
Object Oriented Modeling And Design

 1

Object-oriented modeling and design

Chapter 1

Introduction

 Object oriented means a collection of discrete objects that incorporate both data structure

and behavior.

The characteristics required by an OO approach include 4 aspects:

Identity, classification, inheritance and polymorphism.

Identity means data is quantized into discrete, distinguishable entities called objects. Objects can

be concrete such as a file in a file system. Each object has its own identity. Two objects are

distinct even if all there attribute values are identical.

Classification means that objects with the same data structure and behavior are grouped into a

class. Each object is said to be an instance of a class. An object has its own value for each

attribute but shares the attribute names and operations with other instances of the class.

Inheritance is the sharing of attributes and operations among classes based on a hierarchical

relationship. A super class has general information that subclasses refine and elaborate. Each

subclass inherits all the features of its super class and adds its own unique features.

Polymorphism means that the same operation may behave differently for different classes. The

move operation for example behaves differently for a pawn than for the queen in the chess game.

An operation is a procedure or transformation that an object performs or is subject to. An

implementation of an operation by a specific class is called a method.

OO Development:

 Development refers to the software life cycle: analysis, design and implementation. The

essence of OO Development is the identification and organization of application concepts, rather

than their final representation in a programming language.

Modeling Concepts: In the past, much of the programming languages focused on implementation

rather than analysis and design.

OO development is a conceptual process independent of a programming language until final

stages.OO development is fundamentally a way of thinking and not a programming technique.

Object Oriented Modeling And Design

 2

Its greatest benefits comes from helping specifiers, developers and customers express abstract

concepts clearly and communicate them to each other.

OO Methodology:

 The process for OO development and graphical notation for representing OO concepts

consists of building a model of an application and then adding details to it during design. The

methodology has the following stages:

 System Conception: Software development begins with business analysis or users

conceiving an application and formulating tentative requirements.

 Analysis: The analyst scrutinizes and rigorously restates the requirements from system

conception by constructing models. The analyst must work with the requestor to

understand the problem, because problem statements are rarely complete or correct. The

analysis model is a precise abstraction of what the desired system must do, not how it

will be done.

It should not contain implementation decisions.

The analysis model has 2 parts:

The domain model, a description of the real-world objects reflected within the system and the

application – model, a description of the parts of the application system itself that are visible to

the user.

Eg: domain objects for a stock broker application might include stock, bond, trade and

commission.

Application objects might control the execution of trades and present the results.

 System design: The development teams devise a high – level strategy – the system

architecture for solving the application problem. They also establish policies that will

serve as a default for the subsequent, more detailed portions of design. The system

designer must decide what performance characteristics to optimize, choose a strategy of

attacking the problem and make tentative resource allocations.

 Class design: The class designer adds details to the analysis model in accordance with

the system design strategy. The focus of class design is the data structures and algorithms

needed to implement each class.

 Implementation: Implementers translate the classes and relationships developed during

class design into a particular programming language database or hardware. Programming

should be straight forward, because all of the hard decisions should have already been

Object Oriented Modeling And Design

 3

made. Some classes are not part of analysis but are introduced during design or

implementation

 Eg: data structures such as trees, hash tables and linked lists are rarely resent in the real

world and are not visible to users.

Designers introduce them to support particular algorithms. Such objects exist within a

computer and are not directly observable.

Testing must be part of an overall philosophy of quality control that occurs throughout

the life cycle. Developers must check analysis models against kinds of errors, in addition

to the testing implementations for correctness.

Three Models:

Three kinds of models are used to describe a system from different viewpoints:

The Class Model for the objects in the system and their relationships; the State Model for

the life history of objects; and the Interaction Model for the interactions among objects.

A complete description of a system requires models from all 3 viewpoints.

The class model describes the static structure of the objects in a system and their

relationships. The class model contains class diagrams. A class diagram is a graph whose

nodes are classes and whose arcs are relationships among classes.

The state model describes the aspects of an object that change over time. The state

diagram is a graph whose nodes are states and whose arcs are transitions between states

caused by events.

The interaction model describes how the objects in a system cooperate to achieve broader

results.

The interaction model starts with use case that are then elaborated with sequence and

activity diagrams. A use case focuses on the functionality of a system i.e, what a system

does for users. A sequence diagram elaborates important processing steps.

OO Themes:

 Abstraction means focusing on what an object is and does, before deciding how to

implement it.

 Encapsulation separates the external aspects of an object that are accessible to other

objects, from the internal implementation details that are hidden from other objects.

Object Oriented Modeling And Design

 4

 Combining data and behavior: The caller of an operation need not consider how many

implementations exist. Operator polymorphism shifts the burden of deciding what

implementation to use from the calling code to the class hierarchy.

 Sharing: OO technologies promote sharing at different levels. Inheritance of both data

structure and behavior lets subclasses share common code. This sharing via inheritance is

one of the main advantages of OO languages.

OO development not only lets you share information within an application but also offers

the prospect of reusing designs and code on future projects.

 Emphasis on the essence of object:

OO technology stresses what an object is, rather than how it is used. The uses of an

object depend on the details of the application and often change during development.

 Synergy: Identity, classification, polymorphism and inheritance characterize OO

languages. Each of these concepts can be used in isolaition but together they complement

each other synergistically.

Object Oriented Modeling And Design

 5

Chapter 2

Modeling As A Design Technique

A model is an abstraction of something for the purpose of understanding it before building it.

Because a model emits nonessential details it is easier to manipulate than original entity.

Modeling:

Designers build many kinds of models for various purposes before constructing things.

Examples include architectural models to show customers, airplane scale models for wind – tunel

tests, pencil sketches for composition of all paintings,.. Models serve several purposes.

 Testing a physical entity before building it:

Engineers test scale models of airplanes, cars and boats in wind tunnels and water tanks

to improve their dynamics. Recent advances in computation permit the simulation of

many physical structures without the need to build physical models. Both physical and

computer models are usually cheaper than building a complete system and enable early

correction if flaws.

 Communication with customers: Architects and product designers build models to

show their customers. Mock ups are demonstration products that imitate some or all of

the external behavior of a system.

 Visualization: Storyboards of movies, television shows and advertisements let writers

see how their ideas flow. They can modify awkward transitions, dangling ends and

unnecessary segments before detailed writing begins.

 Reduction of complexity: The main reason for modeling is to deal with systems that are

too complex to understand directly. Models reduce complexity y separating out a small

number of important things to deal with at a time.

Abstraction: is the selective examination of certain aspects of a problem. The goal of abstraction

is to isolate those aspects that are important for some purpose and suppress those aspects that are

unimportant.

A good model captures the crucial aspects of a problem and omits the others.

