer literal. If one is found at the
beginning of the string, it is converted to a number and returned. If the string does not begin with a
valid integer literal, NaN is returned.

 The parseFloat function is similar to parseInt, but it searches for a floating-point literal, which
could have a decimal point, an exponent, or both. In both parseInt and parseFloat, the numeric
literal could be followed by any nondigit character without causing any problem

String PROPERTIES AND METHODS
The String object includes one property, length, and a large collection of methods. The number of
characters in a string is stored in the length property as follows:

var str = “George”;

var len = str.length; //now, len=6

Table 4.4 String methods

Consider, var str = “George”;

Now, str.charAt(2) is „o‟

str.indexOf(„r‟) is 3

str.substring(2, 4) is „org‟

str.toLowerCase() is „george‟

THE typeof OPERATOR
 The typeof operator returns the type of its single operand.
 typeof produces “number”, “string”, or “boolean” if the operand is of primitive type Number,

String, or Boolean, respectively.
 If the operand is an object or null, typeof produces “object”.
 If the operand is a variable that has not been assigned a value, typeof produces “undefined”,

reflecting the fact that variables themselves are not typed.
 Notice that the typeof operator always returns a string.

 The operand for typeof can be placed in parentheses, making it appear to be a function.
 Therefore, typeof x and typeof(x) are equivalent.

ASSIGNMENT STATEMENTS
There is a simple assignment operator, denoted by =, and a host of compound assignment operators, such as +=
and /=. For example, the statement a += 7; means the same as a = a + 7;

THE Date OBJECT
A Date object is created with the new operator and the Date constructor, which has several forms.
var today = new Date();

The date and time properties of a Date object are in two forms: local and Coordinated Universal Time (UTC,
which was formerly named Greenwich Mean Time).
Table 4.5 shows the methods, along with the descriptions, that retrieve information from a Date object.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 62

SCREEN OUTPUT AND KEYBOARD INPUT
 JavaScript models the XHTML document with the Document object.
 The window in which the browser displays an XHTML document is modelled with the Window object.
 The Window object includes two properties, document and window.
 The document property refers to the Document object.

 The window property is self-referential; it refers to the Window object.
 write is used to create XHTML code, the only useful punctuation in its parameter is in the form of

XHTML tags. Therefore, the parameter of write often includes
.
 The writeln method implicitly adds “\n” to its parameter, but since browsers ignore line breaks

when displaying XHTML, it has no effect on the output.
 The parameter of write can include any XHTML tags and content.

 The write method actually can take any number of parameters.
 Multiple parameters are concatenated and placed in the output.
 Example: document.write(“The result is: ”, result, “
”);

 There are 3 types of pop-up boxes:

 Alert
 Confirm
 Prompt

 The alert method opens a dialog window and displays its parameter in that window. It also displays
an OK button.

 The string parameter of alert is not XHTML code; it is plain text. Therefore, the string parameter of
alert may include \n but never should include
.

alert(“The sum is:” + sum + “\n”);

 The confirm method opens a dialog window in which the method displays its string parameter, along

with two buttons: OK and Cancel.
 confirm returns a Boolean value that indicates the user’s button input: true for OK and false for

Cancel. This method is often used to offer the user the choice of continuing some process.
var question = confirm(“Do you want to continue this download?”);

 After the user presses one of the buttons in the confirm dialog window, the script can test the
variable, question, and react accordingly.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 63

 The prompt method creates a dialog window that contains a text box used to collect a string of input

from the user, which prompt returns as its value.

Create an XHTML and JavaScript to compute the real roots of a given quadratic equation

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 64

CONTROL STATEMENTS
A compound statement in JavaScript is a sequence of statements delimited by braces.
A control construct is a control statement together with the statement or compound statement whose
execution it controls.

CONTROL EXPRESSIONS
The result of evaluating a control expression is one of the Boolean values true and false. If the value of a
control expression is a string, it is interpreted as true unless it is either the empty string (““) or a zero string
(“0”). If the value is a number, it is true unless it is zero (0). A relational expression has two operands and
one relational operator. Table 4.6 lists the relational operators.

JavaScript has operators for the AND, OR, and NOT Boolean operations. These are && (AND), || (OR), and !
(NOT). Both && and || are short-circuit operators.

Table 4.7 Operator precedence and associativity

Highest-precedence operators are listed first.

SELECTION STATEMENTS
The selection statements (if-then and if-then-else) of JavaScript are similar to those of the common
programming languages. Either single statements or compound statements can be selected—for example,

THE switch STATEMENT
JavaScript has a switch statement that is similar to that of Java. In any case segment, the statement(s) can

be either a sequence of statements or a compound statement. The break statement transfers control out of
the compound statement in which it appears.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 65

The control expression of a switch statement could evaluate to a number, a string, or a Boolean value. Case
labels also can be numbers, strings, or Booleans, and different case values can be of different types.

Example:
//switch.js
var choice = prompt("Select your favorite star \n" +
 "1 Puneeth Rajkumar \n" +
 "2 Mahesh Babu \n" +
 "3 Suriya \n");

switch(choice)
{
 case "1": document.write("Puneeth");
 break;
 case "2": document.write("Mahesh Babu");
 break;
 case "3": document.write("Suriya");
 break;
 default: document.write("invalid choice");
}

//switch.html
<html>
<body>
<script type = "text/javascript" src = "switch.js">
</script>
</body>
</html>

Assignment: switch statement for table border size selection – it is similar but refer text book

LOOP STATEMENTS
The general form of the while statement is as follows:

The general form of the for statement is as follows:

The following example illustrates the Date object and a simple for loop:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 66

OUTPUT:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 67

JavaScript has a do-while statement, whose form is as follows:

JavaScript includes one more loop statement, the for-in statement, which is most often used with objects.

OBJECT CREATION AND MODIFICATION
 Objects are often created with a new expression, which must include a call to a constructor method.

The constructor that is called in the new expression creates the properties that characterize the new
object.

 In JavaScript, however, the new operator creates a blank object—that is, one with no properties.

 The following statement creates an object that has no properties:
var my_object = new Object();

 In this case, the constructor called is that of Object, which endows the new object with no properties,
although it does have access to some inherited methods.

 The variable my_object references the new object. Calls to constructors must include parentheses,
even if there are no parameters.

 The properties of an object can be accessed with dot notation, in which the first word is the object name
and the second is the property name. Because properties are not variables, they are never declared.

 The number of members of a class in a typical object-oriented language is fixed at compile time. The
number of properties in a JavaScript object is dynamic.

 At any time during interpretation, properties can be added to or deleted from an object. A property for
an object is created by assigning a value to that property’s name. Consider the following example:
var my_car = {make: “Ford”, model: “Contour SVT”};

 Properties can be accessed in two ways.
var prop1 = my_car.make;

var prop2 = my_car[“make”];

the variables prop1 and prop2 both have the value “Ford”.

 A property can be deleted with delete, as in the following example:
delete my_car.model;

 JavaScript has a loop statement, for-in, that is perfect for listing the properties of an object.

ARRAYS

Array OBJECT CREATION
The usual way to create any object is with the new operator and a call to a constructor. In the case of arrays,
the constructor is named Array:

The second way to create an Array object is with a literal array value, which is a list of values enclosed in
brackets:
var my_list_2 = [1, 2, “three”, “four”];

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 68

CHARACTERISTICS OF Array OBJECTS
The lowest index of every JavaScript array is zero. Access to the elements of an array is specified with numeric
subscript expressions placed in brackets. The length of an array is the highest subscript to which a value has
been assigned, plus 1.
For example, if my_list is an array with four elements and the following statement is executed, the new

length of my_list will be 48.
my_list[47] = 2222;

The length of an array is both read and write accessible through the length property, which is created for
every array object by the Array constructor. For example,
my_list.length = 1002;

An array is lengthened by setting its length property to a larger value, shortened by setting its length
property to a smaller value.
The next example, insert_names.js, illustrates JavaScript arrays. This script has an array of names, which
are in alphabetical order. It uses prompt to get new names, one at a time, and inserts them into the existing
array. Notice that each new name causes the array to grow by one element.

Array METHODS
Array objects have a collection of useful methods, most of which are described in this section.

 The join method converts all of the elements of an array to strings and catenates them into a single
string. If no parameter is provided to join, the values in the new string are separated by commas. If a
string parameter is provided, it is used as the element separator. Consider the following example:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 69

 The reverse method reverses the order of the elements of the Array object through which it is called.
 The sort method coerces the elements of the array to become strings if they are not already strings and

sorts them alphabetically
 The concat method catenates its actual parameters to the end of the Array object on which it is called.

 The slice method does for arrays what the substring method does for strings, returning the part

of the Array object specified by its parameters, which are used as subscripts. The array returned has
the elements of the Array object through which it is called, from the first parameter up to, but not
including, the second parameter.

The value of list2 is now [4, 6]. If slice is given just one parameter, the array that is returned
has all of the elements of the object, starting with the specified index.

 When the toString method is called through an Array object, each of the elements of the object is

converted (if necessary) to a string. These strings are catenated, separated by commas. So, for Array
objects, the toString method behaves much like join.

 The push, pop, unshift, and shift methods of Array allow the easy implementation of stacks

and queues in arrays. The pop and push methods respectively remove and add an element to the
high end of an array, as in the following code:

The shift and unshift methods respectively remove and add an element to the beginning of an array.
var deer = list.shift(); // deer is now “Dasher”

list.unshift(“Dasher”); // This puts “Dasher” back on list

OUTPUT:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 70

FUNCTIONS

FUNDAMENTALS

 A function definition consists of the function’s header and a compound statement that describes the
actions of the function. This compound statement is called the body of the function.

 A function header consists of the reserved word function, the function’s name, and a parenthesized
list of parameters if there are any.

 A return statement returns control from the function in which it appears to the function’s caller. A
function body may include one or more return statements. If there are no return statements in a
function or if the specific return that is executed does not include an expression, the value returned
is undefined.

 JavaScript functions are objects, so variables that reference them can be treated as are other object
references—they can be passed as parameters, be assigned to other variables, and be the elements of an
array. The following example is illustrative:

 Because JavaScript functions are objects, their references can be properties in other objects, in which

case they act as methods.

LOCAL VARIABLES

 The scope of a variable is the range of statements over which it is visible.
 When JavaScript is embedded in an XHTML document, the scope of a variable is the range of lines of the

document over which the variable is visible.
 Variables that are implicitly declared have global scope—that is, they are visible in the entire XHTML

document.
 It is usually best for variables that are used only within a function to have local scope, meaning that

they are visible and can be used only within the body of the function. Any variable explicitly declared
with var in the body of a function has local scope.

 If a variable that is defined both as a local variable and as a global variable appears in a function, the
local variable has precedence, effectively hiding the global variable with the same name. This is the
advantage of local variables.

PARAMETERS
 The parameter values that appear in a call to a function are called actual parameters.
 The parameter names that appear in the header of a function definition, which correspond to the actual

parameters in calls to the function, are called formal parameters.
 JavaScript uses the pass-by-value parameter-passing method.
 When a function is called, the values of the actual parameters specified in the call are, in effect, copied

into their corresponding formal parameters, which behave exactly like local variables.
 Because of JavaScript’s dynamic typing, there is no type checking of parameters. The called function

itself can check the types of parameters with the typeof operator.

 The number of parameters in a function call is not checked against the number of formal parameters in
the called function.

 In the function, excess actual parameters that are passed are ignored; excess formal parameters are set
to undefined.

 All parameters are communicated through a property array, arguments, that, like other array objects,
has a property named length.

 By accessing arguments.length, a function can determine the number of actual parameters that
were passed.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 71

 The following example illustrates a variable number of function parameters:

Output:

There is no elegant way in JavaScript to pass a primitive value by reference. One inelegant way is to put the
value in an array and pass the array, as in the following script:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 72

THE sort METHOD, REVISITED

 If you need to sort something other than strings, or if you want an array to be sorted in some order
other than alphabetically as strings, the comparison operation must be supplied to the sort method
by the caller. Such a comparison operation is passed as a parameter to sort.

 The comparison function must return a negative number if the two elements being compared are in the
desired order, zero if they are equal, and a number greater than zero if they must be interchanged.

 For example, if you want to use the sort method to sort the array of numbers num_list into
descending order, you could do so with the following code:

AN EXAMPLE

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 73

Output:

CONSTRUCTORS
 JavaScript constructors are special methods that create and initialize the properties of newly created

objects.
 Every new expression must include a call to a constructor whose name is the same as that of the object

being created.
 Constructors are actually called by the new operator, which immediately precedes them in the new

expression.
 Obviously, a constructor must be able to reference the object on which it is to operate. JavaScript has a

predefined reference variable for this purpose, named this.

 When the constructor is called, this is a reference to the newly created object. The this variable is
used to construct and initialize the properties of the object.

 For example, the constructor

could be used as in the following statement:
my_car = new car(“Ford”, “Contour SVT”, “2000”);

 For example, suppose you wanted a method for car objects that listed the property values. A function
that could serve as such a method could be written as follows:

 The following line must then be added to the car constructor:

this.display = display_car;

 Now the call my_car.display() will produce the following output

PATTERN MATCHING BY USING REGULAR EXPRESSIONS
 JavaScript has powerful pattern-matching capabilities based on regular expressions.
 There are two approaches to pattern matching in JavaScript: one that is based on the RegExp object

and one that is based on methods of the String object.

 The simplest pattern-matching method is search, which takes a pattern as a parameter.

 The search method returns the position in the String object (through which it is called) at which
the pattern matched.

 If there is no match, search returns –1.

 Most characters are normal, which means that, in a pattern, they match themselves.
 The position of the first character in the string is 0.
 As an example, the following statements

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 74

CHARACTER AND CHARACTER-CLASS PATTERNS

 Metacharacters are characters that have special meanings in some contexts in patterns.
 The following are the pattern metacharacters:

\ | () [] { } ^ $ * + ? .

 Metacharacters can themselves be matched by being immediately preceded by a backslash.
 A period matches any character except newline.
 Example: /snow./ matches “snowy”, “snowe”, and “snowd”
 Example: /3\.4/ matches 3.4. but /3.4/ would match 3.4 and 374, among others.

 Example: [abc] matches ‘a’ , ‘b’ & ‘c’
 Example: [a-h] matches any lowercase letter from ‘a’ to ‘h’
 Example: [^aeiou] matches any lowercase letter except ‘a’, ‘e’, ‘i’, ‘o’ & ‘u’

ANCHORS

 A pattern is tied to a string position with an anchor. A pattern can be specified to match only at the
beginning of the string by preceding it with a circumflex (^) anchor.

 For example, the following pattern matches “pearls are pretty” but does not match “My
pearls are pretty”:
/^pearl/

 A pattern can be specified to match at the end of a string only by following the pattern with a dollar sign
anchor. For example, the following pattern matches “I like gold” but does not match “golden”:
/gold$/

 Anchor characters are like boundary-named patterns: They do not match specific characters in the
string; rather, they match positions before, between, or after characters.

PATTERN MODIFIERS

 The modifiers are specified as letters just after the right delimiter of the pattern.
 The i modifier makes the letters in the pattern match either uppercase or lowercase letters in the

string.
 For example, the pattern /Apple/i matches ‘APPLE’, ‘apple’, ‘APPle’, and any other combination of

uppercase and lowercase spellings of the word “apple.”
 The x modifier allows white space to appear in the pattern.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 75

OTHER PATTERN-MATCHING METHODS OF String

 The replace method is used to replace substrings of the String object that match the given
pattern.

 The replace method takes two parameters: the pattern and the replacement string.

 The g modifier can be attached to the pattern if the replacement is to be global in the string, in which
case the replacement is done for every match in the string.

 The matched substrings of the string are made available through the predefined variables $1, $2, and
so on. For example, consider the following statements:
var str = “Fred, Freddie, and Frederica were siblings”;

str.replace(/Fre/g, “Boy”);

 In this example, str is set to “Boyd, Boyddie, and Boyderica were siblings”, and $1, $2, and $3 are all set
to “Fre”.

 The match method is the most general of the String pattern-matching methods.
 The match method takes a single parameter: a pattern. It returns an array of the results of the pattern-

matching operation.
 If the pattern has the g modifier, the returned array has all of the substrings of the string that matched.
 If the pattern does not include the g modifier, the returned array has the match as its first element, and

the remainder of the array has the matches of parenthesized parts of the pattern if there are any:

In this example, matches is set to [4, 3].

 The split method of String splits its object string into substrings on the basis of a given string or
pattern. The substrings are returned in an array. For example, consider the following code:
var str = “grapes:apples:oranges”;

var fruit = str.split(“:”);

In this example, fruit is set to [grapes, apples, oranges].

ANOTHER EXAMPLE

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 76

OUTPUT:

ERRORS IN SCRIPTS
The JavaScript interpreter is capable of detecting various errors in scripts. Debugging a script is a bit different
from debugging a program in a more typical programming language, mostly because errors that are detected by
the JavaScript interpreter are found while the browser is attempting to display a document. In some cases, a
script error causes the browser not to display the document and does not produce an error message. Without a
diagnostic message, you must simply examine the code to find the problem.

Internet Explorer

Mozilla Firefox

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 77

UNIT 5
DOCUMENT OBJECT MODEL

THE JAVASCRIPT EXECUTION ENVIRONMENT
 A browser displays an XHTML document in a window on the screen of the client.
 The JavaScript Window object represents the window that displays the document.

 The properties of the Window object are visible to all JavaScript scripts that appear either implicitly or
explicitly in the window’s XHTML document, so they include all of the global variables.

 Every Window object has a property named document, which is a reference to the Document object
that the window displays.

 Every Document object has a forms array, each element of which represents a form in the
document.

 Each forms array element has an elements array as a property, which contains the objects that
represent the XHTML form elements, such as buttons and menus.

 Document objects also have property arrays for anchors, links, images, and applets.

THE DOCUMENT OBJECT MODEL
 The original motivation for the standard DOM was to provide a specification that would allow Java

programs and JavaScript scripts that deal with XHTML documents to be portable among various
browsers.

 The DOM is an application programming interface (API) that defines an interface between XHTML
documents and application programs.

 It is an abstract model because it must apply to a variety of application programming languages.
 Each language that interfaces with the DOM must define a binding to that interface.
 The actual DOM specification consists of a collection of interfaces, including one for each document tree

node type.
 They define the objects, methods, and properties that are associated with their respective node types.
 With the DOM, users can write code in programming languages to create documents, move around in

their structures, and change, add, or delete elements and their content.
 Documents in the DOM have a treelike structure, but there can be more than one tree in a document.
 Because the DOM is an abstract interface, it does not dictate that documents be implemented as trees or

collections of trees.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 78

 A language that is designed to support the DOM must have a binding to the DOM constructs.
 In the JavaScript binding to the DOM, the elements of a document are objects, with both data and

operations.
 The data are called properties, and the operations are, naturally, called methods.
 Example: <input type = “text” name = “address”>

document

<head>

<title>

“a simple table”

<body>

<table>

<tr>

<th> <td>

apple

<td>

orange

<tr>

<th>

“breakfast”

<td>

“0”

<td>

“1”

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 79

ELEMENT ACCESS IN JAVASCRIPT
The elements of an XHTML document have corresponding objects that are visible to an embedded JavaScript
script. There are several ways the object associated with an XHTML form element can be addressed in
JavaScript. The original (DOM 0) way is to use the forms and elements arrays of the Document object,
which is referenced through the document property of the Window object.
Example:

The DOM address of the button in this example, using the forms and elements arrays, is as follows:
var dom = document.forms[0].elements[0];

The problem with this approach to element addressing is that the DOM address is defined by address elements
that could change—namely, the forms and elements arrays.
Another Approach:

Using the name attributes, the button’s DOM address is as follows:
var dom = document.myForm.turnItOn;

One drawback of this approach is that the XHTML 1.1 standard does not allow the name attribute in the form
element, even though the attribute is now valid for form elements. This is a validation problem, but it causes no
difficulty for browsers. Hence, alternatively we use,
var dom = document.getElementById(“turnItOn”);

Buttons in a group of checkboxes often share the same name. The buttons in a radio button group always have
the same name. In these cases, the names of the individual buttons obviously cannot be used in their DOM
addresses. To access the arrays, the DOM address of the form object must first be obtained, as shown:

The checked property of a checkbox object is set to true if the button is checked. For the preceding sample
checkbox group, the following code would count the number of checkboxes that were checked:

Radio buttons can be addressed and handled exactly as are the checkboxes in the foregoing code.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 80

EVENTS AND EVENT HANDLING

BASIC CONCEPTS OF EVENT HANDLING
 One important use of JavaScript for Web programming is to detect certain activities of the browser and

the browser user and provide computation when those activities occur. These computations are
specified with a special form of programming called event-driven programming.

 In conventional (non-event-driven) programming, the code itself specifies the order in which it is
executed, although the order is usually affected by the program’s input data.

 In event-driven programming, parts of the program are executed at completely unpredictable times,
often triggered by user interactions with the program that is executing.

 An event is a notification that something specific has occurred, either with the browser, such as the
completion of the loading of a document, or because of a browser user action, such as a mouse click on a
form button.

 An event handler is a script that is implicitly executed in response to the appearance of an event. Event
handlers enable a Web document to be responsive to browser and user activities.

 One of the most common uses of event handlers is to check for simple errors and omissions in user
input to the elements of a form, either when they are changed or when the form is submitted.

 This kind of checking saves the time of sending incorrect form data to the server.
 Because events are JavaScript objects, their names are case sensitive. The names of all event objects

have only lowercase letters.
 Events are created by activities associated with specific XHTML elements.
 The process of connecting an event handler to an event is called registration.
 There are two distinct approaches to event handler registration, one that assigns tag attributes and one

that assigns handler addresses to object properties.

EVENTS, ATTRIBUTES, AND TAGS

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 81

In many cases, the same attribute can appear in several different tags. The circumstances under which an event
is created are related to a tag and an attribute, and they can be different for the same attribute when it appears
in different tags.

As mentioned previously, there are two ways to register an event handler in the DOM 0 event model. One of
these is by assigning the event handler script to an event tag attribute, as in the following example:

In many cases, the handler consists of more than a single statement. In these cases, often a function is used and
the literal string value of the attribute is the call to the function. Consider the example of a button element:

An event handler function could also be registered by assigning its name to the associated event property on
the button object, as in the following example:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 82

HANDLING EVENTS FROM BODY ELEMENTS
The events most often created by body elements are load and unload. As our first example of event
handling, we consider the simple case of producing an alert message when the body of the document has been
loaded. In this case, we use the onload attribute of <body> to specify the event handler:

Output:

The unload event is probably more useful than the load event. It is used to do some cleanup before a
document is unloaded, as when the browser user goes on to some new document. For example, if the document
opened a second browser window, that window could be closed by an unload event handler.

HANDLING EVENTS FROM BUTTON ELEMENTS
Buttons in a Web document provide an effective way to collect simple input from the browser user. Example:
//radio_click.html
<html>
 <head>
 <title> radio_click.html</title>
 <script type = "text/javascript" src = "radio_click.js">
 </script>
 </head>
 <body>
 <h4> Choose your favourite Director in Kannada Film Industry</h4>
 <form id = "myForm" action = " ">

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 83

 <p>
<label><input type = "radio" name = "dButton" value = "1" onclick = "dChoice(1)"/> Yogaraj Bhat</label>

<label><input type = "radio" name = "dButton" value = "2" onclick = "dChoice(2)"/> Suri</label>

<label><input type = "radio" name = "dButton" value = "3" onclick = "dChoice(3)"/> Guru Prasad</label>

<label><input type = "radio" name = "dButton" value = "4" onclick = "dChoice(4)"/> Prakash</label>

 </p>
 </form>
 </body>
</html>

//radio_click.js
function dChoice(ch)
{

switch(ch)
{

case 1: alert("Mungaaru Male");
 break;
case 2: alert("Duniya");
 break;
case 3: alert("Eddelu Manjunatha");
 break;
case 4: alert("Milana");
 break;
default: alert("Ooops..Invalid choice :O");
 break;

}
}
Output:

After clicking on an option, say “Guru Prasad”, we get

The next example, radio_click2.html, whose purpose is the same as that of radio_click.html,
registers the event handler by assigning the name of the handler to the event properties of the radio button
objects.
The following example uses three files—one for the XHTML, one for the script for the event handlers, and one
for the script to register the handlers:
//radio_click2.html
<html>
 <head>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 84

 <title> radio_click2.html</title>
 <script type = "text/javascript" src = "radio_click2.js">
 </script>
 </head>
 <body>
 <h4> Choose your favourite Director in Kannada Film Industry</h4>
 <form id = "myForm" action = " ">
 <p>
<label><input type = "radio" name = "dButton" value = "1" id = "1"/> Yogaraj Bhat</label>

<label><input type = "radio" name = "dButton" value = "2" id = "2"/> Suri</label>

<label><input type = "radio" name = "dButton" value = "3" id = "3"/> Guru Prasad</label>

<label><input type = "radio" name = "dButton" value = "4" id = "4"/> Prakash</label>
 </p>
 </form>
 <script type = "text/javascript" src = "radio_click2r.js">
 </script>
 </body>
</html>

//radio_click2.js
function dChoice(ch)
{

var dom = document.getElementById("myForm");

for(var index = 0; index < dom.dButton.length; index++)
{

if(dom.dButton[index].checked)
{

ch = dom.dButton[index].value;
break;

}
}
switch(ch)
{

case 1: alert("Mungaaru Male");
 break;
case 2: alert("Duniya");
 break;
case 3: alert("Eddelu Manjunatha");
 break;
case 4: alert("Milana");
 break;
default: alert("Ooops..Invalid choice :O");
 break;

}
}

//radio_click2r.js
var dom = document.getElementById("myForm");
dom.getElementById("1").onclick = dChoice;
dom.getElementById("2").onclick = dChoice;
dom.getElementById("3").onclick = dChoice;
dom.getElementById("4").onclick = dChoice;

There are two advantages to registering handlers as properties over registering them in XHTML attributes.
 First, it is good to keep XHTML and Java-Script separated in the document. This allows a kind of

modularization of XHTML documents, resulting in a cleaner design that will be easier to maintain.
 Second, having the handler function registered as the value of a property allows for the possibility of

changing the function during use.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 85

HANDLING EVENTS FROM TEXT BOX AND PASSWORD ELEMENTS
Text boxes and passwords can create four different events: blur, focus, change, and select.

THE FOCUS EVENT
// nochange.html
<html>
 <head><title>nochange.html</title>
 <script type = "text/javascript" src = "nochange.js">
 </script>
 </head>
 <body>
 <form action = " ">
 <h3> Non-Veg Items Order Form</h3>
 <table border="border">
<tr>
<th>Item</th>
<th>Price</th>
<th>Quantity</th>
</tr>
<tr>
<th>Chicken Kabab (full)</th>
<td>Rs. 150</td>
<td><input type = "text" id = "chicken" size = "2"/></td>
</tr>
<tr>
<th>Mutton Kaima (half)</th>
<td>Rs. 250</td>
<td><input type = "text" id = "mutton" size = "2"/></td>
</tr>
<tr>
<th>Fish Fry (2 pieces)</th>
<td>Rs. 100</td>
<td><input type = "text" id = "fish" size = "2"/></td>
</tr>
</table>
<p>
<input type = "button" value = "Total Cost" onclick =
"computeCost();"/>
<input type = "text" size = "5" id = "cost" onfocus =
"this.blur();"/>
</p>
<p>
<input type = "submit" value = "Submit Order"/>
<input type = "reset" value = "Clear Order Form"/>
</p>
</form>
</body>
</html>

//nochange.js
function computeCost()
{
var chicken = document.getElementById("chicken").value;
var mutton = document.getElementById("mutton").value;
var fish = document.getElementById("fish").value;

document.getElementById("cost").value = totalCost = chicken*150
+ mutton*250 + fish*100;
}

Output:

After taking the entries, we get,

VALIDATING FORM INPUT
 One of the common uses of JavaScript is to check the values provided in forms by users to determine

whether the values are sensible.
 When a user fills in a form input element incorrectly and a JavaScript event handler function detects the

error, the function should produce an alert message indicating the error to the user and informing
the user of the correct format for the input.

 The form in the next example includes the two password input elements, along with Reset and Submit

buttons.
 The JavaScript function that checks the passwords is called either when the Submit button is pressed,

using the onsubmit event to trigger the call, or when the second text box loses focus, using the blur
event.

 The function performs two different tests.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 86

o First, it determines whether the user typed the initial password (in the first input box) by
testing the value of the element against the empty string. If no password has been typed into the
first field, the function calls alert to produce an error message and returns false.

o The second test determines whether the two typed passwords are the same. If they are
different, once again the function calls alert to generate an error message and returns
false.

 If they are the same, it returns true.
//pswd_chk.html
<html>
<head>
<title>Password Checking</title>
<script type = "text/javascript" src = "pswd_chk.js">
 </script>
 </head>
 <body>
<h3>Password Input</h3>
<form id="myForm" action=" ">
<p>
<label>Your Password: <input type="password"
id="initial" size="10"/></label>

<label>Verify Password: <input type="password"
id="final" size="10"/></label>

<input type="reset" name="Reset"/>
<input type="submit" name="Submit"/>
</p>
</form>
<script type = "text/javascript" src = "pswd_chkr.js">
 </script>
</body>
</html>

//pswd_chk.js
function chkPass()
{
var init=document.getElementById("initial");
var fin=document.getElementById("final");
if(init.value=="")
{
alert("You did not enter a Password\n" + "Please enter
atleast now");
init.focus();
return false;
}

if(init.value!=fin.value)
{
alert("The passwords you entered do not match.... Try
Again");
init.focus();
init.select();
return false;
}
Else return true;
}

Output:

We now consider an example that checks the validity of the form values for a name and phone number
obtained from text boxes. The pattern for matching names [LastName, FirstName, MiddleName] is as follows:
/^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-Z]\.?$/

The pattern for phone numbers is as follows:
/^d{3}-\d{8}$/

The following is the XHTML document, validator.html, that displays the text boxes for a customer’s name
and phone number:
//validator.html
<html>
<head>
<title>Name and Phone check</title>
<script type = "text/javascript" src = "validator.js">
</script>
</head>
<body>
<h3>enter your details</h3>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 87

<form action="">
<p>
<label><input type="text" id="custName"/>Name(last name, first name, middle initial)</label>

<label><input type="text" id="custPhone"/>Phone (ddd-dddddddd)</label>

<input type="reset" id="reset"/>
<input type="submit" id="submit"/>
</p>
</form>
<script type = "text/javascript">
document.getElementById("custName").onchange=chkName;
document.getElementById("custPhone").onchange=chkPhone;
</script>
</body>
</html>

//validator.js
function chkName()
{

var myName = document.getElementById("custName");
var pos = myName.value.search(/^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-Z]\.?$/);
if(pos != 0)
{

alert("The name you entered (" + myName.value + ") is not in the correct form.\n" +
 "The correct form is: " + "last-name, first-name, middle-initial \n" +
 "Please go and fix your name");
myName.focus();
myName.select();
return false;

}
else return true;

}
function chkPhone()
{

var myPhone = document.getElementById("custPhone");
var pos = myPhone.value.search(/^\d{3}-\d{8}$/);
if(pos != 0)
{

alert("The phone you entered (" + myPhone.value + ") is not in the correct form.\n" +
 "The correct form is: " + "ddd-dddddddd \n" +
 "Please go and fix your phone number");
myPhone.focus();
myPhone.select();
return false;

}
else return true;

}

OUTPUT:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 88

THE DOM 2 EVENT MODEL
The DOM 2 model is a modularized interface. One of the DOM 2 modules is Events, which includes several

sub-modules. The ones most commonly used are HTMLEvents and MouseEvents. The interfaces and events
defined by these modules are as follows:

EVENT PROPAGATION:

 A browser which understands DOM, on receiving the XHTML document from the server, creates a tree
known as document tree.

 The tree constructed consists of elements of the document except the HTML
 The root of the document tree is document object itself
 The other elements will form the node of the tree
 In case of DOM2, the node which generates an event is known as target node
 Once the event is generated, it starts the propagation from root node
 During the propagation, if there are any event handlers on any node and if it is enabled then event

handler is executed
 The event further propagates and reaches the target node.
 When the event handler reaches the target node, the event handler gets executed
 After this execution, the event is again re-propagated in backward direction
 During this propagation, if there are any event handlers which are enabled, will be executed.
 The propagation of the even from the root node towards the leaf node or the target node is known as

capturing phase.
 The execution of the event handler on the target node is known as execution phase.
 This phase is similar to event handling mechanism in DOM – 0
 The propagation of the event from the leaf or from the target node is known as bubbling phase
 All events cannot be bubbled for ex: load and unload event
 If user wants to stop the propagation of an event, then stop propagation has to be executed.

EVENT REGISTRATION:

 In case of DOM2, the events get registered using an API known as addEventListener
 The first arg is the eventName. Ex: click, change, blur, focus
 The second arg is the event handler function that has to be executed when there is an event
 The third arg is a Boolean argument that can either take a true or false value
 If the value is true, it means event handler is enabled in capturing phase
 If the event value if off (false), then event handler is enabled at target node
 The addEventListener method will return event object to eventhandler function. The event object can

be accessed using the keyword “Event”
 The address of the node that generated event will be stored in current target, which is property of

event object

AN EXAMPLE OF THE DOM 2 EVENT MODEL
The next example is a revision of the validator.html document and validator.js script from
previous example, which used the DOM 0 event model. Because this version uses the DOM 2 event model, it
does not work with IE8.
//validator2.html
<html>
<head>
<title>Illustrate form input validation with DOM 2</title>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 89

<script type = "text/javascript" src = "validator2.js">
</script>
</head>
<body>
<h3>enter your details</h3>
<form action="">
<p>
<label><input type="text" id="custName"/>Name(last name, first name, middle initial)</label>

<label><input type="text" id="custPhone"/>Phone (ddd-dddddddd)</label>

<input type="reset" />
<input type="submit" id="submitButton"/>
</p>
</form>
<script type = "text/javascript" src = "validator2r.js"/>
</body>
</html>

//validator2.js
function chkName(event)
{
var myName = event.currentTarget;
var pos = myName.value.search(/^[A-Z][a-z]+, ?[A-Z][a-z]+, ?[A-Z]\.?$/);
if(pos != 0)
{
alert("The name you entered (" + myName.value + ") is not in the correct form.\n" +
 "The correct form is: " + "last-name, first-name, middle-initial \n" +
 "Please go and fix your name");
myName.focus();
myName.select();
}
}
function chkPhone(event)
{
var myPhone = event.currentTarget;
var pos = myPhone.value.search(/^\d{3}-\d{8}$/);
if(pos != 0)
{
alert("The phone you entered (" + myPhone.value + ") is not in the correct form.\n" +
 "The correct form is: " + "ddd-dddddddd \n" +
 "Please go and fix your phone number");
myPhone.focus();
myPhone.select();
}
}

//validator2r.js
var c = document.getElementById("custName");
var p = document.getElementById("custPhone");
c.addEventListener("change",chkName,false);
p.addEventListener("change",chkPhone,false);

THE navigator OBJECT
The navigator object indicates which browser is being used to view the XHTML document. The browser’s name
is stored in the appName property of the object. The version of the browser is stored in the appVersion
property of the object. These properties allow the script to determine which browser is being used and to use

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 90

processes appropriate to that browser. The following example illustrates the use of navigator, in this case just
to display the browser name and version number:
//navigate.html file
<html>
<head>
<title>Navigator</title>
<script type = "text/javascript" src = "navigate.js">
</script>
</head>
<body onload = "navProperties()">
</body>
</html>
//navigate.js file
function navProperties()
{
alert("the browser is: " + navigator.appName + "\n" +
"the version number is: " + navigator.appVersion + "\n");
}

OUTPUT:

Mozilla Firefox

Internet Explorer

DOM TREE TRAVERSAL AND MODIFICATION

DOM TREE TRAVERSAL
The parentNode property has the DOM address of the parent node of the node through which it is
referenced. The childNodes property is an array of the child nodes of the node through which it is

referenced. The previousSibling property has the DOM address of the previous sibling node of the node
through which it is referenced. The nextSibling property has the DOM address of the next sibling node of
the node through which it is referenced. The firstChild and lastChild properties have the DOM
addresses of the first and last child nodes, respectively, of the node through which they are referenced. The
nodeType property has the type of the node through which it is referenced.

DOM TREE MODIFICATION
A number of methods allow JavaScript code to modify an existing DOM tree structure. The
insertBefore(newChild, refChild) method places the newChild node before the refChild
node. The replaceChild(newChild, oldChild) method replaces the oldChild node with the

newChild node. The removeChild(oldChild) method removes the specified node from the DOM
structure. The appendChild(newChild) method adds the given node to the end of the list of siblings of the
node through which it is called.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 91

UNIT 6
DYNAMIC DOCUMENTS WITH JAVASCRIPT

INTRODUCTION
 Informally, a dynamic XHTML document is an XHTML document that, in some way, can be changed

while it is being displayed by a browser.
 Dynamic XHTML is not a new markup language.
 It is a collection of technologies that allows dynamic changes to documents defined with XHTML.
 Specifically, a dynamic XHTML document is an XHTML document whose tag attributes, tag contents, or

element style properties can be changed by user interaction or the occurrence of a browser event after
the document has been, and is still being, displayed.

 Such changes can be made with an embedded script that accesses the elements of the document as
objects in the associated DOM structure.

POSITIONING ELEMENTS
 Cascading Style Sheet – Positioning (CSS-P) is completely supported by IE8 and FX3.
 It provides the means not only to position any element anywhere in the display of a document, but also

to move an element to a new position in the display dynamically, using JavaScript to change the
positioning style properties of the element.

 These style properties, which are appropriately named left and top, dictate the distance from the
left and top of some reference point to where the element is to appear.

 Another style property, position, interacts with left and top to provide a higher level of control
of placement and movement of elements.

 The position property has three possible values: absolute, relative, and static.

ABSOLUTE POSITIONING
 The absolute value is specified for position when the element is to be placed at a specific place in

the document display without regard to the positions of other elements.
 One use of absolute positioning is to superimpose special text over a paragraph of ordinary text to

create an effect similar to a watermark on paper.
 A larger italicized font, in a light-gray color and with space between the letters, could be used for the

special text, allowing both the ordinary text and the special text to be legible.
//absPos.html
<html>
<title>Absolute Positioning</title>
<style type = "text/css">
.regtext
{
font-family: Cambria;
font-size:20pt;
width: 900px;
}
.abstext
{
position:absolute;
top:25px;
left:100px;
font-family: jokerman;
font-size:30pt;

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 92

width: 500px;
color:#0000cd;
letter-spacing: 1em;
}
</style>
</head>
<body>
<p class="regtext">
Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by the power star of Kannada cinema Mr. Puneet Rajkumar. This is
the biggest game show ever on Kannada Television. This show will be aired on Suvarna TV. This show gives the common man an
opportunity to win Rs 1 crore. Kannadada Kotyadipathi is a Kannada primetime quiz and human drama show hosted by matinee idol
Puneeth Rajkumar on Suvarna TV. Contestants participate in a game that allows them to win up to Rs. 1 crore. Short-listed contestants
play a ‘Fastest Finger First’ round to make it to the main game. From there on, they play rounds with increasing levels of difficulty, and
winning higher amounts of money, culminating in the Rs. 1 crore prize. Contestants can stop at any time having viewed the next
question. Or they can avail of a 'Lifeline' and play on. Welcome to the world of high stakes chills and thrills! Welcome to the world of the
crorepati!

</p>
<p class="abstext">
POWER STAR PUNEETH RAJKUMAR
</p>
</body>
</html>

To illustrate the placement of nested elements, the document absPos.html is modified to place the regular
text 100 pixels from the top and 100 pixels from the left. The special text is nested inside the regular text by
using <div> and tags. The modified document, which is named absPos2.html, is as follows:
//absPos.html
<html>
<title>Nested Absolute Positioning</title>
<style type = "text/css">
.regtext
{
font-family: Cambria;
font-size: 20pt;
width: 900px;
position:absolute;
top: 100px;
left: 100px;
}
.abstext
{
position:absolute;
top:25px;
left:100px;
font-family: jokerman;
font-size:50pt;
width: 500px;
color:#ddd000;

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 93

letter-spacing: 1em;
}
</style>
</head>
<body>
<div class="regtext">
Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by the power star of Kannada cinema Mr. Puneet Rajkumar. This is
the biggest game show ever on Kannada Television. This show will be aired on Suvarna TV. This show gives the common man an
opportunity to win Rs 1 crore. Kannadada Kotyadipathi is a Kannada primetime quiz and human drama show hosted by matinee idol
Puneeth Rajkumar on Suvarna TV. Contestants participate in a game that allows them to win up to Rs. 1 crore. Short-listed contestants
play a ‘Fastest Finger First’ round to make it to the main game. From there on, they play rounds with increasing levels of difficulty, and
winning higher amounts of money, culminating in the Rs. 1 crore prize. Contestants can stop at any time having viewed the next
question. Or they can avail of a 'Lifeline' and play on. Welcome to the world of high stakes chills and thrills! Welcome to the world of the
crorepati!

POWER STAR PUNEETH RAJKUMAR

</div>
</body>
</html>

RELATIVE POSITIONING

 An element that has the position property set to relative, but does not specify top and left
property values, is placed in the document as if the position attribute were not set at all.

 However, such an element can be moved later.
 If the top and left properties are given values, they displace the element by the specified amount

from the position where it would have been placed.
 In both the case of an absolutely positioned element inside another element and the case of a relatively

positioned element, negative values of top and left displace the element upward and to the left,
respectively.