The 3 models: The class model represents the static, structural, ―data‖ aspects of a system.

The State model represents the temporal, behavioral, ―control‖ aspects of a system.

Object Oriented Modeling And Design

 6

The Interaction model represents the collaboration of individual objects, the ―interaction‖ aspects

of a system.

The 3 kinds of models separate a system into distinct views. The different models are not

completely independent but each model can be examined and understood by itself to a large

extent.

The different models have limited and explicit interconnection. It is always possible to create bad

designs in which the 3 models are so intertwined that they cannot be separated but a good design

isolates the different aspects of a system and limits the coupling between them.

Class Model: describes the structure of objects in a system, their identity, their relationships to

other objects, their attributes and their operations.

Our goal in constructing a class model is to capture those concepts from the real world that are

important to an application. In modeling an engineering problem, the class model should contain

terms familiar to engineers.

Class diagrams express the class model. Classes define the attribute values carried by each object

and the operations that each object performs or undergoes.

State Model: describes those aspects of objects concerned with time and the sequencing of

operations – events that mark changes, states that context for events and the organization of

events and states.

State diagrams express the state model. Each state diagram shows the state and event sequences

permitted in a system for one class of objects.

Actions and events in a state diagram become operations on objects in the class model.

Interaction Model: describes interactions between objects – how individual objects collaborate

to achieve the behavior of the system as a whole.

Use cases, sequence diagrams and activity diagrams document the interaction model. Use cases

document major themes for interaction between the system and outside actors. Sequence

diagrams show the objects that interact and the time sequence of their interactions. Activity

diagrams show the flow of control among the processing steps of a computation.

Object Oriented Modeling And Design

 7

Chapter 3

Class Modeling

Objects and Class Concepts:

Objects: The purpose of class modeling is to describe objects. An object is a concept,

abstraction or thing with identity that has meaning for an application.

 Some objects have real world counter parts while others are conceptual entities. Still

others are introduced for implementation reasons and have no correspondence to physical reality.

All objects have identity and are distinguishable. Identical twins are 2 distinct persons,

even though they may look the same. The term identity means that objects are distinguished by

their inherit existence and not by descriptive properties that they may have.

Classes: An object is an instance or occurrence of a class. A class describes a group of objects

with the same properties (attributes), behavior (operations), kinds of relationships and semantics.

Person, company, process are all classes.

Each person has name and birth date and may work at a job. Each process has an owner,

priority and list of required resources. Classes often appear as common nouns and noun phrases

in problem descriptions and discussions with users.

Objects in a class have same attributes and forms of behavior. Most objects derive their

individuality from differences in their attribute values and specific relationships to other objects.

The objects in a class share a common semantic purpose, above and beyond the requirement of

common attributes and behavior.

 Eg: a barn and a horse may both have a cost and an age. If both were regarded as purely

financial assets, they could belong to the same class. If the developer took into consideration that

a person paints a barn and feeds a horse, they would be modeled as distinct classes. The

interpretation of semantics depends on the purpose of each application and is a matter of

judgment.

Class diagrams: There are two kinds of models of structure – class diagrams and object

diagrams.

Class diagrams provide a graphic notation for modeling classes and their relationships thereby

describing possible objects.

Object Oriented Modeling And Design

 8

An object diagram shows individual objects and their relationships. A class diagram corresponds

to an infinite set of object diagrams.

 class Objects

The UML symbol for an object is a box with an object name followed by a colon and the class

name. Both the names are underlined. Convention is to list both names in bold face.

The UML symbol for a class also is a box. Our convention is to list the class name in bold face,

center the name and capitalize the first letter.

Values and Attributes: A value is a piece of data. An attribute is a named property of a class that

describes a value held by each object of the class. You can find attributes by looking for

adjectives or by abstracting typical values. Objects is to class as value is to attribute.

Name, birth date and weight are attributes of Person objects. Each attribute has a value for each

object. Each attribute name is unique within a class.

 Class with Attributes

 Objects with values

Person JoeSmith:Person MarySharp:Person :Person

Person

name: String

birth date: date

JoeSmith: Person

name =“Joe Smith”

birthdate= 21 October 1984

Mary Sharp:Person

name = “Mary Sharp”

birthdate= 16 March 1950

Object Oriented Modeling And Design

 9

Operations and Methods:

An operation is a function or procedure that may be applied to or by objects in a class. Hire , fire

and payDividend are operations on class company

All objects in a class share the same operations. Each operation has a target object as an implicit

argument. The same operation may apply to many different classes. Such an operation is

polymorphic.

A method is the implementation of an operation for a class.

Eg: A class File may have an operation print. You could implement different methods to print

ASCII files, binary files and print digitized picture files. All methods logically perform the same

task. Thus referred by generic operation print. However a different piece of code may implement

each method.

When an operation has methods on several classes, it is important that the methods all have the

same signature – the number and types of arguments and the type of result value.

Example: The class Person has attributes name and birth date and operations changeJob and

changeAddress. They are the features of Person.

Feature is a generic word for either an attribute or an operation.

The UML notation is to list operations in third compartment of the class box. Our convention is

to list the operation name in regular face, left align and use a lower case letter for the first letter.

Optional details such as an argument list; commas separate the arguments. A colon precedes the

result type.

An empty argument list in parenthesis shows explicitly that there are no arguments, otherwise

conclusions cannot be drawn.

Person

name

birthdate

changeJob

changeAddress

Object Oriented Modeling And Design

 10

Summary of notations:

A box represents a class and may have as many as 3 compartments from top to bottom:

classname, list of attributes and list of operations. Optional details such as type and default value

may follow each attribute name and optional details such as argument list and result type may

follow each operation name.

The direction indicates whether an argument is an input(in), output(out) or an input argument

that can be modified (inout). A colon precedes the type. An equal sign precedes the default

value.

The attributes and operation compartments are optional. A missing compartment means they are

unspecified.

In contrast an empty compartment means that attributes (operations) are specifid and that there

are none.

Link and Association Concepts:

They are the means for establishing relationships among objects and classes.

Links and Associations:

A link is a physical or conceptual connection among objects.

Example: Joe Smith Works-For Simplex Company. Most links relate 2 objects, but some links

relates 3 or more objects. A link is an instance of an association.

An association is a description of a group of links with common structure and common

semantics.

Example: a Person WorksFor a company. The links of an association connect objects from the

same classes.

An association describes a set of potential links in the same way that a class describes a set of

potential objects.

Example: Model for a financial application:

Stock brokerage firms need to perform tasks such as recording ownership of various stocks,

tracking dividends, alerting customers to changes in the market and computing margin

requirements.