 Relative positioning can be used for a variety of special effects in placing elements.
//relPos.html
<html>
<head><title>Relative Positioning</title></head>
<body>
<p> I am the

CULTURAL SECRETARY

of RNSIT </p>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 94

STATIC POSITIONING
The default value for the position property is static. A statically positioned element is placed in the
document as if it had the position value of relative but no values for top or left were given. The

difference is that a statically positioned element cannot have its top or left properties initially set or
changed later. Therefore, a statically placed element cannot be displaced from its normal position and cannot
be moved from that position later.

MOVING ELEMENTS
Moving an element is simple:
 Changing the top or left property values causes the element to move on the display.

 If its position is set to absolute, the element moves to the new values of top and left; if its
position is set to relative, it moves from its original position by distances given by the new
values of top and left.

 In the next example, an image is absolutely positioned in the display.
 The document includes two text boxes, labeled x coordinate and y coordinate, respectively.

 The user can enter new values for the left and top properties of the image in these boxes.
 When the button labeled Move It is pressed, the values of the left and top properties of the image

are changed to the given values, and the element is moved to its new position.
 A JavaScript function, stored in a separate file, is used to change the values of left and top in this

example.
//mover.html
<html>
<head><title>Moving Elements</title>
<script type = "text/javascript" src = "mover.js">
</script>
</head>
<body>
<form action="">
<p>
<label>
x - coordinate: <input type = "text" id = "leftCoord" size = "3" />
</label>

<label>
y - coordinate: <input type = "text" id = "topCoord" size = "3" />
</label>

<input type="button" value="Move It" onclick = "moveIt('rnsit', document.getElementById('topCoord').value,
document.getElementById

('leftCoord').value)" />
</p>
</form>
<div id = "rnsit" style = "position:absolute;top:115px;left:0;">

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 95

</div>
</body>
</html>

//mover.js
function moveIt(movee, newTop, newLeft)
{

dom = document.getElementById(movee).style;
dom.top=newTop + "px";
dom.left=newLeft + "px";

}

After setting the coordinates and pressing “Move It”, we get the following output:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 96

ELEMENT VISIBILITY
 Document elements can be specified to be visible or hidden with the value of their visibility

property.
 The two possible values for visibility are, quite naturally, visible and hidden.
 The appearance or disappearance of an element can be controlled by the user through a widget.

//showHide.html
<html>
<head>
<title>Visibility Control</title>
<script type="text/javascript" src="showHide.js">
</script>
</head>
<body>
<form action="">
<div id="rnsit" style="position:relative; visibility: visible;">

</div>
<p>
<input type="button" value="Toggle Rnsit" onclick = "flipImag()" /></p>
</form>
</body>
</html>

//showHide.js
function flipImag()
{

dom=document.getElementById("rnsit").style;
if(dom.visibility == "visible")
 dom.visibility = "hidden";
else
 dom.visibility = "visible";

}

After clicking on Toggle Rnsit button, we get,

CHANGING COLORS AND FONTS
The background and foreground colors of the document display can be dynamically changed, as can the font
properties of the text.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 97

CHANGING COLORS
 Dynamic changes to colors are relatively simple.
 In the next example, the user is presented with two text boxes into which color specifications can be

typed—one for the document background color and one for the foreground color.
 The colors can be specified in any of the three ways that color properties can be given in CSS.
 A JavaScript function that is called whenever one of the text boxes is changed makes the change in the

document’s appropriate color property: back-groundColor or color.
 The first of the two parameters to the function specifies whether the new color is for the background or

foreground; the second specifies the new color.
 The new color is the value property of the text box that was changed by the user.

//dynColor.html
<html>
<head>
<title>Dynamic Colors</title>
<script type="text/javascript" src = "dynColors.js">
</script>
</head>
<body>
<form action="">
<p>
<label>Background Color: <input type="text" name="bg" size = "20" onchange="setColor('bg', this.value)" /></label>
<label>Foreground Color: <input type="text" name="fg" size = "20" onchange="setColor('fg', this.value)" /> </label>

</p>
</form>
</body>
</html>

//dynColor.js
function setColor(where, newColor)
{

if(where == "bg")
document.body.style.backgroundColor = newColor;

else
document.body.style.color = newColor;

}

CHANGING FONTS

 Web users are accustomed to having links in documents change color when the cursor is placed over
them.

 Use of the mouseover event to trigger a JavaScript event handler allows us to change any property of
any element in a document, including text, when the mouse cursor is placed over it.

 Thus, the font style and font size, as well as the color and background color of text, can be changed
when the cursor is placed over the text.

 The text can be changed back to its original form when an event handler is triggered with the
mouseout event.

//dynLink.html
<html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 98

<head><title>Changing Fonts</title>
<style type = "text/css">
.regtext
{
font: cambria;
font-size:16pt;
}
</style>
</head>
<body>
<p class="regtext">
The batch of
<a style = "color:purple;"
onmouseover="this.style.color='red'; this.style.font='italic 20pt Jokerman';"
onmouseout ="this.style.color='blue'; this.style.font='bold 17pt Times';" >
RNSIT ISE 2009-2013

always Rocks..!!!
</p>
</body>
</html>
INITIALLY

MOUSEOVER

MOUSEOUT

DYNAMIC CONTENT
 We now develop an example that illustrates one use of dynamic content.
 Assistance to a browser user filling out a form can be provided with an associated text area, often called

a help box.
 The content of the help box can change, depending on the placement of the mouse cursor.
 When the cursor is placed over a particular input field, the help box can display advice on how the field

is to be filled in.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 99

 When the cursor is moved away from an input field, the help box content can be changed to simply
indicate that assistance is available.

 In the next example, an array of messages that can be displayed in the help box is defined in JavaScript.
 When the mouse cursor is placed over an input field, the mouseover event is used to call a handler

function that changes the help box content to the appropriate value
 The appropriate value is specified with a parameter sent to the handler function.
 The mouseout event is used to trigger the change of the content of the help box back to the “standard”

value.
//dynValue.html
<html>
<head>
<title>Dynamic Values</title>
<script type = "text/javascript" src = "dynValue.js">
</script>
</head>
<body>
<form action="">
<p style = "font-weight: bold">

Customer Information

<label>Name:
<input type="text" onmouseover="messages(0)" onmouseout="messages(4)" />
</label>

<label>Email:
<input type="text" onmouseover="messages(1)" onmouseout="messages(4)" />
</label>

To create an account, provide the following information:

<label>User ID:
<input type="text" onmouseover="messages(2)" onmouseout="messages(4)" />
</label>

<label>Password:
<input type="text" onmouseover="messages(3)" onmouseout="messages(4)" />
</label>

<textarea id="adviceBox" rows="3" cols="50" style="position:absolute; left:250px; top:0px">
This box provides advice on filling out the form on this page. Put the mouse cursor over any input field to get advice.
</textarea>

<input type="submit" value="Submit" />
<input type="reset" value="Reset" />
</p>
</form>
</body>
</html>

//dynValue.js
var helpers = ["Your name must be in the form: \n first name, middle initial., last name",
 "Your email address must have the form: \ user@domain",
 "Your user ID must have at least six characters and it must include one digit",
 "This box provides advice on filling out the form on this page. Put the mouse cursor over any input field to get advice"]

function messages(adviceNumber)
{
 document.getElementById("adviceBox").value=helpers[adviceNumber];
 }

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 100

STACKING ELEMENTS
 The top and left properties allow the placement of an element anywhere in the two dimensions of

the display of a document.

Cursor
on Email

Cursor on
User ID

Cursor
on Name

Initially

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 101

 Although the display is restricted to two physical dimensions, the effect of a third dimension is possible
through the simple concept of stacked elements, such as that used to stack windows in graphical user
interfaces.

 Although multiple elements can occupy the same space in the document, one is considered to be on top
and is displayed.

 The top element hides the parts of the lower elements on which it is superimposed.
 The placement of elements in this third dimension is controlled by the z-index attribute of the

element.
 An element whose z-index is greater than that of an element in the same space will be displayed

over the other element, effectively hiding the element with the smaller z-index value.
 The JavaScript style property associated with the z-index attribute is zIndex.

//stack.html
<html >
<head><title>Stacking Paragraphs</title>
<style type="text/css">
 .para1
 {
 border: solid thick #C0C0C0;
 padding: 1in;
 width:180px;
 background-color:#0000D0;
 color:white;
 position:absolute;
 top:70px;
 left:4in;
 z-index:1;
 }
 .para2
 {
 border: solid thick #808000;
 padding: 1in;
 width:180px;
 background-color:red;
 color:white;
 position:absolute;
 top:105px;
 left:5in;
 z-index:2;
 }
 .para3
 {
 border: solid thick #00ffff;
 padding: 1in;
 width:180px;
 background-color:green;
 color:white;
 position:absolute;
 top:140px;
 left:6in;
 z-index:3;
 }
 .display
 {
 font-size:25pt;
 color:blue;
 text-align:center;
 }
p:hover{background-color:rgb(250,200,150);font-size:25px;color:white;};
</style>
<script type="text/javascript">
 var stack1="stack1";
 function move(curStack)
 {

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 102

 var oldStack=document.getElementById(stack1).style;
 oldStack.zIndex="0";
 var newStack=document.getElementById(curStack).style;
 newStack.zIndex="10";
 stack1=document.getElementById(curStack).id;
 }
 </script>
 </head>
 <body>
 <h2 class="display">Stacking of Paragraphs on top of each other</h2>
 <p class="para1" id="stack1" onmouseover="move('stack1')">
 Dr R N Shetty
 </p>
 <p class="para2" id="stack2" onmouseover="move('stack2')">
 Dr H N ShivShankar
 </p>
 <p class="para3" id="stack3" onmouseover="move('stack3')">
 Dr M K Venkatesha
 </p>
 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 103

LOCATING THE MOUSE CURSOR
 A mouse-click event is an implementation of the Mouse-Event interface, which defines two pairs of

properties that provide geometric coordinates of the position of the element in the display that created
the event.

 One of these pairs, clientX and clientY, gives the coordinates of the element relative to the upper-
left corner of the browser display window, in pixels.

 The other pair, screenX and screenY, also gives coordinates of the element, but relative to the client
computer’s screen.

 In the next example, where.html, two pairs of text boxes are used to display these four properties
every time the mouse button is clicked.

 The handler is triggered by the onclick attribute of the body element.
 The call to the handler in this example sends event, which is a reference to the event object just

created in the element, as a parameter.
//where.html
<html>
<head>
<title>Locating Mouse Cursor</title>
<script type="text/javascript">
function findIt(evt)
{

document.getElementById("xcoor1").value = evt.clientX;
document.getElementById("ycoor1").value = evt.clientY;
document.getElementById("xcoor2").value = evt.screenX;
document.getElementById("ycoor2").value = evt.screenY;

}
</script>
</head>
<body onclick="findIt(event)">
<form action="">
<p>
within the client area:

x: <input type="text" id="xcoor1" size="4"/>
y: <input type="text" id="ycoor1" size="4"/>

Relative to the origin of the screen coordinate system:

x: <input type="text" id="xcoor2" size="4"/>
y: <input type="text" id="ycoor2" size="4"/>
</p>
</form>
</body>
</html>

NOTE: We are not entering any values, instead click somewhere on the screen, you will automatically get the x
and y co-ordinate values in the text boxes.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 104

REACTING TO A MOUSE CLICK
The next example is another one related to reacting to mouse clicks. In this case, the mousedown and

mouseup events are used, respectively, to show and hide the message “Please don’t click here!” on the display
under the mouse cursor whenever the mouse button is clicked, regardless of where the cursor is at the time.
The offsets (-130 for left and -25 for top) modify the actual cursor position so that the message is
approximately centered over it.
//anywhere.html
<html>
<head>
<title>Sense events anywhere</title>
<script type="text/javascript">
function displayIt(evt)
{

var dom=document.getElementById("message");
dom.style.left=(evt.clientX - 130) + "px";
dom.style.top=(evt.clientY - 25) + "px";
dom.style.visibility="visible";

}
function hideIt()
{

document.getElementById("message").style.visibility="hidden";
}
</script>
</head>
<body onmousedown="displayIt(event);" onmouseup="hideIt();">
<p>
<span id="message"
style = "color:red; visibility:hidden; position:relative; font-size:20pt; font-weight:bold;">
Please Don't Click Here..!!

<br
</p>
</body>
</html>

Initially, the web page will be blank. You can click anywhere
on the page and the mouse click is sensed which in-turn
displays a message as shown in the next snapshot.

SLOW MOVEMENT OF ELEMENTS
 The only way to move an element slowly is to move it by small amounts many times, with the moves

separated by small amounts of time.
 JavaScript has two Window methods that are capable of this task: setTimeout and setInterval.
 The setTimeout method takes two parameters: a string of JavaScript code to be executed and a

number of milliseconds of delay before executing the given code.
 The setInterval method has two forms. One form takes two parameters, exactly as does

setTimeout.
 It executes the given code repeatedly, using the second parameter as the interval, in milliseconds,

between executions.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 105

 The second form of setInterval takes a variable number of parameters.
 The first parameter is the name of a function to be called, the second is the interval in milliseconds

between the calls to the function, and the remaining parameters are used as actual parameters to the
function being called.

 The initial position of the text is set in the span element that specifies the text.
 The onload attribute of the body element is used to call a function, initText, to initialize the x- and

y-coordinates of the initial position to the left and top properties of the element and call the mover
function.

 The mover function, named moveText, takes the current coordinates of the text as parameters, moves
them one pixel toward the final position, and then, using setTimeout, calls itself with the new
coordinates.

//moveText.html
<html>
<head>
<title>Moving Text</title>
<script type="text/javascript">
var dom, x, y, finalx=500, finaly=500;
function initText()
{

dom = document.getElementById('theText').style;
var x=dom.left;
var y=dom.top;
x=x.match(/\d+/);
y=y.match(/\d+/);
moveText(x,y);

}
function moveText(x,y)
{

if(x!=finalx)
 if(x>finalx) x--;
 else if(x<finalx) x++;
if(y!=finaly)
 if(y>finaly) y--;
 else if(y<finaly) y++;
if((x!=finalx)||(y!=finaly))
{

dom.left=x + "px";
dom.top=y + "px";
setTimeout("moveText(" + x + "," + y + ")", 1);

}
}
</script>
<body onload = "initText()">
<p>
<span id = 'theText'
style = "position:absolute; left:100px; top:100px; font:bold 20pt cambria; color:blue;">
Jump into Engineering :P :P :P
</p>
</body></html>

Execute & check once.
It will slide from top to
bottom & do not
directly jump from top.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 106

DRAGGING AND DROPPING ELEMENTS
 The mouseup, mousedown, and mousemove events can be used to implement drag and drop.
 To illustrate drag and drop, an XHTML document and a JavaScript file that creates a magnetic poetry

system is developed, showing two static lines of a poem and allowing the user to create the last two
lines from a collection of movable words.

 The DOM 0 model is used for the call to the handler for the mousedown event.
 The rest of the process is designed with the DOM 2 model.
 The mousedown event handler, grabber, takes the Event object as its parameter.

 It gets the element to be moved from the currentTarget property of the Event object and puts it
in a global variable so that it is available to the other handlers.

 Then it determines the coordinates of the current position of the element to be moved and computes
the difference between each of them and the corresponding coordinates of the position of the mouse
cursor.

 The grabber handler also registers the event handlers for mousemove and mouseup.

 These two handlers are named mover and dropper, respectively.
 The dropper handler disconnects mouse movements from the element-moving process by

unregistering the handlers mover and dropper.
//dragNDrop.html
<html>
<head><title>Drag and Drop</title>
<script type = "text/javascript" src="dragNDrop.js">
</script>
</head>
<body>
<h3>Arrange the following subjects of VII Semester according to subject codes</h3>
<h3>1.
2.
3.
4.
5.
6.
</h3>
<p>
<span style = "position: absolute; top:200px; left:100px; background-color:yellow;"
 onmousedown="grabber(event);"> SA
<span style = "position: absolute; top:200px; left:200px; background-color:yellow;"
 onmousedown="grabber(event);">DM
<span style = "position: absolute; top:200px; left:300px; background-color:yellow;"
 onmousedown="grabber(event);">OOMD
<span style = "position: absolute; top:200px; left:400px; background-color:yellow;"
 onmousedown="grabber(event);"> C#
<span style = "position: absolute; top:200px; left:500px; background-color:yellow;"
 onmousedown="grabber(event);"> WP
<span style = "position: absolute; top:200px; left:600px; background-color:yellow;"
 onmousedown="grabber(event);"> JAVA
</p>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 107

//dragNDrop.js
var diffx, diffy, theElement;
function grabber(event)
{

theElement=event.currentTarget;
var posX=parseInt(theElement.style.left);
var posY=parseInt(theElement.style.top);
diffx=event.clientX - posX;
diffy=event.clientY - posY;
document.addEventListener("mousemove",mover,true);
document.addEventListener("mouseup",dropper,true);
event.stopPropagation();
event.preventDefault();

}
function mover(event)
{

theElement.style.left=(event.clientX - diffx) + "px";
theElement.style.top=(event.clientY - diffy) + "px";
event.stopPropagation();

}
function dropper(event)
{

document.removeEventListener("mouseup", dropper, true);
document.removeEventListener("mousemove", mover, true);
event.stopPropagation();

}

Execute and check if you want, you can drag and drop the elements which are highlighted. After arranging, we get,

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 108

UNIT 7
INTRODUCTION TO XML

SYNTAX OF XML
 XML imposes two distinct levels of syntax:

o There is a general low level syntax that is appreciable on all XML documents
o The other syntactic level is specified by DTD (Document Type Definition) or XML schemas.

 The DTDs and XML schemas specify a set of tag and attribute that can appear in a particular document
or collection of documents.

 They also specify the order of occurrence in the document.
 The XML documents consists of data elements which form the statements of XML document.
 The XML document might also consists of markup declaration, which act as instructions to the XML

parser
 All XML documents begin with an XML declaration. This declaration identifies that the document is a

XML document and also specifies version number of XML standard.
 It also specifies encoding standard.

<?xml version = “1.0” encoding = “utf-8”?>
 Comments in XML is similar to HTML
 XML names are used to name elements and attributes.
 XML names are case-sensitive.
 There is no limitation on the length of the names.
 All XML document contains a single root element whose opening tag appears on first line of the code
 All other tags must be nested inside the root element
 As in case of XHTML, XML tags can also have attributes
 The values for the attributes must be in single or double quotation

Example:
1. <?xml version = “1.0” encoding = “utf-8”?>

<student>

 <name>Santhosh B S</name>

 <usn>1RN10CS090</usn>

</student>

2. Tags with attributes
The above code can be also written as
<student name = “Santhosh B S” usn = “1RN10CS090”>

</student>

XML DOCUMENT STRUCTURE
 An XML document often consists of 2 files:

o One of the document – that specifies its tag set
o The other specifies the structural syntactic role and one that contains a style sheet to describe

how content of the document is to be printed
 The structural roles are given as either a DTD or an XML schema
 An XML document consists of logically related collection of information known as entities
 The document entity is the physical file that represent the document itself
 The document is normally divided into multiple entities.
 One of the advantage dividing document into multiple entities is managing the document becomes

simple
 If the same data appears in more than one place, defining it as an entity allows number of references to

a single copy of the data

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 109

 Many documents include information that cannot be represented as text. Ex: images
 Such information units are stored as binary data
 These binary data must be a separate unit to be able to include in XML document
 These entities are called as Binary entities
 When an XML processor encounters the name of a non-binary entity in a document, it replaces the

name with value it references
 Binary entities can be handled only by browsers
 XML processor or parsers can only deal with text
 Entity names can be of any length. They must begin with a letter, dash or a colon
 A reference to an entity is its name with a prepended ampersand and an appended semicolon
 Example: if stud_name is the name of entity, &stud_name; is a reference to it

 One of the use of entities is to allow characters used as markup delimiters to appears as themselves
 The entity references are normally placed in CDATA section
 Syntax: <! [CDATA[content]] >
 For example, instead of

The last word of the line is >>> here <<<.

the following could be used:
<![CDATA[The last word of the line is >>> here <<<]]>

DOCUMENT TYPE DEFINITIONS
 A DTD is a set of structural rules called declarations which specify a set of elements that can appear in

the document. It also specifies how and where these elements appear
 DTD also specify entity definitions
 DTD is more useful when the same tag set definition is used by collection of documents
 A DTD can be embedded in XML document whose syntax rules it describes
 In this case, a DTD is called as internal DTD or a separate file can be created which can be linked to XML

file. In this case the DTD is called as External DTD
 An external DTD can be used with more than one XML file
 Syntactically, a DTD is a sequence of declarations. Each declaration has the form of markup declaration
 Example: <!keyword...>

 Four possible keywords can be used in a declaration:
o ELEMENT, used to define tags;
o ATTLIST, used to define tag attributes;
o ENTITY, used to define entities; and

o NOTATION, used to define data type notations.