Object Oriented Modeling And Design

 11

 Owns Stock

Class Diagram

 Object Diagram

Many- to – many associations

In the class diagram, a person may own stock in zero or more companies; a company may have

multiple persons owning its stock.

The asterisk is a multiplicity specifies the number of instances of one class that may relate to a

single class instance of another class. The UML notation for a link is a line between objects; a

line may consist of several line segments. If a link has a name then it is underlined.

The association name is optional, if the model is unambiguous. Ambiguity arises when a model

has multiple associations among the same classes.

Example: Person works for company and person owns stock in company.

Person

name

Company

name

John: Person

name = “John”

Mary: Person

name = “Mary”

Sue: Person

name = “Sue”

GE: Company

name= “GE”

Object Oriented Modeling And Design

 12

When there are multiple associations names are necessary. Associations are inherently

bidirectional. The name of a binary association usually reads in a particular direction but the

binary association can be traversed in either direction.

Example: WorksFor connects person to a company. The inverse of WorksFor could be Employs

and it connects a company to a person. In reality, both directions of traversal are equally

meaningful and refer to the same underlying association.

A reference is an attribute in one object that refers to another object.

Example: a data structure for person might contain an attribute employer that refers to a

company object and a company object might contain an attribute employees that refers to a set of

Person objects.

Multiplicity: specifies the number of instances of one class that may relate to a single instance of

an associated class. UML diagrams explicitly list multiplicity at the ends of association lines. It

specifies multiplicity with an interval , such as ―/‖ (exactly one), ―/…*‖ (one or more) or ―3..5‖ (

three to five inclusive). The special symbol ―*‖ is a shorthand notation that denotes ―many‖ (zero

or more).

Class

diagram

 many – to –many multiplicity

A person may own stock in many companies. A company may have multiple persons holding its

stock.

One – to- one association and some corresponding links:

Each country has one capital city. A capital city administers one country.

 HasCapital class diagram

Person

name

Company

name

Country

name

CapitalCity

name

Object Oriented Modeling And Design

 13

 HasCapital

 Object Diagram

Zero – or- one multiplicity:

A workstation may have one of its windows designated as the console to receive general error

messages. It is possible however, that no console window exists.

The word console is an association end name.

 1 0..1

 console

Multiplicity is a constraint on the size of a collection. Cardinality is the count of elements that

are actually in a collection.

A multiplicity of ―many‖ specifies that an object may be associated with multiple objects. But

for each association there is at most one link between a given pair of objects. If you want 2 links

between the same objects, you must have 2 associations.

Association End Names:

Multiplicity implicitly referred to the ends of associations.

 Example: one – to – many associations has 2 ends – an end with a multiplicity ―one‖ and an end

with a multiplicity ―many‖.

Association end names often appear as nouns in problem descriptions. A name appears next to

the association end.

 employee employer

 * WorksFor 0..1

Canada:Country

name=”Canada”

Ottawa:CapitalCity

name=”Ottawa"

Workstation Window

Person Company

Object Oriented Modeling And Design

 14

Person and company participate in association WorksFor. A person is an employee with respect

to a company; a company is an employer with respect to a person. Use of association end names

is optional.

Association end names are necessary for associations between 2 objects of the same class.

 Owner 1 0..1 Container

Authorized user Contents

Container and contents distinguish the 2 usages of Directory in the self – association. A directory

may contain many lesser directories and may optionally be contained itself. Association end

names can also distinguish multiple associations between the same pair of classes.

Example: each directory has exactly one user who is an owner and many users who are

authorized to use the directory.

When constructing class diagrams you should properly use association end names and not

introduce a separate class for each reference. Two instances represent a person with a child one

for child and one for parent.

 2 Wrong model

In the correct model, one person instance participates in2 or more links, twice as a parent and

zero or more times as a child.

 parent

 0..2

 Child

User Directory

Parent Child

Parent

Object Oriented Modeling And Design

 15

Ordering: Often the objects on a ―many‖ association end have no explicit order and can regard

them as a set. However, the objects have explicit order some times.

 {ordered}

 1 visibleOn

A workstation screen contains a number of overlapping windows. Each window on a screen

occurs at most once. The windows have an explicit order so only the topmost window is visible.

The ordering is an inherent part of the association. If objects indicate ordered set objects by

writing ―{ordered}‖ next to appropriate association end.

Bags and Sequences: A binary association has at most one link for a pair of objects. However,

you can permit multiple links for a pair of objects by annotating an association end with {bag} or

{sequence}. A bag is a collection of elements with duplicates allowed. A sequence is a ordered

collection of elements with duplicates allowed.

 {sequenced}

A itinerary is a sequence of airports and the same airport can be visited more than once.

Association classes: As you describe the objects of a class with the attributes, we can describe

the links of an association with attributes. The UML represents such information with an

association class.

An association class is a association that is also a class. Like a class an association can have

attributes and operations and participate in associations.

Screen Window

Itinerary Airport

Itinerary Airport

Itinerary

accessPermission

Object Oriented Modeling And Design

 16

Many – to -many associations – attributes unmistakably belong to the link and cannot be

ascribed to either object.

It is possible to fold attributes for one – to – one and one – to – many associations into the class

opposite a ―one‖ end. This is not possible for many – to – many associations.

As a rule, do not fold attributes of an association into a class.

Users may be authorized on many workstations. Each authorization carries a priority and access

privileges. A user has a home directory for each authorized work station, but several

workstations and users can share the same home directory.

Association classes are an important aspect of class modeling because they let you specify

identity and navigation paths.

The association class has only one occurrence for each pairing of person and company. In

contrast there can be any number of occurrences of purchase for each person and company.

Qualified Associations: is an association in which an attribute called the qualifier disambiguates

the objects for a ―many‖ association end. It is possible to define qualifiers for one – to – many

and many –to – many associations.

A qualifier selects among the target objects, reducing the effective multiplicity from‖many‖ to

―one‖.

Example: a bank services multiple accounts. An account belongs to a single ban. Within the

context of a bank, the account number specifies unique account. Bank and Account are classes

and accountNumber is the qualifier. Qualification reduces the effective multiplicity from one to

many to one to one.

1 0..1 qualified

 Not

 Qualified

Both models are acceptable, but the qualified model adds information. The qualified model adds

multiplicity constraint, that the combination of a bank and an account number yields at most one

account. The model conveys the significance of account number in traversing the model, as

methods will reflect. You 1
st
 specify the bank and then the account number to find the account.

Bank
accountNumber

Account

Bank
Account

accountNumber

Object Oriented Modeling And Design

 17

The notation for qualifier→small box on the end of the association line near the source class.

The box may grow out of any side (top, bottom, left, right).

The source class and qualifier yields target class.

Generalization and Inheritance:

Generalization is the relationship between a class (super class) and one or more variations of the

class (subclasses).