DECLARING ELEMENTS

 DTD follows rules of context-free grammar for element declaration
 A DTD describes the syntactic structure of a particular set of documents
 Each element declaration in a DTD specifies the structure of one category of elements
 An element is a node in such a tree either a leaf node or an internal node
 If element is leaf node, its syntactic description is its character pattern
 If the element is internal node, its syntactic description is a list of its child element
 The form of an element declaration for elements that contain elements is as follows:

<!ELEMENT element_name (list of names of child elements)>

 For example, consider the following declaration:
<!ELEMENT memo (from, to, date, re, body)>

 This element declaration would describe the document tree structure shown in Figure 7.1.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 110

 In many cases, it is necessary to specify the number of times that a child element may appear. This can

be done in a DTD declaration by adding a modifier to the child element specification. These modifiers,
described in Table 7.1, are borrowed from regular expressions.

 Any child element specification can be followed by one of the modifiers.

Modifier Meaning

 Consider the following DTD declaration:
<!ELEMENT person (parent+, age, spouse?, sibling*)>

 In this example, a person element is specified to have the following child elements: one or more parent
elements, one age element, possibly a spouse element, and zero or more sibling elements.

 The leaf nodes of a DTD specify the data types of the content of their parent nodes, which are elements.
 In most cases, the content of an element is type PCDATA, for parsable character data. Parsable character

data is a string of any printable characters except “less than” (<), “greater than” (>), and the ampersand
(&).

 Two other content types can be specified: EMPTY and ANY.
 The EMPTY type specifies that the element has no content; it is used for elements similar to the XHTML

img element.
 The ANY type is used when the element may contain literally any content.
 The form of a leaf element declaration is as follows:

<!ELEMENT element_name (#PCDATA)>

DECLARING ATTRIBUTES

The attributes of an element are declared separately from the element declaration in a DTD. An attribute
declaration must include the name of the element to which the attribute belongs, the attribute’s name, its type,
and a default option. The general form of an attribute declaration is as follows:

<!ATTLIST element_name attribute_name attribute type default_option>

If more than one attribute is declared for a given element, the declarations can be combined, as in the following
element:

The default option in an attribute declaration can specify either an actual value or a requirement for the value
of the attribute in the XML document.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 111

For example, suppose the DTD included the following attribute specifications:

Then the following XML element would be valid for this DTD:
<airplane places = “10” engine_type = “jet”> </airplane>

DECLARING ENTITIES

 Entities can be defined so that they can be referenced anywhere in the content of an XML document, in
which case they are called general entities. The predefined entities are all general entities.

 Entities can also be defined so that they can be referenced only in DTDs, in which case they are called
parameter entities.

 The form of an entity declaration is
<!ENTITY [%] entity_name “entity_value”>

 When the optional percent sign (%) is present in an entity declaration, it specifies that the entity is a
parameter entity rather than a general entity.

 Example: <!ENTITY sbs “Santhosh B Suresh”>
 When an entity is longer than a few words, its text is defined outside the DTD. In such cases, the entity is

called an external text entity. The form of the declaration of an external text entity is
<!ENTITY entity_name SYSTEM “file_location”>

A Sample DTD

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 112

 Some XML parsers check documents that have DTDs in order to ensure that the documents conform to
the structure specified in the DTDs. These parsers are called validating parsers.

 If an XML document specifies a DTD and is parsed by a validating XML parser, and the parser
determines that the document conforms to the DTD, the document is called valid.

 Handwritten XML documents often are not well formed, which means that they do not follow XML’s
syntactic rules.

 Any errors they contain are detected by all XML parsers, which must report them.
 XML parsers are not allowed to either repair or ignore errors.
 Validating XML parsers detect and report all inconsistencies in documents relative to their DTDs.

INTERNAL AND EXTERNAL DTDs
Internal DTD Example:

External DTD Example: [assuming that the DTD is stored in the file named planes.dtd]
<!DOCTYPE planes_for_sale SYSTEM “planes.dtd”>

//sampleDTD.xml
<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE vtu_stud_info SYSTEM "vtu.dtd">
<VTU>
<students>
 <USN> 1RN10CS090 </USN>
 <name> Santhosh B S</name>
 <college> RNSIT </college>
 <branch> CSE </branch>
 <year> 2010 </year>
 <email> santhosh.b.suresh@gmail.com </email>
</students>
<students>
 <USN> 1RN0IS016 </USN>
 <name> Divya K </name>
 <college> RNSIT </college>
 <branch> ISE </branch>
 <year> 2009 </year>
 <email> divya@gmail.com </email>
</students>
</VTU>

NAMESPACES
 One problem with using different markup vocabularies in the same document is that collisions between

names that are defined in two or more of those tag sets could result.
 An example of this situation is having a <table> tag for a category of furniture and a <table> tag from

XHTML for information tables.
 Clearly, software systems that process XML documents must be capable of unambiguously recognizing

the element names in those documents.
 To deal with this problem, the W3C has developed a standard for XML namespaces (at

http://www.w3.org/TR/REC-xml-names).
 An XML namespace is a collection of element and attribute names used in XML documents. The name of

a namespace usually has the form of a uniform resource identifier (URI).
 A namespace for the elements and attributes of the hierarchy rooted at a particular element is declared

as the value of the attribute xmlns.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 113

 The form of a namespace declaration for an element is
<element_name xmlns[:prefix] = URI>

 The square brackets indicate that what is within them is optional. The prefix, if included, is the name
that must be attached to the names in the declared namespace.

 If the prefix is not included, the namespace is the default for the document.
 A prefix is used for two reasons. First, most URIs are too long to be typed on every occurrence of every

name from the namespace. Second, a URI includes characters that are invalid in XML.
 Note that the element for which a namespace is declared is usually the root of a document.
 For ex: all XHTML documents in this notes declare the xmlns namespace on the root element, html:

<html xmlns = “http://www.w3.org/1999/xhtml”>

 This declaration defines the default namespace for XHTML documents, which is
http://www.w3.org/1999/xhtml.

 The next example declares two namespaces. The first is declared to be the default namespace; the
second defines the prefix, cap:

XML SCHEMAS
XML schemas is similar to DTD i.e. schemas are used to define the structure of the document
DTDs had several disadvantages:
 The syntax of the DTD was un-related to XML, therefore they cannot be analysed with an XML processor
 It was very difficult for the programmers to deal with 2 different types of syntaxes
 DTDs does not support the datatype of content of the tag. All of them are specified as text

Hence, schemas were introduced

SCHEMA FUNDAMENTALS
 Schemas can be considered as a class in object oriented programming
 A XML document that conforms to the standard or to the structure of the schema is similar to an object
 The XML schemas have 2 primary purposes.

o They are used to specify the structure of its instance of XML document, including which
elements and attributes may appear in instance document. It also specifies where and how often
the elements may appear

o The schema specifies the datatype of every element and attributes of XML
 The XML schemas are namespace-centric

DEFINING A SCHEMA
Schemas themselves are written with the use of a collection of tags, or a vocabulary, from a namespace that is,
in effect, a schema of schemas. The name of this namespace is http://www.w3.org/2001/XMLSchema.
 Every schema has schema as its root element. This namespace specification appears as follows:

xmlns:xsd = “http://www.w3.org/2001/XMLSchema”

 The name of the namespace defined by a schema must be specified with the targetNamespace
attribute of the schema element.

http://www.w3.org/1999/xhtml
http://www.w3.org/2001/XMLSchema

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 114

targetNamespace = “http://cs.uccs.edu/planeSchema”

 If the elements and attributes that are not defined directly in the schema element are to be included in
the target namespace, schema’s elementFormDefault must be set to qualified, as follows:

elementFormDefault = “qualified”

 The default namespace, which is the source of the unprefixed names in the schema, is given with
another xmlns specification, but this time without the prefix:

xmlns = “http://cs.uccs.edu/planeSchema”

Example in 2 alternate methods of defining a schema

The above is an alternative to the preceding opening tag
would be to make the XMLSchema names the default so that
they do not need to be prefixed in the schema. Then the
names in the target namespace would need to be prefixed.

DEFINING A SCHEMA INSTANCE
 An instance document normally defines its default namespace to be the one defined in its schema.

 For example, if the root element is planes, we could have
<planes

xmlns = “http://cs.uccs.edu/planeSchema”

... >

 The second attribute specification in the root element of an instance document is for the
schemaLocation attribute. This attribute is used to name the standard namespace for instances, which
includes the name XMLSchema-instance.

xmlns:xsi = “http://www.w3.org/2001/XMLSchema-instance”

 Third, the instance document must specify the filename of the schema in which the default namespace
is defined. This is accomplished with the schemaLocation attribute, which takes two values: the
namespace of the schema and the filename of the schema.

 Combining everything, we get,

AN OVERVIEW OF DATA TYPES
There are two categories of user-defined schema data types: simple and complex.
 A simple data type is a data type whose content is restricted to strings. A simple type cannot have

attributes or include nested elements.
 A complex type can have attributes and include other data types as child elements.

Data declarations in an XML schema can be either local or global.
 A local declaration is a declaration that appears inside an element that is a child of the schema

element.
 A global declaration is a declaration that appears as a child of the schema element. Global elements

are visible in the whole schema in which they are declared.

http://cs.uccs.edu/planeSchema
http://cs.uccs.edu/planeSchema
http://cs.uccs.edu/planeSchema
http://www.w3.org/2001/XMLSchema-instance

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 115

SIMPLE TYPES

 Elements are defined in an XML schema with the element tag.
<xsd:element name = “engine” type = “xsd:string” />

 An instance of the schema in which the engine element is defined could have the following element:
<engine> inline six cylinder fuel injected </engine>

 An element can be given a default value with the default attribute:

 Constant values are given with the fixed attribute, as in the following example:

 A simple user-defined data type is described in a simpleType element with the use of facets.
 Facets must be specified in the content of a restriction element, which gives the base type name.
 The facets themselves are given in elements named for the facets: the value attribute specifies the value

of the facet.

COMPLEX TYPES
Complex types are defined with the complexType tag. The elements that are the content of an element-only
element must be contained in an ordered group, an unordered group, a choice, or a named group. The
sequence element is used to contain an ordered group of elements. Example:

A complex type whose elements are an unordered group is defined in an all element. Elements in all and
sequence groups can include the minOccurs and maxOccurs attributes to specify the numbers of
occurrences. Example:
<?xml version = “1.0” encoding = “utf-8”?>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 116

An XML instance that conforms to the planes.xsd schema is as follows:

For example, the year element could be defined as follows:

With the year element defined globally, the sports_car element can be defined with a reference to the
year with the ref attribute:

VALIDATING INSTANCES OF SCHEMAS
XSV is an abbreviation for XML Schema Validator. If the schema and the instance document are available on the Web, xsv

can be used online, like the XHTML validation tool at the W3C Web site. This tool can also be downloaded and run on any
computer. The Web site for xsv is http://www.w3.org/XML/Schema#XSV.

The output of xsv is an XML document. When the tool is run from the command line, the output document appears on the

screen with no formatting, so it is a bit difficult to read. The following is the output of xsv run on planes.xml:

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 117

DISPLAYING RAW XML DOCUMENTS
If an XML document is displayed without a style sheet that defines presentation styles for the document’s tags,
the displayed document will not have formatted content.

DISPLAYING XML DOCUMENTS WITH CSS
//6a.xml
<?xml version = "1.0" encoding = "utf-8"?>

<?xml-stylesheet type = "text/css" href = "6a.css"?>
<VTU>
<students>
 <USN> 1RN10CS090 </USN>
 <name> Santhosh B S</name>
 <college> RNSIT </college>
 <branch> CSE </branch>
 <YOJ> 2010 </YOJ>
 <email> santhosh.b.suresh@gmail.com </email>
</students>
<students>
 <USN> 1RN10CS003 </USN>
 <name> Akash Bangera </name>
 <college> RNSIT </college>
 <branch> CSE </branch>
 <YOJ> 2010 </YOJ>
 <email> akash.bangera@gmail.com </email>
</students>
<students>
 <USN> 1RN10CS050 </USN>
 <name> Manoj Kumar</name>
 <college> RNSIT </college>
 <branch>CSE </branch>
 <YOJ> 2010</YOJ>
 <email> manoj.kumar@gmail.com </email>
</students>
</VTU>

//6a.css

students
{ clear: both; float : left;}
USN
{color: green; }
name
{background: yellow;}
college
{ display: none;}
branch
{color : #cd00dc; text-align: right;}
YOJ
{background : red; color : white;}
email
{ color: blue;}

XSLT STYLE SHEETS
 The eXtensible Stylesheet Language (XSL) is a family of recommendations for defining the presentation

and transformations of XML documents.
 It consists of three related standards:

o XSL Transformations (XSLT),
o XML Path Language (XPath), and

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 118

o XSL Formatting Objects (XSL-FO).
 XSLT style sheets are used to transform XML documents into different forms or formats, perhaps using

different DTDs.
 One common use for XSLT is to transform XML documents into XHTML documents, primarily for

display. In the transformation of an XML document, the content of elements can be moved, modified,
sorted, and converted to attribute values, among other things.

 XSLT style sheets are XML documents, so they can be validated against DTDs.
 They can even be transformed with the use of other XSLT style sheets.
 The XSLT standard is given at http://www.w3.org/TR/xslt.
 XPath is a language for expressions, which are often used to identify parts of XML documents, such as

specific elements that are in specific positions in the document or elements that have particular
attribute values.

 XPath is also used for XML document querying languages, such as XQL, and to build new XML document
structures with XPointer. The XPath standard is given at http://www.w3.org/TR/xpath.

OVERVIEW OF XSLT

 XSLT is actually a simple functional-style programming language.
 Included in XSLT are functions, parameters, names to which values can be bound, selection constructs,

and conditional expressions for multiple selection.
 XSLT processors take both an XML document and an XSLT document as input. T
 he XSLT document is the program to be executed; the XML document is the input data to the program.
 Parts of the XML document are selected, possibly modified, and merged with parts of the XSLT

document to form a new document, which is sometimes called an XSL document.
 The transformation process used by an XSLT processor is shown in Figure 7.5.

 An XSLT document consists primarily of one or more templates.
 Each template describes a function that is executed whenever the XSLT processor finds a match to the

template’s pattern.
 One XSLT model of processing XML data is called the template-driven model, which works well when

the data consists of multiple instances of highly regular data collections, as with files containing
records.

 XSLT can also deal with irregular and recursive data, using template fragments in what is called the
data-driven model.

 A single XSLT style sheet can include the mechanisms for both the template- and data-driven models.

XSL TRANSFORMATIONS FOR PRESENTATION
Consider a sample program:
//6b.xml
<?xml version="1.0" encoding="utf-8"?>
<?xml-stylesheet type="text/xsl" href="6b.xsl"?>

<vtu>
<student>
 <name>Santhosh B S</name>

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 119

 <usn>1RN10CS090</usn>
 <collegeName>RNSIT</collegeName>
 <branch>CSE</branch>
 <year>2010</year>
 <email> santhosh.b.suresh@gmail.com </email>
</student>
<student>
 <name>Akash Bangera</name>
 <usn>1RN10CS003</usn>
 <collegeName>RNSIT</collegeName>
 <branch>CSE</branch>
 <year>2010</year>
 <email>akash.bangera@gmail.com</email>
</student>
<student>
 <name>Manoj Kumar</name>
 <usn>1RN10CS050</usn>
 <collegeName>RNSIT</collegeName>
 <branch>CSE</branch>
 <year>2010</year>
 <email>manoj.kumar@gmail.com</email>
</student>
</vtu>

An XML document that is to be used as data to an XSLT style sheet must include a processing instruction to
inform the XSLT processor that the style sheet is to be used. The form of this instruction is as follows:

//6b.xsl
<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>VTU Student Information</h2>
 <table border="1">
 <tr bgcolor="#99cd32">
 <th>name</th>
 <th>usn</th>
 <th>collegeName</th>
 <th>branch</th>
 <th>year</th>
 <th>email</th>
 </tr>

 <xsl:for-each select="vtu/student">
 <xsl:choose>
 <xsl:when test="name = 'Santhosh B S'">
 <tr bgcolor="yellow">
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="usn"/></td>
 <td><xsl:value-of select="collegeName"/></td>
 <td><xsl:value-of select="branch"/></td>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 120

 <td><xsl:value-of select="year"/></td>
 <td><xsl:value-of select="email"/></td>
 </tr>
 </xsl:when>
 <xsl:otherwise>
 <tr >
 <td><xsl:value-of select="name"/></td>
 <td><xsl:value-of select="usn"/></td>
 <td><xsl:value-of select="collegeName"/></td>
 <td><xsl:value-of select="branch"/></td>
 <td><xsl:value-of select="year"/></td>
 <td><xsl:value-of select="email"/></td>
 </tr>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </table>
<h2>selected student is highlighted</h2>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

An XSLT style sheet is an XML document whose root element is the special-purpose element stylesheet. The
stylesheet tag defines namespaces as its attributes and encloses the collection of elements that defines its
transformations. It also identifies the document as an XSLT document.
<xsl:stylesheet version="1.0" xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

In many XSLT documents, a template is included to match the root node of the XML document.
<xsl:template match="/">

In many cases, the content of an element of the XML document is to be copied to the output document. This is
done with the value-of element, which uses a select attribute to specify the element of the XML
document whose contents are to be copied.

<xsl:value-of select="name"/>

The select attribute can specify any node of the XML document. This is an advantage of XSLT formatting
over CSS, in which the order of data as stored is the only possible order of display.

http://www.w3.org/1999/XSL/Transform

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 121

XML PROCESSORS
The XML processor takes the XML document and DTD and processes the information so that it may then be
used by applications requesting the information. The processor is a software module that reads the XML
document to find out the structure and content of the XML document. The structure and content can be derived
by the processor because XML documents contain self-explanatory data.

THE PURPOSES OF XML PROCESSORS
 First, the processor must check the basic syntax of the document for well-formedness.
 Second, the processor must replace all references to entities in an XML document with their definitions.
 Third, attributes in DTDs and elements in XML schemas can specify that their values in an XML

document have default values, which must be copied into the XML document during processing.
 Fourth, when a DTD or an XML schema is specified and the processor includes a validating parser, the

structure of the XML document must be checked to ensure that it is legitimate.

THE SAX APPROACH
 The Simple API for XML (SAX) approach to processing is called event processing.
 The processor scans the XML document from beginning to end.
 Every time a syntactic structure of the document is recognized, the processor signals an event to the

application by calling an event handler for the particular structure that was found.
 The syntactic structures of interest naturally include opening tags, attributes, text, and closing tags.
 The interfaces that describe the event handlers form the SAX API.

THE DOM APPROACH
 The Document Object Model (DOM) is an application programming interface (API) for HTML and XML

documents.
 It defines the logical structure of documents and the way a document is accessed and manipulated
 Properties of DOM

o Programmers can build documents, navigate their structure, and add, modify, or delete
elements and content.

o Provides a standard programming interface that can be used in a wide variety of environments
and applications.

o structural isomorphism.
 The DOM representation of an XML document has several advantages over the sequential listing

provided by SAX parsers.
 First, it has an obvious advantage if any part of the document must be accessed more than once by the

application.
 Second, if the application must perform any rearrangement of the elements of the document, that can

most easily be done if the whole document is accessible at the same time.
 Third, accesses to random parts of the document are possible.
 Finally, because the parser sees the whole document before any processing takes place, this approach

avoids any processing of a document that is later found to be invalid.

WEB SERVICES
A Web service is a method that resides and is executed on a Web server, but that can be called from any
computer on the Web. The standard technologies to support Web services are WSDL, UDDI, SOAP, and XML.
WSDL - It is used to describe the specific operations provided by the Web service, as well as the protocols for
the messages the Web service can send and receive.
UDDI - also provides ways to query a Web services registry to determine what specific services are available.
SOAP - was originally an acronym for Standard Object Access Protocol, designed to describe data objects.
XML - provides a standard way for a group of users to define the structure of their data documents, using a
subject-specific mark-up language.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 122

SYLLABUS

UNIT 1
FUNDAMENTALS OF WEB, XHTML – 1:
Internet, WWW, Web Browsers, and Web Servers; URLs; MIME; HTTP; Security; The Web Programmers
Toolbox. XHTML: Origins and evolution of HTML and XHTML; Basic syntax; Standard XHTML document
structure; Basic text markup.

UNIT 2
XHTML – 2:
Images; Hypertext Links; Lists; Tables; Forms; Frames; Syntactic differences between HTML and XHTML.

UNIT 3
CSS:
Introduction; Levels of style sheets; Style specification formats; Selector forms; Property value forms; Font
properties; List properties; Color; Alignment of text; The Box model; Background images; The and
<div> tags; Conflict resolution.

UNIT 4
JAVASCRIPT:
Overview of Javascript; Object orientation and Javascript; General syntactic characteristics; Primitives,
operations, and expressions; Screen output and keyboard input; Control statements; Object creation and
modification; Arrays; Functions; Constructor; Pattern matching using regular expressions; Errors in scripts;
Examples.

UNIT 5
JAVASCRIPT AND HTML DOCUMENTS:
The Javascript execution environment; The Document Object Model; Element access in Javascript; Events and
event handling; Handling events from the Body elements, Button elements, Text box and Password elements;
The DOM 2 event model; The navigator object; DOM tree traversal and modification.