Generalization organizes classes by their similarities and different structuring the description of

objects. The super class holds common attributes, operations and associations; the sub classes

add specific attributes, operations and associations. Each sub class is said to inherits the features

of its super class.

Generalization is sometimes called the‖is –a‖ relationship, because each instance of a sub class is

a instance of the super class as well.

A large hollow arrowhead denotes generalization. The arrowhead points to the super class. The

curly braces denote a UML comment, indicating that there are additional subclasses that the

diagram does not show.

Equipment

name

manufacturer

weight

cost

Pump

suctionPressure

dischargePressure

flowRate

HeatExchanger

suctionPressure

dischargePressure

flowRate

Tank

volume

pressure

Object Oriented Modeling And Design

 18

The terms ancestor and descendent refer to generalization of classes across multiple levels. Use

of Generalization: has 3 purposes, one of which is support for polymorphism. Polymorphism

increases the flexibility of software you add a new sub class and automatically inherit super class

behavior.

The second purpose of generalization is to structure the description of objects. When

generalization is used, you are making a conceptual statement you are forming a taxonomy and

organizing objects on the basis of their similarities and differences.

The third purpose is to enable reuse of code inherit code within the application as well as from

part work (class library). The terms generalization, specialization and inheritance all refer to

aspects of the same idea.

Overriding Features:

A sub class may override a super class feature by defining a feature with the same name. There

are several reasons to override a feature: to specify behavior that depends on the sub class, to

tighten the specification of a feature or to improve performance.

Navigation of Class Models:

Navigation is important because it lets you exercise a model and uncover hidden flaws and

omissions so that you can repair them. You can perform navigation manually or write navigation

expressions.

 Consider the simple model for credit card accounts:

An institution may issue many credit card accounts, each identified by an account number. Each

account has a maximum credit limit, a current balance and a mailing address. The account server

one or more customers who reside at the mailing address. The institution periodically issues

statement for each account. The statement lists a payment DueDate, financeCharge and

minimum Payment. The statement itemizes various transactions that have occurred throughout

the billing interval: cash advances, interest charges, purchases, fees and adjustments to the

account. The name of the merchant is printed for each purchase.

We pose a variety of questions against the model.

*What transactions occurred for a credit card account within a time interval?

*What volume of transactions were handled by an institution in the last year?

*What customers patronized a merchant in the last year by any kind of credit card?

*How many credit card accounts does a customer currently have?

 *What is the total maximum credit for a customer, for all accounts?

Object Oriented Modeling And Design

 19

The UML incorporates a language that can express these kinds of questions –the object

Constraint language (OCL).

OCL Constructs for traversing Class Models

Attributes: You can traverse from an object to an attribute value.

Syntax: source object, followed by a dot and then the attribute name.

Example: aCreditCardAccount. maximumCredit.

Operations: You can also invoke an operation for an object or a collection of objects.

Syntax: source object or object collection, followed by a dot and then the operation. The

operation must be followed by parentheses, even if it has no arguments to avoid confusion with

attributes.

The OCL has special operations that operate on entire collections. The syntax for a collection

operation is the source object collection followed by ―‖ and then the operation.

Simple associations: A 3
rd

 use of dot notation is to traverse an association to a target end.

Example: aCustomer.MailingAddress yields a set of addresses for a customer. In contrast,

aCreditCardAccount.MailingAddress yields a single address.

Qualified associations: A qualifier lets you make a more precise traversal. The expression

aCreditCardAccount.Statement[30 November 1999] finds the statement for a credit card account

with the statement date 30 November 1999. The syntax is to enclose the qualifier value in

brackets.

Generalizations: Traversal is implicit for the OCL notation.

Filters: OCL has several kinds of filters, most common of which is the select operation.

Example: aStatement.transaction select(amount>$100) finds the transactions for a statement

in excess of $100.

Object Oriented Modeling And Design

 20

Unit 3

ADVANCED STATE MODELING

Nested State diagrams

A state diagram is a type of diagram used in computer science and related fields to describe the

behavior of systems. State diagrams require that the system described is composed of a finite

number of states; sometimes, this is indeed the case, while at other times this is a

reasonable abstraction. There are many forms of state diagrams, which differ slightly and have

different semantics.

State diagrams are used to give an abstract description of the behavior of a system. This

behavior is analyzed and represented in series of events that could occur in one or more

possible states. Hereby "each diagram usually represents objects of a single class and

track the different states of its objects through the system".

State diagrams can be used to graphically represent finite state machines. This was

introduced by Taylor Booth in his 1967 book "Sequential Machines and Automata

Theory". Another possible representation is the State transition table.

The UML state diagram is essentially a Harel state chart with standardized notation,

which can describe many systems, from computer programs to business processes. The

following are the basic notational elements that can be used to make up a diagram:

 Filled circle, pointing to the initial state

 Hollow circle containing a smaller filled circle, indicating the final state (if any)

 Rounded rectangle, denoting a state. Top of the rectangle contains a name of the state. Can

contain a horizontal line in the middle, below which the activities that are done in that state

are indicated

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/State_(computer_science)
http://en.wikipedia.org/wiki/Abstraction
http://en.wikipedia.org/wiki/Semantics#Computer_science
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/Taylor_Booth
http://en.wikipedia.org/wiki/State_transition_table

Object Oriented Modeling And Design

 21

 Arrow, denoting transition. The name of the event (if any) causing this transition labels the

arrow body. A guardexpression may be added before a "/" and enclosed in square-brackets

(eventName[guardExpression]), denoting that this expression must be true for the

transition to take place. If an action is performed during this transition, it is added to the

label following a "/" (eventName[guardExpression]/action).

 Thick horizontal line with either x>1 lines entering and 1 line leaving or 1 line entering and

x>1 lines leaving. These denote join/fork, respectively.

http://en.wikipedia.org/wiki/Guard_(computing)

Object Oriented Modeling And Design

 22

Hierarchically nested states

The most important innovation of UML state machines over the traditional FSMs is the

introduction of hierarchically nested states (that is why state charts are also

called hierarchical state machines, or HSMs). The semantics associated with state nesting

are as follows (see Figure 3): If a system is in the nested state, for example ―result‖

(called the substate), it also (implicitly) is in the surrounding state ―on‖ (called

the superstate). This state machine will attempt to handle any event in the context of the

substate, which conceptually is at the lower level of the hierarchy. However, if the

substate ―result‖ does not prescribe how to handle the event, the event is not quietly

discarded as in a traditional ―flat‖ state machine; rather, it is automatically handled at the

higher level context of the superstate ―on‖. This is what is meant by the system being in

state ―result‖ as well as ―on‖. Of course, state nesting is not limited to one level only, and

the simple rule of event processing applies recursively to any level of nesting.