UNIT - 6
DYNAMIC DOCUMENTS WITH JAVASCRIPT:
Introduction to dynamic documents; Positioning elements; Moving elements; Element visibility; Changing
colors and fonts; Dynamic content; Stacking elements; Locating the mouse cursor; Reacting to a mouse click;
Slow movement of elements; Dragging and dropping elements.

UNIT - 7
XML:
Introduction; Syntax; Document structure; Document Type definitions; Namespaces; XML schemas; Displaying
raw XML documents; Displaying XML documents with CSS; XSLT style sheets; XML processors; Web services.

UNIT - 8
PERL, CGI PROGRAMMING:
Origins and uses of Perl; Scalars and their operations; Assignment statements and simple input and output;
Control statements; Fundamentals of arrays; Hashes; References; Functions; Pattern matching; File input and
output; Examples. The Common Gateway Interface; CGI linkage; Query string format; CGI.pm module; A survey
example; Cookies.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 123

R N S INSTITUTE OF TECHNOLOGY
CHANNASANDRA, BANGALORE - 98

PROGRAMMING THE WEB

7TH SEMESTER INFORMATION SCIENCE

SUBJECT CODE: 06CS73

PREVIOUS VTU QUESTION PAPERS

PREPARED BY

DIVYA K
1RN09IS016
7th Semester

Information Science
divya.1rn09is016@gmail.com

In Association With

TANUJA G
1RN09IS057
7th Semester

Information Science

SHWETHA SHREE M
1RN09IS050
7th Semester

Information Science

Powered by

www.vtuplanet.com

mailto:divya.1rn09is016@gmail.com
http://www.vtuplanet.com/

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 124

UNIT 1 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1. Explain the tasks of DNS name server Dec 09 5

2. Explain response phase of http Dec 09 5

3. Give syntax and an example for each of the following tags.
1.<pre> 2.<a> 3. 4.<sub> 5.<p>

Dec 09 10

4. Explain at least two uses of the following.
1. Perl 2.php 3.java script 4.xml 5.MIME type specification.

June 10 10

5. Explain with an example the following tags
1.select 2.frames 3.colspan 4.radio button 5.style class selector

June 10 10

6. How does domain name conversion happen on web? Describe the concept with a
figure by taking a suitable example.

Dec10 6

7. Give and explain response and request phases of hyper text transfer protocol. Dec10 8

8. What is the purpose of MIME type specification in request or response transaction
between browser and server?

Dec10 3

9. Give and explain syntax of following tags
1.<blockquote> 2.meta

Dec10 3

10. Explain the concept of domain name conversion with figure and suitable example. June 12 5

11. Explain request phase of http June 12 5

12. Give syntax and an example for each of the following tags.
1.<pre> 2.<p> 3.<sup> 4.<sub> 5.<blackquote>

June 12 10

13. Explain HTTP. June 11 5

14. Explain web server operations and general server characteristics. June 11 5

15. Explain two web programmers tool used in web programming. June 11 10

16 Describe a fully qualified domain name and explain how fully qualified domain names
are translated into IP

Dec 11 6

17 What is HTTP? Explain its phases in detail Dec 11 10

18 Explain the following tags with examples: and <a> Dec 11 4

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 125

UNIT 2 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1 Write an XHTML document to describe an ordered list of your five favourite movies.
Each element of the list must have a nested list of atleast two actors in your favourite
movies.

Dec 09 5

2 With examples, explain a style class selector. Dec 09 5

3 Write an XHTML document that has six short paragraphs of text. Define three different
paragraph styles p1, p2 and p3. The p1 style must use left and right margins of 20
pixels, a background colour of yellow, and a foreground color of blue . The p2 style
must use font size of 18 points, font name ‘Arial’ and a font style in italic form. The p3
style must use a text indent of 1 centimeter , a background color of green, and a
foreground color of white. The 1st and the 4th paragraph must use p1, the 2nd and 5th
must use p2 and the 3rd and 6th must use p3.

Dec 09 10

4 Explain the following with respect to table creation in XHTML documents:
Align and valign attributes
tr, th and td attributes
Rowspan and Colspan attributes
Cell padding and Cell spacing attributes

June 10 10

5 Create XHTML document to describe a table with the following contents:
The columns of the table must have the headings pine, maple, Oak and fir. The rown
must have the labels average height, average width, typical lifespan, and leaf type. Fill
the data cells with some values.

June 10 10

6 Create , test and validate a XHTML document that has a form with
Three text boxes to collect user name and address.
Tables with the headings product name , price and quantity and the values are
100—watts light bulb, $2.39 , 4
200—watts light bulb, $4.29 , 8
100—watts long life light bulbs, $3.95 , 4
200—watts long life light bulbs, $7.49 , 8
A collection of 4 radio buttons that are labeled as
Visa
Master card
Discover
Check
A submit and a reset button

Dec 10 10

7 Explain the syntactic differences between HTML and XHTML Dec 10 5

8 Create XHTML document that has two frames. The left frame displays contents.html
and the right frame displays cars.html where the second frame is a target of link from
the first frame. [Note: contents.html is a list of links to the cars description.]

Dec 10 5

9 What tag and attribute are used to describe a link? Discuss about it. June 11 4

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 126

10 Explain all controls that are created with the <input> tag with examples, which are
used for text collection.

June 11 8

11 Explain the XHTML tags used for lists in documents. June 11 8

12 Write an XHTML document to describe an ordered list of four states. Each element of
the list must have an unordered list of atleast two cities in the state.

June 12 5

13 Explain the syntactic differences between HTML and XHTML. June 12 5

14 Explain the following , with respect to table creation in XHTML documents.
<table>
tr, th and td attributes
rowspan and colspan attributes
align and valign attributes
cell padding and cell spacing

June 12 10

15 Bring out the differences between HTML and XHTML Dec 11 6

16 Write an XHTML program to create a link within a document Dec 11 4

17 Create XHTML document that defines a table with 5 rows and 5 columns. The first row
should contain country name, gold, silver, bronze (all three indicating the type of
medals) and total in each column respectively. Fill in the information details in the
table with appropriate values. After filling the details, set red color to the background
for the first row, blue for the second, yellow for the third, purple for the fourth and
green for the fifth row. Use of align and valign attributes for this table has to be made
at the appropriate places

Dec 11 10

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 127

UNIT 3 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1. With examples describe all input and output operations in java script Dec 09 10

2. Give examples for different ways an array object can be created in java script and also
write XHTML document and java script code to sort N given values using a sorting
techniques

Dec 09 10

3. Explain the following CSS tags with example, class selectors, pseudo classes, background
images, text decoration, alignment of text .

June 10 10

4. Create an XHTML document that includes atleast 2 images and enough text to preceed
the images flow around them and continue after the last image(use CSS tags)

June 10 10

5. What are selector forms? Explain with example different types of selector forms with
syntax

Dec 10 6

6. How many levels of style sheet are there? Explain their usage with syntax and example Dec 10 6

7. Write document level style sheet to illustrate the text decoration Dec 10 4

8. Write the conflict resolution in cascading style sheets Dec 10 4

9. What is the purpose of external level style sheet? Compare it with other 2 levels. Write
the format of external level style sheet

Jun 11 4

10. Explain all selector forms June 11 6

11. Explain and <div> tags June 11 5

12. Write a note on conflict resolution June 11 5

13. Explain all selector forms June 12 5

14. Explain the usage of different levels of style sheets with syntax and explain June 12 5

15. Explain the following with example, pseudo classes, background images, text decoration,
alignment of text, and <div> tags.

June 12 10

16 List out the variety of selector forms available in CSS and explain in detail Dec 11 8

17 Explain the different levels of style sheets available in CSS Dec 11 4

18 Explain the box model (margin and padding property) with respect to CSS Dec 11 8

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 128

UNIT 4 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1. Describe functions in java script. Write XHTML document and java script function to

compute and print factorial of a number.

Dec 09 10

2. Write XHTML document and java script code to implement the following:

i) To count the number of names in the given array that end in either “ie” or “y”.

ii) To print the position in the string of the leftmost vowel.

Dec 09 10

3. Describe briefly three major uses of java script on the client side June 10 6

4. Describe briefly the basic process of event driven computation. June 10 4

5. Write a function in java script to check whether the given string has the form string1,

string2 letters where both the string must be all lowercase letters except the first letter

and “letter “must be upper case. If the string is of the given format the function should

return true or false otherwise.

June 10 10

6. Explain with examples, the screen output and keyboard input methods. Dec10 5

7. Write a javascript to accept three numbers using the prompt method. Find and display

the largest of three using alert method. Use predefined function Math.max.

Dec10 5

8. Write a javascript that contains a function named tst_phone_num, which tests the phone

number of the format ddd-dddd-ddddddd <091-8256-1234567>and display whether

the given number is valid or not using alert.

Dec 10 5

9. Write a note on character and character classes. Dec 10 5

10. Explain the screen output and keyboard input methods, with examples June 12 8

11. Explain the java script array methods, with examples June 12 7

12. Write an XHTML document and Javascript function to compute and print reverse of a

given number

June 12 5

13. Describe three major differences between java and javascript. June 11 3

14. Explain java script array methods with examples. June 11 7

15. Explain screen output and keyboard input. June 11 10

16 Explain different primitive types in javascript Dec 11 5

17 Explain the concept of object creation and modification in javascript Dec 11 5

18 Develop and demonstrate the use of javascript, a XHTML document that illustrates the
USN (the valid format is: A digit from 1 To 4 followed by two upper-case characters
followed by two digits Followed by two upper-case characters followed by three digits;
no Embedded spaces allowed) of the user. Event handler must be Included for the form
element that collects this information to validate the input. Messages in the alert
windows must be produced when errors are detected.

Dec 11 10

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 129

UNIT 5 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1 With an example, explain on focus event in java script. Dec 09 5

2 Describe the approach to addressing XHTML elements using forms and elements Dec 09 5

3 Write an XHTML document which displays a form containing text elements to input

register number, sub-code, marks in three tests and a button element. Also write java

script code to computer average of two better tests on click of button and print

average marks using alert.

Dec 09 10

4 What are the two ways in which an event handler can be associated with an event

generated by a specific XHTML element in the DOM2 event model?

June 10 6

5 Describe the approach to addressing XHTML elements using forms and elements June 10 6

6 Write XHTML file and java script, scripts to sort a set of number in either ascending

order or descending order. The sorting order is input from the user which is either

“ascending” or “descending”. The sorted numbers should be displayed with proper

headings.

June 10 8

7 What are the different approaches to addressing XHTML elements? Describe with

examples

Dec 10 6

8 Explain the three phases of event processing in the DOM2 event model. Dec 10 6

9 Write a java script to compare two passwords. Dec 10 8

10 Discuss the different approaches of XHTML element access in javascript. June 11 6

11 Explain, with an example, handling events from body elements using onload attribute. June 11 4

12 Explain event handler connection for DOM2 event model. June 11 10

13 What are the different approaches to addressing XHTML elements? Describe with

examples.

June 12 6

14 Explain with an example, focus event in javascript June 12 6

15 Write a java script to compare two passwords June 12 8

16 Write XHTML and javascript, script which has 6 buttons, labelled 6 different subjects.

The event handler for these buttons must produce message starting the chosen

favourite subject. The event handler must be implemented as a function, whose name

must be assigned to the onclick attribute of the radio button element. The chosen

subject must be sent to the event handler as a parameter. Use a click event to trigger a

call to alert, which should display a brief description of the selected subject

Dec 11 10

17 Write the XHTML and javascript, script that checks passwords, that includes two

passwords as input elements, along with reset and submit buttons. Implement the

below mentioned functions to check:

i) Both entered passwords are same

ii) Both entered passwords are different

iii) If no password is typed in either of the password fields

Use on submit event to trigger a call to display an alert box if the error occurs

Dec 11 7

18 Explain all parameters of addEventListener method Dec 11 3

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 130

UNIT 6 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1 With examples, explain absolute and relative positioning of elements in java script Dec 09 10

2 Write an XHTML document that contains three short paragraphs of text, stacked on
top of each other, with only enough of each showing, so that mouse cursor can always
be placed over some part of them. Write java script code so that when cursor is placed
over the exposed part of any paragraph, it should rise to the top to become completely
visible.

Dec 09 10

3 Explain the following, with an example each:
i) Absolute positioning

ii) Dynamic content

iii) Element visibility

iv) Stacking elements.

June 10 12

4 Write an XHTML document to display an image and three buttons. The buttons should
be labeled simply 1, 2 and 3. When pressed, each button should change the content of
the image to that of a different image.

June 10 8

5 Explain the different types of positioning, with examples. Dec 10 6

6 Write a java script that illustrates the dynamic stacking of images. Dec 10 6

7 Write a java script which displays the message ‘hello, how are you?’ when the mouse
button is pressed no matter where it is on the screen.

Dec 10 6

8 What exactly is stored in the screen X and screen Y properties after a mouse click? Dec 10 2

9 Describe all the differences between the three possible values of the position property. June 11 7

10 Explain element visibility June 11 3

11 With an example of XHTML document with java script, explain dynamic content June 11 10

12 With examples, explain the absolute and relative positioning of elements in javascript June 12 8

13 Write javascript that illustrates dynamic stacking of images. June 12 8

14 Explain the element visibility, with examples. June 12 4

15 Explain the different types of positioning, with examples. Dec 11 10

16 Write XHTML and javascript, script that illustrate the DOM2 event model which allows
the user to drag and drop words to complete a paragragh (create atleast 10 words).
Use both DOM0 and DOM2 event model concept

Dec 11 10

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 131

UNIT 7 - VTU QUESTION BANK

No QUESTIONS YEAR MARKS

1 What are the two primary tasks of a validating XML parser? Dec 09 4

2 How does an XSLT processor use an XSLT style sheet with an XML document? Dec 09 6

3 With examples, explain string functions in PERL. Dec 09 10

4 Explain the three types that can be used to describe data in an element declaration,
with an example for each.

June 10 6

5 What are the four possible parts of an attribute declaration in a DTD? June 10 4

6 Describe briefly an XML name space. June 10 4

7 Briefly explain the purposes of XML processor June 10 6

8 What is the document type definition (DTD)? Describe the approach to declare
elements, entities and attributes.

Dec 10 8

9 Create an XML document that lists advertisement for selling used cars. Dec 10 6

10 With a neat diagram, explain the transformation process by an XSLT processor. Dec 10 6

11 What is the purpose of DTD? What are four possible keywords in DTD declaration?
Write their format.

June 11 5

12 What is the purpose of character data section? Explain with an example. June 11 5

13 Explain the two categories of user defined XML schema data types. June 11 4

14 Mention the advantages of XML schema over DTDs. June 11 6

15 What is document type definition (DTD)? Describe the approach to declare element
entities and attributes.

June 12 10

16 Explain briefly an XML namespace June 12 4

17 Explain the purposes of XML processor June 12 6

18 What is DTD? Explain how to create elements, attributes and entities in DTD Dec 11 10

19 Explain the concept of XSLT processing Dec 11 4

20 With an example, explain how an XSLT processor uses an XSLT style sheet with an
XML document?

Dec 11 6

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 132

UNIT 1 – VTU PAPER SOLUTIONS

1. Refer page 3
2. Refer page 6
3. Refer page

a. <pre> 11
b. <a> 17
c. 15
d. <sub> 13
e. <p> 10

4. Refer page 7
5. Refer page

a. Select 29
b. Frames 32
c. Colspan 23
d. Radio button 28
e. Style class selector 38

6. Refer page 2 and 3
7. Refer page 5 and 6
8. Refer page 5
9. Refer page 12 for <blockquote> and page 14 for <meta>
10. Already mentioned
11. Refer page 5
12. Already mentioned
13. Already mentioned
14. Refer page 4
15. Refer page 7

i. Plug-ins and Filters
Plug-ins are programs that can be integrated together with a word processor. Plug-ins add new capabilities to
the word processor, such as toolbar buttons and menu elements that provide convenient ways to insert
XHTML into the document being created or edited. The plug-in makes the word processor appears to be an
XHTML editor that provides WYSIWYG XHTML document development. The end result of this process is an
XHTML document. The plug-in also makes available all the tools that are inherent in the word processor
during XHTML document creation, such as a spell-checker and a thesaurus.
A second kind of converter is a filter, which converts an existing document in some form, such as LaTeX or
Microsoft Word, to XHTML. Filters are never part of the editor or word processor that created the
document—an advantage because the filter can then be platform independent. For example, a Word-Perfect
user working on a Macintosh computer can use a filter running on a UNIX platform to provide documents that
can be later converted to XHTML. The disadvantage of filters is that creating XHTML documents with a filter is
a two-step process: First you create the document, and then you use a filter to convert it to XHTML.

ii. Javascript
JavaScript is a client-side scripting language whose primary uses in Web programming are to validate form
data and to create dynamic XHTML documents. JavaScript “programs” are usually embedded in XHTML
documents, which are downloaded from a Web server when they are requested by browsers. The JavaScript
code in an XHTML document is interpreted by an interpreter embedded in the browser on the client. One of
the most important applications of JavaScript is to dynamically create and modify documents. JavaScript
defines an object hierarchy that matches a hierarchical model of an XHTML document. Elements of an XHTML
document are accessed through these objects, providing the basis for dynamic documents.

16. DNS - Already mentioned
17. Already mentioned
18. Already mentioned

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 133

UNIT 2 – VTU PAPER SOLUTIONS

1. //unit2-1.html
<html>
<head>
<title>Favourite Movies</title>
</head>
<body>

APPU

 Puneeth
 Rakshitha

PRITHVI

 Puneeth
 Parvathi

RAAM

 Puneeth
 Priyamani

AKASH

 Puneeth
 Ramya

PARAMATHMA

 Puneeth
 Deepa

</body>
</html>

2. Refer page 38
3. //unit2-3.html

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 134

<html>
 <head>
 <title> Paragraphs </title>
 <style type = "text/css">
 p.one
 {
 margin-left:20px;
 margin-right:20px
 background-color:yellow;
 color:blue;
 }
 p.two
 {
 font: italic 18pt Arial;
 }
 p.three
 {
 text-indent: 1cm;
 background-color:green;
 color: white;
 }

 </style>
 </head>
 <body>
 <p class = "one"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 <p class = "two"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 <p class = "three"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 <p class = "one"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 <p class = "two"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 <p class = "three"> Puneeth Rajkumar is the Power Star of Sandalwood

 </p>
 </body>
</html>

4. Refer page

a. Align & valign 24
b. tr, th, td 22
c. rowspan & colspan 23
d. cell spacing & padding 25

5. //unit2-5.html

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 135

<html>
<head>
<title>Trees</title>
</head>
<body>
<table border = "3">
<tr>
 <th></th>
 <th>Pine</th>
 <th>Maple</th>
 <th>Oak</th>
 <th>Fir</th>
</tr>
<tr>
 <th>Average Height</th>
 <td>30feet</td>
 <td>25feet</td>
 <td>17feet</td>
 <td>33feet</td>
</tr>
<tr>
 <th>Average width</th>
 <td>3feet</td>
 <td>2.3feet</td>
 <td>1.5feet</td>
 <td>1.7feet</td>
</tr>
<tr>
 <th>Typical Lifespan</th>
 <td>100years</td>
 <td>340years</td>
 <td>200years</td>
 <td>70years</td>
</tr>
<tr>
 <th>Leaf Type</th>
 <td>broad</td>
 <td>big</td>
 <td>narrow</td>
 <td>small</td>
</tr>
</table>
</body>
</html>

6. //unit2-6.html

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 136

<html>
<head>
<title>Product - Bulbs & Lights</title>
</head>
<body>
<form action="">
<p><label>Enter Your Full Name: <input type="text" size="30"/></label></p>
<p><label>Enter Your Address 1: <input type="text" size="30"/></label></p>
<p><label>Enter Your Address 2: <input type="text" size="30"/></label></p>
</form>

<table border = "3">
<tr>
 <th>Product Name</th>
 <th>Price</th>
 <th>Quantity</th>
</tr>
<tr>
 <td>100 - watts Light Bulb</td>
 <td>$ 2.39</td>
 <td>4</td>
</tr>
<tr>
 <td>200 - watts Light Bulb</td>
 <td>$ 4.29</td>
 <td>8</td>
</tr>
<tr>
 <td>100 - watts Long Life Light Bulbs</td>
 <td>$ 3.95</td>
 <td>4</td>
</tr>
<tr>
 <td>200 - watts Long Life Light Bulbs</td>
 <td>$ 7.49</td>
 <td>8</td>
</tr>
</table>

<form action = " ">
 <p>
 <label><input type="radio" name="card" value="one"/>Visa</label>

 <label><input type="radio" name="card" value="two"/>Master Card</label>

 <label><input type="radio" name="card" value="three"/>Discover</label>

 <label><input type="radio" name="card" value="four"/>Check</label>
 </p>
 <p>
 <input type="SUBMIT" value="SUBMIT"/>
 <input type="RESET" value="RESET"/>
 </p>
 </form>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 137

7. Refer page 35
8. //unit2-8.html

<html>
 <head>
 <title>Frames</title>
 </head>
 <frameset cols = "30%,70%">
 <frame src = "unit2-8contents.html"/>
 <frame src = "unit2-8cars.html"/>
 <frame name = "description"/>
 </frameset>
</html>

//unit2-8contents.html
<html>
 <head>
 <title>contents.html</title>
 </head>
 <body>
 <h2>HYUNDAI</h2>
 <h3>

 Click Here To View The Details
 </h3>
 </body>
</html>

//unit2-8cars.html
<html>
 <head>
 <title>cars.html</title>
 </head>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 138

 <body>
 <h1>TRIDENT HYUNDAI</h1>
 <h4>Proudly Presents the latest cars in INDIA</h4>
 <h3>1. Santro</h3>
 <h3>2. I10 - Sports</h3>
 <h3>3. Verna</h3>
 </body>
</html>

9. Refer page 17
10. Refer page 26, 27,28
11. Refer page 19,20,21
12. //unit2-12.html

<html>
<head>
<title>States</title>
</head>
<body>

KARNATAKA

 Bangalore
 Mysore

ANDHRA PRADESH

 Hyderabad
 Tirupathi

KERALA

 Alappi
 Kozhikode

TAMIL NADU

 Chennai
 Ooty

</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 139

13. Already Mentioned
14. Already Mentioned
15. Already Mentioned
16. Refer page 17,18 (Targets within a document)
17. //unit2-17.html

<html>
<head>
<title>countries and medals</title>
</head>
<body>
<table border = "3">
<tr style="background-color:red;">
 <th>Country</th>
 <th>Gold Medal</th>
 <th>Silver Medal</th>
 <th>Bronze Medal</th>
 <th>Total</th>
</tr>
<tr style="background-color:blue;">
 <th>China</th>
 <td>3</td>
 <td>32</td>
 <td>1</td>
 <td>36</td>
</tr>
<tr style="background-color:yellow;" align="center">
 <th>
India

</th>
 <td valign="top">10</td>
 <td valign="bottom">34</td>
 <td valign="top">20</td>
 <td valign="bottom">64</td>
</tr>
<tr style="background-color:purple;">
 <th>Japan</th>
 <td>11</td>
 <td>3</td>
 <td>2</td>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 140

 <td>16</td>
</tr>
<tr style="background-color:green;">
 <th>Pakistan</th>
 <td>1</td>
 <td>1</td>
 <td>2</td>
 <td>4</td>
</tr>
</table>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 141

UNIT 3 – VTU PAPER SOLUTIONS

1. Refer page 62
2. Refer page 67 for array object creation

//unit3-2.html
<html>
<head><title>Sorting</title>
<script type = "text/javascript" src = "unit3-2.js">
</script>
</head>
</html>

// unit3-2.js
var points = [40, 100, 1, 5, 25, 10];
document.write("<h3>Sorting </h3> ");
points.sort(function(a,b){return a-b});
for (i=0;i<points.length;i++)
{
 document.write(points[i] + "
");
}

3. Refer page

a. Class selectors 38
b. Pseudo classes 41
c. Background images 51 & 52
d. Text decoration 44
e. Alignment of text 48

4. //unit3-4.html
<html>
 <head>
 <title>Text Alignment</title>
 <style type = "text/css">
 h1.one
 {text-align: center}
 p.two
 {text-indent: 0.5in; text-align: justify;}
 img{float:left}
 </style>
 </head>
 <body>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 142

 <h1 class = "one">Kannadada Kotyadhipathi</h1>
 <p>

 </p>
 <p class = "two">Kannadada Kotyadhipathi is a Kannada primetime quiz show hosted by the
power star of Kannada cinema Mr. Puneet Rajkumar. This is the biggest game show ever on Kannada
Television. This show will be aired on Suvarna TV. This show gives the common man an opportunity to
win Rs 1 crore. Kannadada Kotyadipathi is a Kannada primetime quiz and human drama show hosted
by matinee idol Puneeth Rajkumar on Suvarna TV. Contestants participate in a game that allows them
to win up to Rs. 1 crore. </p>
 <p>

 </p>
 <p> Short-listed contestants play a ‘Fastest Finger First’ round to make it to the main game.
From there on, they play rounds with increasing levels of difficulty, and winning higher amounts of
money, culminating in the Rs. 1 crore prize. Contestants can stop at any time having viewed the next
question. Or they can avail of a 'Lifeline' and play on. Welcome to the world of high stakes chills and
thrills! Welcome to the world of the crorepati!</p>
 </body>
 </html>

5. Refer page 38, 39, 40, 41 but condense the contents for 6 marks
6. Refer page 36 and 37
7. Refer page 44
8. Refer page 53 and 54
9. Refer page 36 and 37
10. Already Mentioned
11. Refer page 52 and 53
12. Already Mentioned
13. Already Mentioned
14. Already Mentioned
15. Already Mentioned
16. Already Mentioned
17. Already Mentioned
18. Refer page 49 and 50. Write about box model and margins & padding property

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 143

UNIT 4 – VTU PAPER SOLUTIONS

1. Refer page 70 for functions
//unit4-1.html
<html>
<head>
<title>Factorial of a number!</title>
<script type="text/javascript">
function displayFactorial(elem)
 {
 var n = elem.value;
 var fact =1;
 if(n==0)
 {
 fact =1;
 }
 else
 {
 while(n>0)
 {
 fact = fact *n;
 n=n-1;
 }
 document.write("<h1>Factorial of " + elem.value + " is " + fact + "</h1>");
 }
 }
</script>
</head>
<body>
<form>
<h1>Enter a number: </h1>
<input type='text' id='numbers'/>
<input type='button' onclick="displayFactorial(document.getElementById('numbers'))"
value='Compute Factorial' />
</form>
</body>
</html>

2. //unit4-2i.html

<html>
<head>
<title>names end in "ie" or "y" </title>
<script type = "text/javascript">
function e_names(names) {

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 144

 var len, index, count = 0;
 len = names.length;
 for (index = 0; index < len; index++)
 {
 position1 = names[index].search(/ie$/);
 position2 = names[index].search(/y$/);
 if (position1 + position2 > -2)
 count++;
 }
 return count;
}
</script>
</head>
<body>
<script type = "text/javascript">
var new_names = new Array ("freddie", "santhosh", "akash", "chamelie", "jyothy");
result = e_names(new_names);
document.write("The number of special names is: " + result + "
");
</script>
</body>
</html>

//3a.html
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Lab Program 3a </title>
<script type='text/javascript'>
function isVowel(elem)
{

var vowels = "aeiouAEIOU";
var str = elem.value
var chr = ""
var nIndx = -1;
var pos = 0;
//Counting all the vowels except y.
for (; pos < str.length; pos++)
{

 chr = str.charAt(pos);
 if (vowels.indexOf(chr) != -1)

{
 nIndx = vowels.indexOf(chr);break;
}

 }

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 145

if(nIndx >=0)
{

document.write("<h1>The index of the first vowel is " + pos + "
 and character
is="+chr+"</h1>");

}
else
 document.write("<h1>There were no vowels.</h1>");

}
</script>
</head>
<body>
<form>
PLEASE ENTER THE STRING:
<input type='text' id='numbers'/>
<input type='button' onclick="isVowel(document.getElementById('numbers'))"
value='Check Field' />
</form>
</body>
</html>

3. Refer page 55
4. Refer page 56
5. //unit4-5.html

<html>
<head>
<title>String check</title>
<script type = "text/javascript" >
function chkName()
{

var myName = document.getElementById("custName");
var pos = myName.value.search(/^[A-Z][a-z]+, ?[A-Z][a-z]+ ?[A-Z]\.?$/);
if(pos != 0)
{

alert("The name you entered (" + myName.value + ") is not in the correct form.\n" +
 "Please go and fix your name");
myName.focus();
myName.select();
return false;

}
else
{

alert("Correct");
return true;

}
}
</script>
</head>
<body>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 146

<h3>Enter your name in the form string1, string2 letter</h3>
<p>both strings must be lowercase letters except the first letter, and letter must be uppercase</p>
<form action="">
<p>
<label><input type="text" id="custName" size="50"/></label>

<input type="reset" id="reset"/>
<input type="submit" id="submit"/>
</p>
</form>
<script type = "text/javascript">
document.getElementById("custName").onchange=chkName;
</script>
</body>
</html>

6. Refer page 62
7. //unit4-7.html

<html>
<head><title>Highest of 3</title>
<script type = "text/javascript" >
var num1 = prompt("Enter first number");
num1=parseInt(num1);
var num2 = prompt("Enter second number");
num2=parseInt(num2);
var num3 = prompt("Enter third number");
num3=parseInt(num3);

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 147

var high = Math.max(num1, num2, num3);
alert("The largest number you entered is " + high);
</script>
</head>
</html>

8. //unit4-8.html
<html>
<head>
<title>Phone check</title>
<script type = "text/javascript" >
function chkPhone()
{

var myPhone = document.getElementById("custPhone");
var pos = myPhone.value.search(/^\d{3}-\d{4}-\d{7}$/);
if(pos != 0)
{

alert("The phone you entered (" + myPhone.value + ") is not in the correct form.\n" +
 "The correct form is: " + "ddd-dddd-ddddddd \n" +
 "Please go and fix your phone number");
myPhone.focus();
myPhone.select();

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 148

return false;
}
else
{

alert("Correct Format");
return true;

}
}
</script>
</head>
<body>
<h3>enter your details</h3>
<form action="">
<p>
<label><input type="text" id="custPhone"/>Phone (ddd-dddd-ddddddd)</label>

<input type="reset" id="reset"/>
<input type="submit" id="submit"/>
</p>
</form>
<script type = "text/javascript">
document.getElementById("custPhone").onchange=chkPhone;
</script>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 149

9. Refer page 74
10. Already Mentioned
11. Refer page 68 and 69
12. Lab program

//3b.html
<html xmlns = "http://www.w3.org/1999/xhtml">
<head>
<title>Lab Program 3b</title>
<script type="text/javascript">
function disp(num)
{
 var alphaExp = /^[0-9]+$/;
 if(!num.value.match(alphaExp))
 {
 alert("Input should be positive numeric");
 return false;
 }

 var rn=0, n= Number(num.value);

 while(n!=0)
 {
 r = n%10;
 n = Math.floor(n/10);
 rn = rn*10 + r;
 }
 alert("The " + num.value + " in reverse is " + rn);
}
</script>
</head>
<body>
<form>
Enter a number :
<input type=text id='number'/>
<input type="button" onclick="disp(document.getElementById('number'))" value="Click me!" />
</form>
</body>
</html>

13. Refer page 55
14. Already Mentioned
15. Already Mentioned

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 150

16. Refer page 58 and 59
17. Refer page 67
18. Lab program

//4a.html
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>
<title>Lab Program 4a</title>
<script type='text/javascript'>

function isNumeric(elem)
{
var numericExpression = /[0-4][A-Z][A-Z][0-9][0-9][A-Z][A-Z][0-9][0-9][0-9]/;
 var str = elem.value
if(str.length > 10)
{
 alert('please enter a valid usn number');
 elem.focus();
 return false;
 }
if(elem.value.match(numericExpression))
{
 document.write("It is valid USN number");
 return true;
}
else
 {
 alert('please enter valid usn number');
 elem.focus();
 return false;
}
}
</script>
</head>
<body>
<form>
PLEASE ENTER THE USN NUMBER:
<input type='text' id='numbers'/>
<input type='button' onclick="isNumeric(document.getElementById('numbers'))"
value='Check Field' />
</form>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 151

UNIT 5 – VTU PAPER SOLUTIONS

1. Refer page 85
2. Refer page 79
3. //TEST.HTML

<html>
 <head><title>AVERAGE</title>
 <script type = "text/javascript" src = "TEST.JS">
 </script>
 </head>
 <body>
 <form id = "myForm" action = " ">
 <h3> ENTER YOUR DETAILS</h3>
 <table border="border">
<tr>
<th>USN</th>
<td><input type = "text" id = "USN" size = "10"/></td>
</tr>
<tr>
<th>WEB SUB-CODE</th>
<td><input type = "text" id = "SUB-CODE" size = "7"/></td>
</tr>
<tr>
<th>TEST 1 MARKS</th>
<td><input type = "text" id = "T1" size = "2"/></td>
</tr>
<tr>
<th>TEST 2 MARKS</th>
<td><input type = "text" id = "T2" size = "2"/></td>
</tr>
<tr>
<th>TEST 3 MARKS</th>
<td><input type = "text" id = "T3" size = "2"/></td>
</tr>
</table>
<p>
<input type = "submit" value = "AVERAGE_MARKS" />
</p>
</form>
<script type = "text/javascript" src = "TESTR.JS">
 </script>
</body>
</html>

//TEST.JS
function compute()
{
var T1 = document.getElementById("T1").value;
var T2 = document.getElementById("T2").value;
var T3 = document.getElementById("T3").value;
var value = 0;

if ((T1&&T2) > T3)
{ value = (T1*1 + T2*1)/4;
alert(value);
}

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 152

if((T2&&T3) > T1)
{value = (T2*1 + T3*1)/4;
alert(value);
}

if((T3&&T1) > T2)
{value = (T3*1 + T1*1)/4;
alert(value);
}

}

//TESTR.JS
document.getElementById("myForm").onsubmit = compute;

OUTPUT:

4. Refer page 80 and 81
5. Refer page 79
6. //sort_num.html

<html>
<body>
<script type = "text/javascript" src = "sort_num.js">
</script>
</body>
</html>

//sort_num.js
var choice = prompt("Select your choice \n" +
 "1 Ascending Order of 40, 100, 1, 5, 25, 10\n" +
 "2 Descending Orderof 40, 100, 1, 5, 25, 10\n");

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 153

var points = [40,100,1,5,25,10];
var i=0;
switch(choice)
{
 case "1": document.write("ASCENDING Order
");
 points.sort(function(a,b){return a-b});
 break;

 case "2": document.write("DESCENDING Order
 ");
 points.sort(function(a,b){return b-a});
 break;
 default: document.write("invalid choice");
}

for (i=0;i<points.length;i++)
{
 document.write(points[i] + "
");
}

7. Already Mentioned
8. Refer page 88
9. Refer page 86
10. Already Mentioned
11. Refer page 82
12. Already Mentioned
13. Already Mentioned
14. Already Mentioned
15. Already Mentioned
16. //unit5-16.html

<html>
<head>
<title> Favourite Subject</title>
<script type = "text/javascript" >
function dChoice(ch)

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 154

{
switch(ch)
{
case 1: alert("Object Oriented Modeling and Design is handled by Mrs. Y Mamatha Rao");
 break;
case 2: alert("Software Architecture is handled by Mr. RaviKumar S G");
 break;
case 3: alert("Programming the Web is handled by Mr. Prakasha S");
 break;
case 4: alert("Data Mining is handled by Mrs. Sudha V");
 break;
case 5: alert("JAVA and J2EE is handled by Mrs. Rashmi G N");
 break;
case 6: alert("C# and .Net is handled by Mrs. Niharika Kumar");
 break;
default: alert("Ooops..Invalid choice :O");
 break;
}
}
</script>
</head>
<body>
<h4> Choose your favourite Subject</h4>
<form id = "myForm" action = " ">
<p>
<label><input type = "radio" name = "dButton" value = "1" onclick = "dChoice(1)"/>
OOMD</label>

<label><input type = "radio" name = "dButton" value = "2" onclick = "dChoice(2)"/> SA</label>

<label><input type = "radio" name = "dButton" value = "3" onclick = "dChoice(3)"/> WP</label>

<label><input type = "radio" name = "dButton" value = "4" onclick = "dChoice(4)"/> DM</label>

<label><input type = "radio" name = "dButton" value = "5" onclick = "dChoice(5)"/> JAVA</label>

<label><input type = "radio" name = "dButton" value = "6" onclick = "dChoice(6)"/> C#</label>
</p>
</form>
</body>
</html>

17. Refer page 86
18. Refer page 88

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 155

UNIT 6 – VTU PAPER SOLUTIONS

1. Refer page 91, 92 and 93
2. Refer page 101 and 102
3. Refer page

a. 91
b. 98
c. 96
d. 100

4. //unit6-4.html
<html >
 <head>
 <title> Image 1 2 3 </title>
 <style type = "text/css" >
 .act {position: absolute; top: 0; left: 100; z-index: 0;" />
 </style>
 <script type = "text/javascript" src="unit6-4.js">
var top = "Ramya";

function toTop(newTop)
{
 domTop = document.getElementById(top).style;
 domNew = document.getElementById(newTop).style;
 domTop.zIndex = "0";
 domNew.zIndex = "10";
 top = newTop;
}
 </script>
 </head>
 <body>
 <p>

 <h1>1 </h1>

 </p><p>

 <h1>2</h1>

 </p><p>

 <h1>3</h1>

 </p><p>
 <img class = "act" id = "Ramya" src = "Ramya.jpg"
 alt = "(Picture of a Ramya)" />
 <img class = "act" id = "radhika-pandit" src = "radhika-pandit.jpg"
 alt = "(Picture of a radhika-pandit)" />
 <img class = "act" id = "Priyamani" src = "Priyamani.jpg"
 alt = "(Picture of a Priyamani)" />
 </p><p></p>
 </body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 156

//unit6-4.js
var top = "Ramya";

function toTop(newTop)
{
 domTop = document.getElementById(top).style;
 domNew = document.getElementById(newTop).style;
 domTop.zIndex = "0";
 domNew.zIndex = "10";
 top = newTop;
}

BY CLICKING ON “1”, WE GET

BY CLICKING ON “2”, WE GET

BY CLICKING ON “3”, WE GET

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 157

5. Already mentioned
6. //stacking.html

<html>
<head>
<title>Dynamic Stacking of Images</title>

<style type = "text/css">
.image1
{
position:absolute;
top: 0;
left: 0;
z-index:1;
}
.image2
{
position:absolute;
top:50px;
left: 110px;
z-index:2;
}
.image3
{
position:absolute;
top: 100px;
left: 220px;
z-index:3;
}
</style>
<script type="text/javascript">
var top = "p";
function toTop(newTop)
{
var oldTop=document.getElementById(top).style;
oldTop.zIndex="0";
var newNew=document.getElementById(newTop).style;
newNew.zIndex="10";
top=document.getElementById(newTop).id;
}
</script>
</head>
<body>
<p class="image1" id="p" onmouseover="toTop('p')">

</p>
<p class="image2" id="rp" onmouseover="toTop('rp')">

</p>
<p class="image3" id="r" onmouseover="toTop('r')" >

</p>
</body>
</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 158

//stacking.js
var top = "r";
function toTop(newTop)
{
var domTop=document.getElementById(top).style;
domTop.zIndex="0";
var domNew=document.getElementById(newTop).style;
domNew.zIndex="10";
top=document.getElementById(newTop).id;
}

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 159

7. //unit6-7.html
<html>
<head>
<title>Sense events anywhere</title>
<script type="text/javascript">
function displayIt(evt)
{
var dom=document.getElementById("message");
dom.style.left=(evt.clientX - 130) + "px";
dom.style.top=(evt.clientY - 25) + "px";
dom.style.visibility="visible";
}
function hideIt()
{
document.getElementById("message").style.visibility="hidden";
}
</script>
</head>
<body onmousedown="displayIt(event);" onmouseup="hideIt();">
<p>
<span id="message"
style = "color:red; visibility:hidden; position:relative; font-size:25pt; font-weight:bold;">
"Hello, How Are You?"