States that contain other states are called composite states; conversely, states without

internal structure are called simple states. A nested state is called a direct substate when it

is not contained by any other state; otherwise, it is referred to as a transitively nested

substate.

Because the internal structure of a composite state can be arbitrarily complex, any

hierarchical state machine can be viewed as an internal structure of some (higher-level)

composite state. It is conceptually convenient to define one composite state as the

ultimate root of state machine hierarchy. In the UML specification
[1]

, every state machine

has a top state (the abstract root of every state machine hierarchy), which contains all the

other elements of the entire state machine. The graphical rendering of this all-enclosing

top state is optional.

http://en.wikipedia.org/wiki/Finite_state_machine
http://en.wikipedia.org/wiki/UML_state_machine#cite_note-UML2_2-0#cite_note-UML2_2-0

Object Oriented Modeling And Design

 23

As you can see, the semantics of hierarchical state decomposition are designed to

facilitate reusing of behavior. The substates (nested states) need only define the

differences from the superstates (surrounding states). A substate can easily inherit
[4]

 the

common behavior from its superstate(s) by simply ignoring commonly handled events,

which are then automatically handled by higher-level states. In other words, hierarchical

state nesting enables programming by difference.

The aspect of state hierarchy emphasized most often is abstraction—an old and powerful

technique for coping with complexity. Instead of facing all aspects of a complex system

offHook

messageDone

onHook / disconnectLine

numberBusy

calledPhoneAnswers / connectLine

trunkBusy

validNumber

routed

calledPhoneHangsUp / disconnectLine

Idle

Connecting

Ringing

Connected

BusyTone

FastBusyTone

Disconnected

do / slowBusyTone

do / findConnection

do / fastBusyTone

do / ringBell

Active

timeout

invalidNumber

digit(n)

digit(n)

timeout

Dialing

Timeout

Recorded
Message

DialTone

do / soundDialTone do / soundLoudBeep

do / playMessage

Warning

do / play message

PhoneLine

http://en.wikipedia.org/wiki/UML_state_machine#cite_note-Samek03b-3#cite_note-Samek03b-3
http://en.wikipedia.org/wiki/Abstraction

Object Oriented Modeling And Design

 24

at the same time, it is often possible to ignore (abstract away) some parts of the system.

Hierarchical states are an ideal mechanism for hiding internal details because the designer

can easily zoom out or zoom in to hide or show nested states.

However, the composite states don’t simply hide complexity; they also actively reduce it

through the powerful mechanism of hierarchical event processing. Without such reuse,

even a moderate increase in system complexity often leads to an explosive increase in the

number of states and transitions. For example, the hierarchical state machine representing

the pocket calculator (Figure 3) avoids repeating the transitions Clear and Off in virtually

every state. Avoiding repetitions allows HSMs to grow proportionally to system

complexity. As the modeled system grows, the opportunity for reuse also increases and

thus counteracts the explosive increase in states and transitions typical for traditional

FSMs.

Signal Generalization

You can organize signals into a generalization hierarchy with inheritance of signal

attributes. The below figure shows part of onput signals for a workstation.

The hierarchy permits different levels of abstraction to be used in a model.

Concurrency

«signal»

device

UserInput

«signal»
Space

«signal»
Alphanumeric

«signal»
Punctuation

«signal»
Graphic

«signal»
Control

«signal»
MouseButtonDown

«signal»
MouseButtonUp

«signal»

location

MouseButton
«signal»

character

KeyboardCharacter

Object Oriented Modeling And Design

 25

The state model implicitly supports concurrency among objects. But objects need not be

completely independent and may be subject to shared constraints that cause some

correspondence among their state changes.

1. Aggregation concurrency

A state diagram for an assembly is a collection of state diagrams, one for each part.

Aggregation is the and relationship. The below figure shows the state of a car as an

aggregation of several parts.

2. Concurrency within an object

 You can patition some objects into subsets of attributes or links, each of which has its

own sub diagram. The UML shows concurrency within an object by partitioning the composite

state in a separate tab so that it does not become confused with the concurrent region.

Off OnOff On

turn key to start
release key

turn key off

depress brake

release brake

depress accelerator

release accelerator

Car

Starting On
[Transmission in Neutral]

Off

1

1 1 1 1

Ignition Transmission BrakeAccelerator

push N

push R

push N

push F

upshift upshift

downshift downshift

stop

ReverseNeutral

Forward

First Second Third

Transmission

Ignition

BrakeAccelerator

Object Oriented Modeling And Design

 26

The below figure shows state diagram for the play of a bridge rubber. When a side wins a game,

it becomes”vulnerable”; the first side to win two games wins the rubber.

3. synchronoisation of concurrent activities
 Sometimes one object must perform two or more activities concurrently. The object

does not synchronize the initial steps of the activities but most complete both activities before it

can progress to next state.

The below figure shows a concurrent state diagram for the emitting activity.

Relation of class and state model

A class diagram in the Unified Modeling Language (UML) is a type of static structure diagram

that describes the structure of a system by showing the system's classes, their attributes, and

the relationships between the classes.

Not vulnerable Vulnerable

N-S vulnerability

Not vulnerable Vulnerable

E-W vulnerability

N-S game

E-W game

N-S game

E-W game

N-S wins rubber

E-W wins rubber

Playing rubber

Bridge

Ready to resetready

do / dispense cash

do / eject card

Setting up

Emitting
CashDispenser

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_(computer_science)

Object Oriented Modeling And Design

 27

A relationship is a general term covering the specific types of logical connections found on class

and object diagrams

UML shows the following relationships:

Instance Level Relationships

External links

A Link is the basic relationship among objects. It is represented as a line connecting two

or more object boxes. It can be shown on an object diagram or class diagram. A link is an

instance of an association. In other words, it creates a relationship between two classes.

Association

Class diagram example of association between two classes

An Association represents a family of links. Binary associations (with two ends) are

normally represented as a line, with each end connected to a class box. Higher order

associations can be drawn with more than two ends. In such cases, the ends are connected

to a central diamond.

An association can be named, and the ends of an association can be adorned with role

names, ownership indicators, multiplicity, visibility, and other properties. There are five

different types of association. Bi-directional and uni-directional associations are the most

common ones. For instance, a flight class is associated with a plane class bi-directionally.

Associations can only be shown on class diagrams. Association represents the static

relationship shared among the objects of two classes. Example: "department offers

courses", is an association relation.