<
br>

<
br>

<
br>

</p>
</body>
</html>

8. Refer page 103
9. Already mentioned about Position Property
10. Already mentioned

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 160

11. Already mentioned
12. Already mentioned
13. Already mentioned
14. Already mentioned
15. Already mentioned
16. //unit6-16.html

<html>
<head><title>Drag and Drop</title>
<script type = "text/javascript" >
var diffx, diffy, theElement;
function grabber(event)
{
theElement=event.currentTarget;
var posX=parseInt(theElement.style.left);
var posY=parseInt(theElement.style.top);
diffx=event.clientX - posX;
diffy=event.clientY - posY;
document.addEventListener("mousemove",mover,true);
document.addEventListener("mouseup",dropper,true);
event.stopPropagation();
event.preventDefault();
}
function mover(event)
{
theElement.style.left=(event.clientX - diffx) + "px";
theElement.style.top=(event.clientY - diffy) + "px";
event.stopPropagation();
}
function dropper(event)
{
document.removeEventListener("mouseup", dropper, true);
document.removeEventListener("mousemove", mover, true);
event.stopPropagation();
}
</script>
</head>
<body>
<h3>Arrange the following subjects of VII Semester according to subject codes</h3>
<h3>1.
2.
3.
4.
5.
6.
</h3>
<p>
<span style = "position: absolute; top:200px; left:100px; background-color:yellow;"
 onmousedown="grabber(event);"> SA
<span style = "position: absolute; top:200px; left:200px; background-color:yellow;"
 onmousedown="grabber(event);">DM
<span style = "position: absolute; top:200px; left:300px; background-color:yellow;"
 onmousedown="grabber(event);"> DBMS
<span style = "position: absolute; top:200px; left:400px; background-color:yellow;"
 onmousedown="grabber(event);">OOMD
<span style = "position: absolute; top:200px; left:500px; background-color:yellow;"
 onmousedown="grabber(event);"> C++
<span style = "position: absolute; top:200px; left:600px; background-color:yellow;"
 onmousedown="grabber(event);"> SE
<span style = "position: absolute; top:200px; left:700px; background-color:yellow;"

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 161

 onmousedown="grabber(event);"> WP
<span style = "position: absolute; top:200px; left:800px; background-color:yellow;"
 onmousedown="grabber(event);"> C#
<span style = "position: absolute; top:200px; left:900px; background-color:yellow;"
 onmousedown="grabber(event);"> JAVA
<span style = "position: absolute; top:200px; left:1000px; background-color:yellow;"
 onmousedown="grabber(event);"> FS
</p>
</body>
</html>

INITIALLY

After dragging and dropping certain elements, we get,

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 162

UNIT 7 – VTU PAPER SOLUTIONS

1. Refer page 112
2. Refer page 118 and 119
3. Refer UNIT 8 From Text Book
4. Refer page 110 PCDATA, EMPTY and ANY
5. Refer page 110
6. Refer page 112 and 113
7. Refer page 121
8. Refer page 109 onwards
9. //cars.xml

<?xml version = "1.0" encoding = "utf-8"?>
<!DOCTYPE car_catalog SYSTEM "cars.dtd">
<?xml-stylesheet type = "text/css" href = "cars.css"?>
 <car_catalog>
 <car>
 <year> 1997 </year>
 <make> magna </make>
 <model> Impala </model>
 <color> Light blue </color>
 <engine>
 <number_of_cylinders> 8 cylinder
 </number_of_cylinders>
 <fuel_system> multi-port fuel injected </fuel_system>
 </engine>
 <number_of_doors> 4 door </number_of_doors>
 <transmission_type> 4 speed automatic
 </transmission_type>
 <accessories radio = "yes" air_conditioning = "yes"
 power_windows = "yes"
 power_steering = "yes"
 power_brakes = "yes" />
 </car>
 <car>
 <year> 1965 </year>
 <make> sportz </make>
 <model> Mustang </model>
 <color> White </color>
 <engine>
 <number_of_cylinders> 8 cylinder
 </number_of_cylinders>
 <fuel_system> 4BBL carburetor </fuel_system>
 </engine>
 <number_of_doors> 2 door </number_of_doors>
 <transmission_type> 3 speed manual </transmission_type>
 <accessories radio = "yes" air_conditioning = "no"
 power_windows = "no" power_steering = "yes"
 power_brakes = "yes" />
 </car>
 <car>
 <year> 1985 </year>
 <make> auto </make>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 163

 <model> Camry </model>
 <color> Blue </color>
 <engine>
 <number_of_cylinders> 4 cylinder
 </number_of_cylinders>
 <fuel_system> fuel injected </fuel_system>
 </engine>
 <number_of_doors> 4 door </number_of_doors>
 <transmission_type> 4 speed manual </transmission_type>
 <accessories radio = "yes" air_conditioning = "yes"
 power_windows = "no" power_steering = "yes"
 power_brakes = "yes" />
 </car>
 </car_catalog>

//cars.js
car {display: block; margin-top: 15px; color: blue;}
year, make, model {color: red; font-size: 16pt;}
color {display: block; margin-left: 20px; font-size: 12pt;}
engine {display: block; margin-left: 20px;}
 number_of_cylinders {font-size: 12pt;}
 fuel_system {font-size: 12pt;}
number_of_doors {display: block; margin-left: 20px; font-size: 12pt;}
transmission_type {display: block; margin-left: 20px; font-size:12pt;}

10. Refer page 118
11. Already Mentioned
12. Refer page 109
13. Refer page 114
14. Refer page 113
15. Already Mentioned
16. Already Mentioned
17. Already Mentioned
18. Already Mentioned
19. Already Mentioned
20. Already Mentioned

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 164

SOLUTIONS TO
SELECTED

TEXT BOOK EXERCISES
REFERENCE: ROBERT W SEBESTA

Exercise 2.1

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 2.1 </title>

</head>

<body>

<h2> Ruper B. Baggins </h2>

<p>

1321 Causeway Circle

Middle, Earth

rbaggins@miderth.net

</p>

<hr />

<h3> Bush Watcher </h3>

<p>

 Forest Keepers, Limited

14 Cranberry Way

Middle, Earth

 (no web site yet)

</p>

</body>

</html>

Exercise 2.3

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 2.3 </title>

</head>

<body>

<h2> Ruper B. Baggins </h2>

<p>

1321 Causeway Circle

Middle, Earth

rbaggins@miderth.net

 Mr. Baggins' Background

</p>

<hr />

<h3> Bush Watcher </h3>

<p>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 165

 Forest Keepers, Limited

14 Cranberry Way

Middle, Earth

 (no web site yet)

</p>

</body>

</html>

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e2_31.html

 This is part of the solution to Exercise 2.3

 (The second document for the background info)

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 2.3 (background) </title>

</head>

<body>

<p>

Although we share the same family name, I am not in any way

related to the famous (or is it infamous) adventurer, Bilbo.

I have a lovely wife, Elvira, and two grown children, Max

and Miriam. Max has chosen to follow me in my profession,

which is described below. Miriam is a beekeeper for the town

bookkeeper, who keeps bees as a second job.

</p>

<p>

I am employed by Forest Keepers, Limited. My job, as I understand

it, is to keep an eye on the 4 acres of wild cranberries that

grow in the swamp at the edge of the village forest. I am required

to file a daily report, in triplicate, on the condition of the

cranberry bushes. To accomplish my task, I walk by and inspect

every cranberry bush in the swamp every workday. My employer provides

me with wading boots for my job. I pick up the boots at the office

every weekday morning and turn them back in, after a thorough

cleaning, after each workday.

</p>

</body>

</html>

Exercise 2.4

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e2_4.html

 A solution to Exercise 2.4 - an unordered list

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Unordered List </title>

</head>

<body>

<h3> Grocery List </h3>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 166

 milk - 2%, 2 gallons

 bread - butter top wheat

 cheddar cheese - sharp, 1 lb.

 soup - vegetable beef, 3 cans

 hamburger - 80% fat free, 2 lbs.

 orange juice - not from concentrate, 1/2 gallon

 eggs - large, 1 dozen

</body>

</html>

Exercise 2.8

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e2_8.html

 A solution to Exercise 2.8 - a nested, ordered list

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> An Ordered List </title>

</head>

<body>

<h3> My Uncles, Aunts, and Cousins </h3>

 Violet Vinelli (my mother)

 Frederick Vinelli

 Mary Vinelli

 Betty Ann Boop

 Bob Vinelli

 Roger Vinelli

 Maxine Robinson

 John Robinson

 Patty Robinson

 Lucille Robinson

 Thomas Vinelli

 Albert Vinelli

 Alison MacKinsey

 Alton Vinelli

 Albert Alphonso (my father)

 Herbert Alphonso

 Louise Alphonso

 Pam Alphonso

 Fred Alphonso

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 167

 Ann Marie Predicate

 George Predicate

 Michael Predicate

 Darcie Predicate

 Ferdinand Alphonso

 Noah Alphonso

 Leah Alphonso

 Jo Alphonso

</body>

</html>

Exercise 2.9

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e2_9.html

 A solution to Exercise 2.9 - a simple table

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> A simple table </title>

</head>

<body>

<table border = "border">

<caption> Trees </caption>

 <tr>

 <th> </th>

 <th> Pine </th>

 <th> Maple </th>

 <th> Oak </th>

 <th> Fir </th>

 </tr>

 <tr>

 <th> Average Height (feet) </th>

 <td> 55 </td>

 <td> 50 </td>

 <td> 50 </td>

 <td> 65 </td>

 </tr>

 <tr>

 <th> Average Width (inches) </th>

 <td> 18 </td>

 <td> 26 </td>

 <td> 24 </td>

 <td> 28 </td>

 </tr>

 <tr>

 <th> Typical Lifespan (years) </th>

 <td> 150 </td>

 <td> 230 </td>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 168

 <td> 310 </td>

 <td> 135 </td>

 </tr>

 <tr>

 <th> Leaf Type </th>

 <td> Long needles </td>

 <td> Broadleaf </td>

 <td> Split leaf </td>

 <td> Short needles </td>

 </tr>

</table>

</body>

</html>

Exercise 2.10

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e2_10.html

 A solution to Exercise 2.10 - a simple table

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> A simple table </title>

</head>

<body>

<table border = "border">

<caption> Tree Characteristics </caption>

 <tr>

 <td rowspan = "2" colspan = "2"> </td>

 <th colspan = "4"> Tree </th>

 </tr>

 <tr>

 <th> Pine </th>

 <th> Maple </th>

 <th> Oak </th>

 <th> Fir </th>

 </tr>

 <tr>

 <th rowspan = "4"> Characteristic </th>

 <th> Average Height (feet) </th>

 <td> 55 </td>

 <td> 50 </td>

 <td> 50 </td>

 <td> 65 </td>

 </tr>

 <tr>

 <th> Average Width (inches) </th>

 <td> 18 </td>

 <td> 26 </td>

 <td> 24 </td>

 <td> 28 </td>

 </tr>

 <tr>

 <th> Typical Lifespan (years) </th>

 <td> 150 </td>

 <td> 230 </td>

 <td> 310 </td>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 169

 <td> 135 </td>

 </tr>

 <tr>

 <th> Leaf Type </th>

 <td> Long needles </td>

 <td> Broadleaf </td>

 <td> Split leaf </td>

 <td> Short needles </td>

 </tr>

</table>

</body>

</html>

Exercise 3.1

/* Book Layout Style Sheet */

h1 {font: bold 24pt Helvetica 'Times New Roman'}

h2 {font: bold 20pt Helvetica 'Times New Roman'}

h3 {font: bold 16pt Helvetica 'Times New Roman'}

p {font: 12pt 'Times New Roman'}

Exercise 3.2

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e3_2.html

 A solution to Exercise 3.2 - a styled table

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> A Styled Table </title>

<style type = "text/css">

 <!--

 td.win {font-size: 16pt; color: red;}

 td.lose {font-size: 14pt; color: blue;}

 -->

</style>

</head>

<body>

<table border = "border">

<caption style = "font-size: 18pt"> Football Scores </caption>

 <tr>

 <th> Team </th>

 <th> Score </th>

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: gold;"> Colorado </th>

 <td class = "win"> 30 </td>

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: red;"> Nebraska </th>

 <td class = "lose"> 29 </td>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 170

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: grey;"> Iowa State </th>

 <td class = "win"> 17 </td>

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: blue;"> Kansas </th>

 <td class = "lose"> 10 </td>

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: purple;"> Kansas State </th>

 <td class = "win"> 48 </td>

 </tr>

 <tr>

 <th style = "font-family: 'Century Gothic';

 font-style: italic;

 color: green;"> Missouri </th>

 <td class = "lose"> 13 </td>

 </tr>

</table>

</body>

</html>

Exercise 3.4

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e3_4.html

 A solution for Exercise 3.4 - floating a text element

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head> <title> Floating a text element </title>

</head>

<body>

<p style = "float: left; width: 1.5in; margin-right: 10px;

 margin-bottom: 10px;" >

My airplane soars like an eagle and handles like

a hummingbird.

</p>

<p>

The 210 is the flagship

single-engine Cessna aircraft. Although the 210 began as a

four-place aircraft, it soon acquired a third row of seats,

stretching it to a six-place plane. The 210 is classified

as a high-performance airplane, which means its landing

gear is retractable and its engine has more than 200

horsepower. In its first model year, which was 1960,

the 210 was powered by a 260-horsepower fuel-injected

six-cylinder engine that displaced 471 cubic inches.

The 210 is the fastest single-engine airplane ever

built by Cessna.

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 171

</p>

</body>

</html>

Exercise 3.6

<?xml version = "1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e36.html

 A solution to Exercise 3.6

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head> <title> Exercise 3.6 </title>

 <style type = "text/css">

 ol {list-style-type: upper-roman;}

 ol ol {list-style-type: upper-alpha;}

 ol ol ol {list-style-type: decimal;}

 li.pink {color: pink}

 li.blue {color: blue}

 li.red {color: red}

 </style>

 </head>

 <body>

 <li class = "pink"> Compact Cars

 Two door

 Hyundai Accent

 Chevrolet Cobalt

 Honda Civic

 Four door

 Hyundai Accent

 Chevrolet Cobalt

 Honda Civic

 <li class = "blue"> Midsize Cars

 Two door

 Honda Accord

 Hyundai Genesis

 Nissan Altima

 Four door

 Honda Accord

 Dodge Avenger

 Ford Fusion

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 172

 <li class = "red"> Sports Cars

 Coupe

 Jaguar XK

 Ford Mustang

 Nissan Z

 Convertible

 Mazda Miata

 Ford Mustang

 Lotus Elise

 </body>

</html>

Exercise 3.12

<?xml version = "1.0" encoding = "utf-8" ?>

<!DOCTYPE html PUBLIC "-//w3c//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e312.html

 A solution to Exercise 3.12

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head> <title> Exercise 3.12 </title>

 <style type = "text/css">

 dt {font-family: Courier; font-size: 12pt;}

 dd {font-family: 'Times New Roman'; font-size: 14pt;

 font-style: italic;}

 </style>

 </head>

 <body>

 <h3> Single-Engine Cessna Airplanes </h3>

 <dl>

 <dt> 152 </dt>

 <dd> Two-place trainer </dd>

 <dt> 172 </dt>

 <dd> Smaller four-place airplane </dd>

 <dt> 182 </dt>

 <dd> Larger four-place airplane </dd>

 <dt> 210 </dt>

 <dd> Six-place airplane - high performance </dd>

 </dl>

 </body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 173

Exercise 4.1

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_1.html - A solution to Exercise 4.1

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.1 </title>

</head>

<body>

<script type = "text/javascript">

<!--

var number, square, cube;

document.write("Number, Square, Cube

");

for (number = 5; number < 16; number++) {

 square = number * number;

 cube = number * square;

 document.write(number + ", " + square + ", " + cube + "
");

}

// -->

</script>

</body>

</html>

Exercise 4.2

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_2.html - A solution to Exercise 4.2

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.2 </title>

</head>

<body>

<script type = "text/javascript">

<!--

var first = 1, second = 1, next, count;

document.write("First 20 Fibonacci Numbers

");

document.write("1 - 1
 2 - 1
");

for (count = 3; count <= 20; count++) {

 next = first + second;

 document.write(count + " - " + next + "
");

 first = second;

 second = next;

}

// -->

</script>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 174

</body>

</html>

Exercise 4.4

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_4.html - A solution to Exercise 4.4

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.4 </title>

</head>

<body>

<script type = "text/javascript">

<!--

var first = 1, second = 1, next, count;

number = prompt("How many Fibonacci numbers do you want? (3-50)", "");

if (number >= 3 && number <= 50) {

 document.write("First " + number + " Fibonacci Numbers

");

 document.write("1 - 1
 2 - 1
");

 for (count = 3; count <= number; count++) {

 next = first + second;

 document.write(count + " - " + next + "
");

 first = second;

 second = next;

 }

 }

else

 document.write("Error - number not in the range 3-50");

// -->

</script>

</body>

</html>

Exercise 4.6

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_6.html - A solution to Exercise 4.6

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.6 </title>

</head>

<body>

<script type = "text/javascript">

<!--

var first = 1, second = 1, next, count;

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 175

str = prompt("Please input your sentence", "");

var words = str.split(" ");

words = words.sort();

words_len = words.length;

for (count = 0; count < words_len; count++)

 document.write(words[count] + "
");

// -->

</script>

</body>

</html>

Exercise 4.7

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_7.html - A solution to Exercise 4.7

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.7 </title>

<script type = "text/javascript">

<!--

// A function to compare strings for reverse alphabetic order

function dec_order(a, b) {

 if (a > b)

 return -1;

 else if (a < b)

 return 1;

 else return 0;

}

// -->

</script>

</head>

<body>

<script type = "text/javascript">

<!--

var order, str, words, word_len, count;

// Get the input

str = prompt("Please input your sentence", "");

order = prompt("What order? (ascending or descending)", "");

// If the order is recognized, issue an error message

if (order != "descending" && order != "ascending")

 document.write("Error - order is incorrectly specified
");

// Otherwise, do the sort, depending on the requested order

else {

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 176

 var words = str.split(" ");

 if (order == "ascending")

 words = words.sort();

 else

 words = words.sort(dec_order);

// Write out the results

 words_len = words.length;

 for (count = 0; count < words_len; count++)

 document.write(words[count] + "
");

}

// -->

</script>

</body>

</html>

Exercise 4.9

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_9.html - A solution to Exercise 4.9

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.9 </title>

<script type = "text/javascript">

<!--

// Function e_names

// Parameter: an array of strings

// Returns: the number of given strings that end

// in either "ie" or "y"

function e_names(names) {

 var len, index, count = 0;

 len = names.length;

// Loop to use pattern matching to produce the count

 for (index = 0; index < len; index++) {

 position1 = names[index].search(/ie$/);

 position2 = names[index].search(/y$/);

 if (position1 + position2 > -2)

 count++;

 }

 return count;

}

// -->

</script>

</head>

<body>

<script type = "text/javascript">

<!--

// Function e_names tester

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 177

var new_names = new Array ("freddie", "bob", "mieke", "yahoo2", "georgey");

result = e_names(new_names);

document.write("The number of special names is: " + result + "
");

// -->

</script>

</body>

</html>

Exercise 4.14

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e4_14.html - A solution to Exercise 4.14

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 4.14 </title>

<script type = "text/javascript">

<!--

var result;

// Function reverser

// Parameter: a number

// Returns: the number with its digits in reverse order

// Note: Math.floor must be used to get the integer part

// of the division operations

function reverser(num) {

 var digit, position = 0;

// If the number has just one digit, that's it

 if (num < 10)

 return num;

// Get the first digit

 result = num % 10;

 num = Math.floor(num / 10);

// Loop to produce the result for the rest

 do {

 digit = num % 10;

 result = 10 * result + digit;

 num = Math.floor(num / 10);

 } while (num >= 1);

 return result;

}

// -->

</script>

</head>

<body>

<script type = "text/javascript">

<!--

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 178

// Function reverser tester

var num1 = 2468, num2 = 7;

result = reverser(num1);

document.write("The reverse of 2468 is: " + result + "
");

result = reverser(num2);

document.write("The reverse of 7 is: " + result + "
");

// -->

</script>

</body>

</html>

Exercise 5.1

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e51.hmtl

 A solution to Exercise 5.1 - events with radio buttons

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 5.1 </title>

 <script type = "text/javascript" src = "e51.js" >

 </script>

 </head>

 <body>

 <h4> Choose your favorite color </h4>

 <form>

 <label> <input type = "radio" name = "colorButton"

 value = "red"

 onClick = "colorChoice('red')" />

 Red </label>

 <label> <input type = "radio" name = "colorButton"

 value = "blue"

 onClick = "colorChoice('blue')" />

 Blue </label>

 <label> <input type = "radio" name = "colorButton"

 value = "green"

 onClick = "colorChoice('green')" />

 Green </label>

 <label> <input type = "radio" name = "colorButton"

 value = "yellow"

 onClick = "colorChoice('yellow')" />

 Yellow </label>

 <label> <input type = "radio" name = "colorButton"

 value = "orange"

 onClick = "colorChoice('orange')" />

 Orange </label>

 </form>

 </body>

</html>

// e51.js - The JavaScript solution for Exercise 5.1

//

// The event handler function to produce an alert message

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 179

// about the chosen color

function colorChoice (color) {

 switch (color) {

 case "red":

 alert("Your favorite color is red");

 break;

 case "blue":

 alert("Your favorite color is blue");

 break;

 case "green":

 alert("Your favorite color is green");

 break;

 case "yellow":

 alert("Your favorite color is yellow");

 break;

 case "orange":

 alert("Your favorite color is orange");

 break;

 default:

 alert("Error in JavaScript function colorChoice");

 break;

 }

}

Exercise 5.2

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e5_2.hmtl

 A solution to Exercise 5.2 - events with radio buttons

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 5.2 </title>

 <script type = "text/javascript" src = "e521.js" >

 </script>

 </head>

 <body>

 <h4> Choose your favorite color </h4>

 <form id = "colorsForm">

 <p>

 <label> <input type = "radio" name = "colorButton"

 value = "red" /> Red

 </label>

 </p> <p>

 <label> <input type = "radio" name = "colorButton"

 value = "blue" /> Blue

 </label>

 </p><p>

 <label> <input type = "radio" name = "colorButton"

 value = "green" /> Green

 </label>

 </p><p>

 <label> <input type = "radio" name = "colorButton"

 value = "yellow" /> Yellow

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 180

 </label>

 </p><p>

 <label> <input type = "radio" name = "colorButton"

 value = "orange" /> Orange

 </label>

 </p>

 </form>

 <script type = "text/javascript" src = "e522.js" >

 </script>

 </body>

</html>

// e521.js - JavaScript for the solution to Exercise 5.2

//

// The event handler function to produce an alert message

// about the chosen color

function colorChoice () {

 var color;