Aggregation

http://en.wikipedia.org/wiki/Object_diagram
http://en.wikipedia.org/wiki/Association_(object-oriented_programming)
http://en.wikipedia.org/wiki/File:UML_role_example.gif
http://en.wikipedia.org/wiki/File:KP-UML-Aggregation-20060420.svg

Object Oriented Modeling And Design

 28

Class diagram showing Aggregation between two classes

Aggregation is a variant of the "has a" or association relationship; aggregation is more

specific than association. It is an association that represents a part-whole or part-of

relationship. As a type of association, an aggregation can be named and have the same

adornments that an association can. However, an aggregation may not involve more than

two classes.

Aggregation can occur when a class is a collection or container of other classes, but

where the contained classes do not have a strong life cycle dependency on the container—

essentially, if the container is destroyed, its contents are not.

In UML, it is graphically represented as a hollow diamond shape on the containing class

end of the tree of lines that connect contained class(es) to the containing class.

Composition

Class diagram showing Composition between two classes at top and Aggregation between two

classes at bottom

Composition is a stronger variant of the "owns a" or association relationship; composition

is more specific than aggregation. It is represented with a solid diamond shape.

Composition usually has a strong life cycle dependencybetween instances of the container

class and instances of the contained class(es): If the container is destroyed, normally

every instance that it contains is destroyed as well. Note that a part can (where allowed)

be removed from a composite before the composite is deleted, and thus not be deleted as

part of the composite.

http://en.wikipedia.org/wiki/Aggregation_(object-oriented_programming)
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Rhombus
http://en.wikipedia.org/wiki/Object_composition
http://en.wikipedia.org/wiki/File:KP-UML-Aggregation-20060420.svg
http://en.wikipedia.org/wiki/File:AggregationAndComposition.svg

Object Oriented Modeling And Design

 29

The UML graphical representation of a composition relationship is a filled diamond

shape on the containing class end of the tree of lines that connect contained class(es) to

the containing class.

Differences between Composition and Aggregation

When attempting to represent real-world whole-part relationships, e.g., an engine is part

of a car, the composition relationship is most appropriate. However, when representing a

software or database relationship, e.g., car model engine ENG01 is part of a car model

CM01, an aggregation relationship is best, as the engine, ENG01 may be also part of a

different car model. Thus the aggregation relationship is often called "catlog"

containment to distinguish it from composition's "physical" containment.

The whole of a composition must have a multiplicity of 0..1 or 1, indicating that a part

must belong to only one whole; the part may have any multiplicity. For example,

consider University and Department classes. A department belongs to only one

university, so University has multiplicity 1 in the relationship. A university can (and will

likely) have multiple departments, so Department has multiplicity 1..*.

Class Level Relationships

Generalization

Class diagram showing generalization between one superclass and two subclasses

The Generalization relationship indicates that one of the two related classes (the subtype)

is considered to be a specialized form of the other (the super type) and supertype is

considered as 'Generalization' of subtype. In practice, this means that any instance of the

subtype is also an instance of the supertype. An exemplary tree of generalizations of this

form is found in binomial nomenclature:human beings are a subtype of simian, which are

http://en.wikipedia.org/wiki/Binomial_nomenclature
http://en.wikipedia.org/wiki/Human_beings
http://en.wikipedia.org/wiki/Simian
http://en.wikipedia.org/wiki/File:KP-UML-Generalization-20060325.svg

Object Oriented Modeling And Design

 30

a subtype of mammal, and so on. The relationship is most easily understood by the phrase

'A is a B' (a human is a mammal, a mammal is an animal).

The UML graphical representation of a Generalization is a hollow triangle shape on the

supertype end of the line (or tree of lines) that connects it to one or more subtypes.

The generalization relationship is also known as the inheritance or "is a" relationship.

The supertype in the generalization relationship is also known as

the "parent", superclass, base class, or base type.

The subtype in the specialization relationship is also known as

the "child", subclass, derived class,derived type, inheriting class, or inheriting type.

Note that this relationship bears no resemblance to the biological parent/child

relationship: the use of these terms is extremely common, but can be misleading.

 Generalization-Specialization relationship

A is a type of B

E. g. "an oak is a type of tree", "an automobile is a type of vehicle"

Generalization can only be shown on class diagrams and on Use case diagrams.

Interaction Modeling

The interaction model describes how objects interact to produce useful results. Interactions can

be modeled at different level of abstraction. At higher level use cases describe how a s/m

interacts with outside actors. The next level, sequence diagrams are used. Finally, activity

diagrams are used.

Use case

 Use case in software engineering and systems engineering is a description of a system’s

behavior as it responds to a request that originates from outside of that system. In other words,

a use case describes "who" can do "what" with the system in question. The use case technique

http://en.wikipedia.org/wiki/Mammal
http://en.wikipedia.org/wiki/Triangle
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Supertype
http://en.wikipedia.org/wiki/Subtype
http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Systems_engineering

Object Oriented Modeling And Design

 31

is used to capture a system's behavioral requirements by detailing scenario-driven threads

through the functional requirements.

"Each use case focuses on describing how to achieve a goal or a task. For most software

projects, this means that multiple, perhaps dozens of use cases are needed to define the

scope of the new system. The degree of formality of a particular software project and the

stage of the project will influence the level of detail required in each use case."
[cite this quote]

Use cases should not be confused with the features of the system under consideration. A

use case may be related to one or more features, and a feature may be related to one or

more use cases.

A use case defines the interactions between external actors and the system under

consideration to accomplish a goal. An actor specifies a role played by a person or thing

when interacting with the system.The same person using the system may be represented

as different actors because they are playing different roles. For example, "Joe" could be

playing the role of a Customer when using an Automated Teller Machine to withdraw

cash, or playing the role of a Bank Teller when using the system to restock the cash

drawer.

Use cases treat the system as a black box, and the interactions with the system, including

system responses, are perceived as from outside the system. This is a deliberate policy,

because it forces the author to focus on what the system must do, not how it is to be done,

and avoids the trap of making assumptions about how the functionality will be

accomplished.

Use cases may be described at the abstract level (business use case, sometimes called

essential use case), or at the system level (system use case). The differences between

these are the scope.

 A business use case is described in technology-free terminology which treats system as a

black box and describes the business process that is used by its business actors (people or

systems external to the business) to achieve their goals (e.g., manual payment processing,

expense report approval, manage corporate real estate). The business use case will describe

http://en.wikipedia.org/wiki/Functional_requirement
http://en.wikipedia.org/wiki/Wikipedia:Citing_sources#When_quoting_someone
http://en.wikipedia.org/wiki/Black_box_(systems)

Object Oriented Modeling And Design

 32

a process that provides value to the business actor, and it describes what the process

does. Business Process Mapping is another method for this level of business description.

 A system use case is normally described at the system functionality level (for example,

create voucher) and specifies the function or the service that the system provides for the

user. The system use case will describe what the actor achieves interacting with the system.

For this reason it is recommended that system use case specification begin with a verb

(e.g., create voucher, selectpayments, exclude payment, cancel voucher). Generally, the

actor could be a human user or another system interacting with the system being defined.

A use case should:

 Describe what the system shall do for the actor to achieve a particular goal.

 Include no implementation-specific language.

 Be at the appropriate level of detail.

 Not include detail regarding user interfaces and screens. This is done in user-interface

design.

Use case notation

In Unified Modeling Language, the relationships between all (or a set of) the use cases

and actors are represented in a use case diagram or diagrams, originally based upon Ivar

Jacobson's Objectorynotation. SysML, a UML profile, uses the same notation at the

system block level. Use case summaries for a vending machine.

Use case description can be given as below.

• Buy a beverage. The vending machine delivers a beverage after a customer se

lects and pays for it.

• Perform scheduled maintenance . A repair technician performs the periodic

service on the vending machine necessary to keep it in good working condition.

• Make repairs. A repair technician performs the unexpected service on the vend

ing machine necessary to repair a problem in its operation.

• Load items. A stock clerk adds items into the vending machine to replenish its

stock of beverages.

http://en.wikipedia.org/wiki/Business_Process_Mapping
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use_case_diagram
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Objectory
http://en.wikipedia.org/wiki/SysML
http://en.wikipedia.org/wiki/Profile_(UML)

Object Oriented Modeling And Design

 33

Use cases and the development process

The specific way use cases are used within the development process will depend on

which development methodology is being used. In certain development methodologies, a

brief use case survey is all that is required. In other development methodologies, use

cases evolve in complexity and change in character as the development process proceeds.

In some methodologies, they may begin as brief business use cases, evolve into more

detailed system use cases, and then eventually develop into highly detailed and

exhaustive test cases.

Use case templates

There is no standard template for documenting detailed use cases. A number of

competing schemes exist, and individuals are encouraged to use templates that work for

them or the project they are on. Standardization within each project is more important

Use Case: Buy a beverage

Summary: The vending machine delivers a beverage after a customer selects and

pays for it.

Actors: Customer

Preconditions: The machine is waiting for money to be inserted.

Description: The machine starts in the waiting state in which it displays the message

“Enter coins.” A customer inserts coins into the machine. The machine displays the

total value of money entered and lights up the buttons for the items that can be pur

chased for the money inserted. The customer pushes a button. The machine dispenses

the corresponding item and makes change, if the cost of the item is less than the mon

ey inserted.

Exceptions:

Canceled: If the customer presses the cancel button before an item has been selected,

the customer ’s money is returned and the machine resets to the waiting state.

Out of stock: If the customer presses a button for an out-of-stock item, the message

“That item is out of stock” is displayed. The machine continues to accept coins or a

selection.

Insufficient money: If the customer presses a button for an item that costs more than

the money inserted, the message “You must insert $ nn.nn more for that item” is dis

played, where nn.nn is the amount of additional money needed. The machine contin

ues to accept coins or a selection.

No change: If the customer has inserted enough money to buy the item but the ma

chine cannot make the correct change, the message “Cannot make correct change” is

displayed and the machine continues to accept coins or a selection.

Postconditions: The machine is waiting for money to be inserted.

http://en.wikipedia.org/wiki/Use_case_survey

Object Oriented Modeling And Design

 34

than the detail of a specific template. There is, however, considerable agreement about

the core sections; beneath differing terminologies and orderings there is an underlying

similarity between most use cases. Different templates often have additional sections,

e.g., assumptions, exceptions, recommendations, technical requirements. There may also

be industry specific sections.

Use case name

A use case name provides a unique identifier for the use case. It should be written in

verb-noun format (e.g., Borrow Books, Withdraw Cash), should describe an achievable

goal (e.g., Register User is better than Registering User) and should be sufficient for the

end user to understand what the use case is about.

Goal-driven use case analysis will name use cases according to the actor's goals, thus

ensuring use cases are strongly user centric. Two to three words is the optimum. If more

than four words are proposed for a name, there is usually a shorter and more specific

name that could be used.

Version

Often a version section is needed to inform the reader of the stage a use case has

reached. The initial use case developed for business analysis and scoping may well be

very different from the evolved version of that use case when the software is being

developed. Older versions of the use case may still be in current documents, because

they may be valuable to different user groups.

Goal

Without a goal a use case is useless. There is no need for a use case when there is no

need for any actor to achieve a goal. A goal briefly describes what the user intends to

achieve with this use case.

Summary

A summary section is used to capture the essence of a use case before the main body is

complete. It provides a quick overview, which is intended to save the reader from

having to read the full contents of a use case to understand what the use case is about.

Ideally, a summary is just a few sentences or a paragraph in length and includes the goal

and principal actor.

Actors

Object Oriented Modeling And Design

 35

An actor is someone or something outside the system that either acts on the system – a

primary actor – or is acted on by the system – a secondary actor. An actor may be a

person, a device, another system or sub-system, or time. Actors represent the different

roles that something outside has in its relationship with the system whose functional

requirements are being specified. An individual in the real world can be represented by

several actors if they have several different roles and goals in regards to a system. These

interact with system and do some action on that.

Stakeholders

A stakeholder is an individual or department that is affected by the outcome of the use

case.Individuals are usually agents of the organization or department for which the use

case is being created. A stakeholder might be called on to provide input, feedback, or

authorization for the use case.The stakeholder section of the use case can include a

brief description of which of these functions the stakeholder is assigned to fulfill.

Preconditions

A preconditions section defines all the conditions that must be true (i.e., describes the

state of the system) for the trigger (see below) to meaningfully cause the initiation of

the use case. That is, if the system is not in the state described in the preconditions, the

behavior of the use case is indeterminate. Note that the preconditions are not the same

thing as the "trigger" (see below): the mere fact that the preconditions are met does

NOT initiate the use case.

However, it is theoretically possible both that a use case should be initiated whenever

condition X is met and that condition X is the only aspect of the system that defines

whether the use case can meaningfully start. If this is really true, then condition X

is both the precondition and the trigger, and would appear in both sections. But this

is rare, and the analyst should check carefully that they have not overlooked some

preconditions which are part of the trigger. If the analyst has erred, the module based

on this use case will be triggered when the system is in a state the developer has not

planned for, and the module may fail or behave unpredictably.

Triggers

A 'triggers' section describes the event that causes the use case to be initiated. This

event can be external, temporal or internal. If the trigger is not a simple true "event"

Object Oriented Modeling And Design

 36

(e.g., the customer presses a button), but instead "when a set of conditions are met",

there will need to be a triggering process that continually (or periodically) runs to test

whether the "trigger conditions" are met: the "triggering event" is a signal from the

trigger process that the conditions are now met.