// Put the DOM address of the elements array in a local variable

 var radioElement = document.getElementById("colorsForm").elements;

// Determine which button was pressed

 for (var index = 0; index < radioElement.length; index++) {

 if (radioElement[index].checked) {

 color = radioElement[index].value;

 break;

 }

 }

// Produce an alert message about the chosen color

 switch (color) {

 case "red":

 alert("Your favorite color is red");

 break;

 case "blue":

 alert("Your favorite color is blue");

 break;

 case "green":

 alert("Your favorite color is green");

 break;

 case "yellow":

 alert("Your favorite color is yellow");

 break;

 case "orange":

 alert("Your favorite color is orange");

 break;

 default:

 alert("Error in JavaScript function colorChoice");

 break;

 }

}

// e522.js - Handler registration for the solution to

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 181

// Exercise 5.2

var dom = document.getElementById("colorsForm");

dom.elements[0].onclick = colorChoice;

dom.elements[1].onclick = colorChoice;

dom.elements[2].onclick = colorChoice;

dom.elements[3].onclick = colorChoice;

dom.elements[4].onclick = colorChoice;

Exercise 5.4

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e54.html

 A solution to Exercise 5.4

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 5.4 </title>

 <script type = "text/javascript" src = "e54.js" >

 </script>

 </head>

 <body>

 <h3> Order Form </h3>

 <form name = "orderForm" onSubmit = "finish()">

 <p>

 <label> <input type = "text" name = "apples"

 size = "3"

 onChange = "appleHandler()" />

 Apples

 </label>

 </p><p>

 <label> <input type = "text" name = "oranges"

 size = "3"

 onChange = "orangeHandler()" />

 Oranges

 </label>

 </p><p>

 <label> <input type = "text" name = "bananas"

 size = "3"

 onChange = "bananaHandler()" />

 Bananas

 </label>

 </p><p>

 <input type = "reset" name = "reset" />

 <input type = "submit" name = "submit" />

 </p>

 </form>

 </body>

</html>

// e54.js - The JavaScript file for the solution

// to Exercise 5.4

var total = 0;

// The event handler functions for the text boxes

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 182

function appleHandler() {

 var number = document.orderForm.apples.value;

 total = total + number * 0.59;

}

function orangeHandler() {

 var number = document.orderForm.oranges.value;

 total = total + number * 0.49;

}

function bananaHandler() {

 var number = document.orderForm.bananas.value;

 total = total + number * 0.39;

}

// The event handler function to produce the total cost message

// when "submit" is clicked

function finish() {

 total = total * 1.05;

 alert("Thank you for your order \n" +

 "Your total cost is: $" + total + "\n");

}

Exercise 5.5

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e55.html

 The XHTML part of a solution to Exercise 5.5

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 5.5 </title>

 <script type = "text/javascript" src = "e551.js">

 </script>

 </head>

 <body>

 <h3> Order Form </h3>

 <form name = "" onSubmit = "finish()">

 <p>

 <label> <input type = "text" id = "apples" size = "3" />

 Apples

 </label>

 </p><p>

 <label> <input type = "text" id = "oranges" size = "3" />

 Oranges

 </label>

 </p><p>

 <label> <input type = "text" id = "bananas" size = "3" />

 Bananas

 </label>

 </p><p>

 <input type = "reset" name = "reset" />

 <input type = "submit" name = "submit" />

 </p>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 183

 </form>

 <script type = "text/javascript" src = "e552.js">

 </script>

 </body>

</html>

// e551.js -- The JavaScript part of the solution

// to Exercise 5.5

var total = 0;

// The event handler functions for the text boxes

function appleHandler() {

 var myApple = document.getElementById("apples");

 var number = myApple.value;

 if (number < 0 || number > 99) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of 0 - 99] \n" +

 "Please enter a valid quantity");

 myApple.focus();

 myApple.select();

 return false;

 }

 else {

 total = total + number * 0.59;

 return true;

 }

}

function orangeHandler() {

 var myOrange = document.getElementById("oranges");

 var number = myOrange.value;

 if (number < 0 || number > 99) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of 0 - 99] \n" +

 "Please enter a valid quantity");

 myOrange.focus();

 myOrange.select();

 return false;

 }

 else {

 total = total + number * 0.39;

 return true;

 }

}

function bananaHandler() {

 var myBanana = document.getElementById("bananas");

 var number = myBanana.value;

 if (number < 0 || number > 99) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of 0 - 99] \n" +

 "Please enter a valid quantity");

 myBanana.focus();

 myBanana.select();

 return false;

 }

 else {

 total = total + number * 0.49;

 return true;

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 184

 }

}

// The event handler function to produce the total cost message

// when "submit" is clicked

function finish() {

 total = total * 1.05;

 alert("Thank you for your order \n" +

 "Your total cost is: $" + total + "\n");

}

// e552.js - The JavaScript code to register the

// handlers

document.getElementById("apples").onchange = appleHandler;

document.getElementById("oranges").onchange = orangeHandler;

document.getElementById("bananas").onchange = bananaHandler;

Exercise 5.6

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e56.html

 A solution to Exercise 5.6

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 5.6 </title>

 <script type = "text/javascript" src = "e561.js" >

 </script>

 </head>

 <body>

 <h3> Order Form </h3>

 <form name = "orderForm" onSubmit = "finish()">

 <p>

 <label> <input type = "text" id = "apples"

 size = "3" /> Apples

 </label>

 </p><p>

 <label> <input type = "text" id = "oranges"

 size = "3" /> Oranges

 </label>

 </p><p>

 <label> <input type = "text" id = "bananas"

 size = "3" /> Bananas

 </label>

 </p><p>

 <input type = "reset" name = "reset" />

 <input type = "submit" name = "submit" />

 </p>

 </form>

 <script type = "text/javascript" src = "e562.js" >

 </script>

 </body>

</html>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 185

// e561.js - Event handlers for the solution to

// Exercise 5.6

var total = 0;

// The event handler functions for the text boxes

function appleHandler() {

 var dom = document.getElementById("apples");

 var number = dom.value;

 if (number < dom.min || number > dom.max) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of " + dom.min +

 " to " + dom.max + "] \n" +

 "Please enter a valid quantity");

 dom.focus();

 dom.select();

 return false;

 }

 else {

 total = total + number * 0.59;

 return true;

 }

}

function orangeHandler() {

 var dom = document.getElementById("oranges");

 var number = dom.value;

 if (number < dom.min || number > dom.max) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of " + dom.min +

 " to " + dom.max + "] \n" +

 "Please enter a valid quantity");

 dom.focus();

 dom.select();

 return false;

 }

 else {

 total = total + number * 0.39;

 return true;

 }

}

function bananaHandler() {

 var dom = document.getElementById("bananas");

 var number = dom.value;

 if (number < dom.min || number > dom.max) {

 alert("Error - the quantity you entered in not valid" +

 "\n [It is not in the range of " + dom.min +

 " to " + dom.max + "] \n" +

 "Please enter a valid quantity");

 dom.focus();

 dom.select();

 return false;

 }

 else {

 total = total + number * 0.49;

 return true;

 }

}

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 186

// The event handler function to produce the total cost message

// when "submit" is clicked

function finish() {

 total = total * 1.05;

 alert("Thank you for your order \n" +

 "Your total cost is: $" + total + "\n");

}

// e562.js - The body part of the JavaScript for the

// solution to Exercise 5.6

// Get DOM addresses of the text boxes

var appleDom = document.getElementById("apples");

var orangeDom = document.getElementById("oranges");

var bananaDom = document.getElementById("bananas");

// Set the onchange properties for the event handlers

appleDom.onchange = appleHandler;

orangeDom.onchange = orangeHandler;

bananaDom.onchange = bananaHandler;

// Add properties for minimum and maximum values for the text boxes

appleDom.max = 99;

appleDom.min = 0;

orangeDom.max = 99;

orangeDom.min = 0;

bananaDom.max = 99;

bananaDom.min = 0;

Exercise 6.1

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e6_1.html

 A solution to Exercise 6.1

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

<head>

<title> Exercise 6.1 </title>

<style type = "text/css">

/* A style for the paragraph of text */

 .regtext {position: absolute; top: 100px; left: 100px;

 font-family: Times; font-size: 14pt; width: 330px}

/* A style for the image */

 .img {background-image: url(c172.gif); position: absolute;

 left: 190px; top: 180px; width: 100px}

</style>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 187

</head>

<body>

 <p class = "img">

 </p>

 <p class = "regtext">

 I was born on July 4th,

 1976, in Huckabee, Alaska.

 I have three brothers and

 a sister, all older than I.

 My sister, Mary, is 26 years old.

 She lives in Kalkan, Montana.

 My oldest brother, Ron, is 32

 years old. He lives in Huckabee.

 My youngest brother, Max, is

 28 years old. He lives in Pinkee,

 Wyoming. My middle brother, Fred,

 is 30 years old. He lives in

 Kinkyhollow, Nebraska.

 My parents, who are both still

 living, still live in Huckabee.

 </p>

</body>

</html>

Exercise 6.2

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e62.html

 The XHTML part of a solution to Exercise 6.2

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 6.2 </title>

 <style type = "text/css">

/* A style for the paragraph of text */

 .regtext {position: absolute; top: 150px; left: 100px;

 font-family: Times; font-size: 14pt; width: 330px}

/* A style for the image */

 .img {background-image: url(c172.gif); position: absolute;

 left: 100px; top: 150px; width: 100px}

 </style>

 <script type = "text/javascript" src = "e62.js" >

 </script>

 </head>

 <body>

 <h2> Background Image Position Control Buttons </h2>

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 188

 <p>

 <form name = "moveControl">

 <label> <input type = "radio" name = "choser"

 checked = "checked"

 onclick = "moveIt('picture', 150, 100)" />

 Northwest

 </label>

 <p/><p>

 <label> <input type = "radio" name = "choser"

 onclick = "moveIt('picture', 150, 300)" />

 Northeast

 </label>

 </p><p>

 <label> <input type = "radio" name = "choser"

 onclick = "moveIt('picture', 300, 300)" />

 Southeast

 </label>

 <p/><p>

 <label> <input type = "radio" name = "choser"

 onclick = "moveIt('picture', 300, 100)" />

 Southwest

 </label>

 </p>

 </form>

 <p class = "img" id = "picture">

 </p>

 <p class = "regtext">

 I was born on July 4th,

 1976, in Huckabee, Alaska.

 I have three brothers and

 a sister, all older than I.

 My sister, Mary, is 26 years old.

 She lives in Kalkan, Montana.

 My oldest brother, Ron, is 32

 years old. He lives in Huckabee.

 My youngest brother, Max, is

 28 years old. He lives in Pinkee,

 Wyoming. My middle brother, Fred,

 is 30 years old. He lives in

 Kinkyhollow, Nebraska.

 My parents, who are both still

 living, still live in Huckabee.

 </p>

 </body>

</html>

// e62.js - The JavaScript file for the solution to

// Exercise 6.2

/* A function to move an element */

 function moveIt(movee, newTop, newLeft) {

 dom = document.getElementById(movee).style;

/* Change the top and left properties to perform the move */

 dom.top = newTop + "px";

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 189

 dom.left = newLeft + "px";

 }

Exercise 6.3

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e63.html

 The XHTML part of a solution to Exercise 6.3

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 6.3 </title>

 <style type = "text/css">

/* A style for the paragraph of text */

 .regtext {position: absolute; top: 200px; left: 100px;

 font-family: Times; font-size: 14pt; width: 330px}

 </style>

 <script type = "text/javascript" src = "e63.js" >

 </script>

 </head>

 <body>

 <h2> Background Image Visibility Control Buttons </h2>

 <form name = "visibilityControl">

 <p>

 <label> <input type = "checkbox" name = "choser"

 onclick = "flipImage('northwest')" />

 Northwest

 </label>

 <p/><p>

 <label> <input type = "checkbox" name = "choser"

 onclick = "flipImage('northeast')" />

 Northeast

 </label>

 </p><p>

 <label> <input type = "checkbox" name = "choser"

 onclick = "flipImage('southeast')" />

 Southeast

 </label>

 </p><p>

 <label> <input type = "checkbox" name = "choser"

 onclick = "flipImage('southwest')" />

 Southwest

 </label>

 </p>

 </form>

 <p id = "northwest" style = "background-image: url(c172.gif);

 visibility: hidden; position: absolute;

 left: 100px; top: 200px; width: 100px">

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 190

 </p>

 <p id = "northeast" style = "background-image: url(c172.gif);

 visibility: hidden; position: absolute;

 left: 300px; top: 200px; width: 100px">

 </p>

 <p id = "southeast" style = "background-image: url(c172.gif);

 visibility: hidden; position: absolute;

 left: 300px; top: 350px; width: 100px">

 </p>

 <p id = "southwest" style = "background-image: url(c172.gif);

 visibility: hidden; position: absolute;

 left: 100px; top: 350px; width: 100px">

 </p>

 <p class = "regtext">

 I was born on July 4th,

 1976, in Huckabee, Alaska.

 I have three brothers and

 a sister, all older than I.

 My sister, Mary, is 26 years old.

 She lives in Kalkan, Montana.

 My oldest brother, Ron, is 32

 years old. He lives in Huckabee.

 My youngest brother, Max, is

 28 years old. He lives in Pinkee,

 Wyoming. My middle brother, Fred,

 is 30 years old. He lives in

 Kinkyhollow, Nebraska.

 My parents, who are both still

 living, still live in Huckabee.

 </p>

 </body>

</html>

// e63.js - The JavaScript part of a solution to

// Exercise 6.3

/* A function to change the visibility of an element */

 function flipImage(img) {

 dom = document.getElementById(img).style;

/* Change the visibility property */

 if (dom.visibility == "visible" || dom.visibility == "show")

 dom.visibility = "hidden";

 else

 dom.visibility = "visible";

 }

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 191

Exercise 6.5

<?xml version = "1.0" encoding = "utf-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- e65.html

 A solution to Exercise 6.5

 -->

<html xmlns = "http://www.w3.org/1999/xhtml">

 <head>

 <title> Exercise 6.5 </title>

 <style type = "text/css" >

 .planes {position: absolute; top: 100; left: 0; z-index: 0;" />

 </style>

 <script type = "text/javascript" src = "e65.js" >

 </script>

 </head>

 <body>

 <p>

 1

 </p><p>

 2

 </p><p>

 3

 </p><p>

 <img class = "planes" id = "C172" src = "c172.gif"

 alt = "(Picture of a C172)" />

 <img class = "planes" id = "cix" src = "cix.gif"

 alt = "(Picture of a Citation airplane)" />

 <img class = "planes" id = "C182" src = "c182.gif"

 alt = "(Picture of a C182)" />

 </p><p></p>

 </body>

</html>

// e65.js - The JavaScript part of a solution to

// Exercise 6.5

var top = "C172";

function toTop(newTop) {

// Get DOM addresses for the new top and the old top elements

 domTop = document.getElementById(top).style;

 domNew = document.getElementById(newTop).style;

// Set the zIndex properties of the two elements

 domTop.zIndex = "0";

 domNew.zIndex = "10";

 top = newTop;

}

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 192

Exercise 7.1

 <?xml version = "1.0" encoding = "utf-8"?>

 <!-- cars.dtd - a document type definition for

 the cars.xml document

 A solution to Exercise 7.1

 -->

 <!ELEMENT car_catalog (car+)>

 <!ELEMENT car (make, model, year, color, engine,

 number_of_doors, transmission_type, accessories)>

 <!ELEMENT make (#PCDATA)>

 <!ELEMENT model (#PCDATA)>

 <!ELEMENT year (#PCDATA)>

 <!ELEMENT color (#PCDATA)>

 <!ELEMENT engine (number_of_cylinders, fuel_system)>

 <!ELEMENT number_of_doors (#PCDATA)>

 <!ELEMENT transmission_type (#PCDATA)>

 <!ELEMENT accessories (#PCDATA)>

 <!ATTLIST accessories radio CDATA #REQUIRED>

 <!ATTLIST accessories air_conditioning CDATA #REQUIRED>

 <!ATTLIST accessories power_windows CDATA #REQUIRED>

 <!ATTLIST accessories power_steering CDATA #REQUIRED>

 <!ATTLIST accessories power_brakes CDATA #REQUIRED>

 <!ENTITY c "Chevrolet">

 <!ENTITY f "Ford">

 <!ENTITY d "Dodge">

 <!ENTITY h "Honda">

 <!ENTITY n "Nisson">

 <!ENTITY t "Toyota">

Exercise 7.2

<?xml version = "1.0" encoding = "utf-8"?>

<!-- cars.xml - A solution to Exercise 7.2

 -->

<!DOCTYPE car_catalog SYSTEM "cars.dtd">

<?xml-stylesheet type = "text/css" href = "cars.css"?>

 <car_catalog>

 <car>

 <year> 1997 </year>

 <make> &c; </make>

 <model> Impala </model>

 <color> Light blue </color>

 <engine>

 <number_of_cylinders> 8 cylinder

 </number_of_cylinders>

 <fuel_system> multi-port fuel injected </fuel_system>

 </engine>

 <number_of_doors> 4 door </number_of_doors>

 <transmission_type> 4 speed automatic

 </transmission_type>

 <accessories radio = "yes" air_conditioning = "yes"

 power_windows = "yes"

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 193

 power_steering = "yes"

 power_brakes = "yes" />

 </car>

 <car>

 <year> 1965 </year>

 <make> &f; </make>

 <model> Mustang </model>

 <color> White </color>

 <engine>

 <number_of_cylinders> 8 cylinder

 </number_of_cylinders>

 <fuel_system> 4BBL carburetor </fuel_system>

 </engine>

 <number_of_doors> 2 door </number_of_doors>

 <transmission_type> 3 speed manual </transmission_type>

 <accessories radio = "yes" air_conditioning = "no"

 power_windows = "no" power_steering = "yes"

 power_brakes = "yes" />

 </car>

 <car>

 <year> 1985 </year>

 <make> &t; </make>

 <model> Camry </model>

 <color> Blue </color>

 <engine>

 <number_of_cylinders> 4 cylinder

 </number_of_cylinders>

 <fuel_system> fuel injected </fuel_system>

 </engine>

 <number_of_doors> 4 door </number_of_doors>

 <transmission_type> 4 speed manual </transmission_type>

 <accessories radio = "yes" air_conditioning = "yes"

 power_windows = "no" power_steering = "yes"

 power_brakes = "yes" />

 </car>

 </car_catalog>

Exercise 7.4

<!-- cars.css - a style sheet for the cars.xml document

 A solution to Exercise 8.4

 -->

car {display: block; margin-top: 15px; color: blue;}

year, make, model {color: red; font-size: 16pt;}

color {display: block; margin-left: 20px; font-size: 12pt;}

engine {display: block; margin-left: 20px;}

 number_of_cylinders {font-size: 12pt;}

 fuel_system {font-size: 12pt;}

number_of_doors {display: block; margin-left: 20px; font-size: 12pt;}

transmission_type {display: block; margin-left: 20px; font-size: 12pt;}

Exercise 7.5

<?xml version = "1.0" encoding = "utf-8"?>

<!-- xslcar.xsl

 A solution to Exercise 7.5

 -->

R N S I T PROGRAMMING THE WEB NOTES

Prepared By: DIVYA K [1RN09IS016] Page 194

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl"

 xmlns = "http://www.w3.org/TR/REC-html40">

 <xsl:template match = "/">

 <h2> Car Description </h2>

 Year:

 <xsl:value-of select = "car_catalog/car/year" />

 Make:

 <xsl:value-of select = "car_catalog/car/make" />

 Model:

 <xsl:value-of select = "car_catalog/car/model" />

 Color:

 <xsl:value-of select = "car_catalog/car/color" />

 Cylinders:

 <xsl:value-of select =

 "car_catalog/car/engine/number_of_cylinders" />

 Fuel system:

 <xsl:value-of select = "car_catalog/car/engine/fuel_system" />

 Doors:

 <xsl:value-of select = "car_catalog/car/number_of_doors" />

 </xsl:template>

</xsl:stylesheet>

Exercise 7.6

<?xml version = "1.0" encoding = "utf-8"?>

<!-- xslcars.xsl

 A solution to Exercise 7.6

 -->

<xsl:stylesheet xmlns:xsl = "http://www.w3.org/TR/WD-xsl"

 xmlns = "http://www.w3.org/TR/REC-html40">

 <xsl:template match = "/">

 <h2> Car Description </h2>

 <xsl:for-each select = "car_catalog/car">

 Year:

 <xsl:value-of select = "year" />

 Make:

 <xsl:value-of select = "make" />

 Model:

 <xsl:value-of select = "model" />

 Color:

 <xsl:value-of select = "color" />

 Cylinders:

 <xsl:value-of select = "engine/number_of_cylinders" />

 Fuel system:

 <xsl:value-of select = "engine/fuel_system" />

 Doors:

 <xsl:value-of select = "number_of_doors" />

 </xsl:for-each>

 </xsl:template>

</xsl:stylesheet>

ALL THE BEST...!!!