There is varying practice over how to describe what to do when the trigger occurs but

the preconditions are not met.

 One way is to handle the "error" within the use case (as an exception). Strictly, this

is illogical, because the "preconditions" are now not true preconditions at all

(because the behavior of the use case is determined even when the preconditions

are not met).

 Another way is to put all the preconditions in the trigger (so that the use case does

not run if the preconditions are not met) and create a different use case to handle

the problem. Note that if this is the local standard, then the use case template

theoretically does not need a preconditions section!

A use case diagram in the Unified Modeling Language (UML) is a type of behavioral

diagram defined by and created from a Use-case analysis. Its purpose is to present a

graphical overview of the functionality provided by a system in terms of actors, their

goals (represented as use cases), and any dependencies between those use cases.

The main purpose of a use case diagram is to show what system functions are performed

for which actor. Roles of the actors in the system can be depicted.

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use-case_analysis
http://en.wikipedia.org/wiki/Actor_%28UML%29
http://en.wikipedia.org/wiki/Use_case

Object Oriented Modeling And Design

 37

Sequence Models

A sequence diagram in Unified Modeling Language(UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It is a

construct of a Message Sequence Chart.

Sequence diagrams are sometimes called event diagrams, event scenarios, and timing

diagrams.

UML sequence diagrams model the flow of logic within your system in a visual manner, enabling

you both to document and validate your logic, and are commonly used for both analysis and

design purposes. Sequence diagrams are the most popular UML artifact for dynamic modeling,

which focuses on identifying the behavior within your system. Other dynamic modeling

techniques include activity diagramming, communication diagramming, timing diagramming,

and interaction overview diagramming. Sequence diagrams, along with class

diagrams and physical data models are in my opinion the most important design-level models

for modern business application development.

Sequence diagrams are typically used to model:

1. Usage scenarios. A usage scenario is a description of a potential way your system is

used. The logic of a usage scenario may be part of a use case, perhaps an alternate

course. It may also be one entire pass through a use case, such as the logic described by

the basic course of action or a portion of the basic course of action, plus one or more

alternate scenarios. The logic of a usage scenario may also be a pass through the logic

contained in several use cases. For example, a student enrolls in the university, and then

immediately enrolls in three seminars.

2. The logic of methods. Sequence diagrams can be used to explore the logic of a

complex operation, function, or procedure. One way to think of sequence diagrams,

particularly highly detailed diagrams, is as visual object code.

3. The logic of services. A service is effectively a high-level method, often one that can be

invoked by a wide variety of clients. This includes web-services as well as business

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Message_Sequence_Chart
http://en.wikipedia.org/wiki/Timing_diagram_%28Unified_Modeling_Language%29
http://en.wikipedia.org/wiki/Timing_diagram_%28Unified_Modeling_Language%29
http://en.wikipedia.org/wiki/Timing_diagram_%28Unified_Modeling_Language%29
http://www.agilemodeling.com/artifacts/activityDiagram.htm
http://www.agilemodeling.com/artifacts/communicationDiagram.htm
http://www.agilemodeling.com/artifacts/timingDiagram.htm
http://www.agilemodeling.com/artifacts/interactionOverviewDiagram.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agiledata.org/essays/dataModeling101.html
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#VisualCoding#VisualCoding

Object Oriented Modeling And Design

 38

transactions implemented by a variety of technologies such as CICS/COBOL or CORBA-

compliant object request

Let’s start with three simple examples. Figure 1 depicts a UML sequence diagram for the Enroll

in University use case, taking a system-level approach where the interactions between the

actors and the system are show. Figure 2 depicts a sequence diagram for the detailed logic of a

service to determine if an applicant is already a student at the university. Figure 3 shows the

logic for how to enroll in a seminar. I will often develop a system-level sequence diagram with

my stakeholders to help to both visualize and validate the logic of a usage scenario. It also helps

me to identify significant methods/services, such as checking to see if the applicant already

exists as a student, which my system must support.

Figure 1. sequence diagram for a session with an online stock broker.

The reason why they’re called sequence diagrams should be obvious: the sequential nature of

the logic is shown via the ordering of the messages (the horizontal arrows). The first message

starts in the top left corner, the next message appears just below that one, and so on.

Figure 2. sequence diagram for stock purchase.

log in

display portfolio

enter purchase data

request confirmation

confirm purchase

display order number place order

report results of trade

logout

display good bye

{execute order}

{verify funds}

{verify customer}secure communication

insecure communication

:Customer :StockBrokerSystem :SecuritiesExchange

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure1#Figure1
http://www.agilemodeling.com/artifacts/systemUseCase.htm#Figure2
http://www.agilemodeling.com/artifacts/systemUseCase.htm#Figure2
http://www.agilemodeling.com/artifacts/systemUseCase.htm#Figure2
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure2ServiceLevel#Figure2ServiceLevel
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure3EnrollingInSeminar#Figure3EnrollingInSeminar

Object Oriented Modeling And Design

 39

The boxes across the top of the diagram represent classifiers or their instances, typically use

cases, objects, classes, or actors. Because you can send messages to both objects and classes,

objects respond to messages through the invocation of an operation and classes do so through

the invocation of static operations, it makes sense to include both on sequence diagrams.

Because actors initiate and take an active part in usage scenarios, they can also be included in

sequence diagrams. Objects have labels in the standard UML format name: ClassName, where

“name” is optional (objects that haven’t been given a name on the diagram are called

anonymous objects). Classes have labels in the format ClassName, and actors have names in

the format Actor Name. Notice how object labels are underlined, classes and actors are not.

For example, in Figure 3, you see the Student object has the name aStudent, this is called a

named object, whereas the instance ofSeminar is an anonymous object. The instance

of Student was given a name because it is used in several places as a parameter in messages,

whereas the instance of the Seminar didn’t need to be referenced anywhere else in the diagram

and thus could be anonymous. In Figure 2 the Student class sends messages to

thePersistenceFramework class (which could have been given the stereotype <<infrastructure>>

but wasn’t to keep the diagram simple). Any message sent to a class is implemented as a static

method, more on this later.

enter purchase data

request confirmation

confirm purchase

display order number place order

report results of trade {execute order}

{verify funds}

:Customer :StockBrokerSystem :SecuritiesExchange

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure3EnrollingInSeminar#Figure3EnrollingInSeminar
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure2ServiceLevel#Figure2ServiceLevel

Object Oriented Modeling And Design

 40

 Figure 3. Enrolling in a seminar (method).

The dashed lines hanging from the boxes are called object lifelines, representing the life span of

the object during the scenario being modeled. The long, thin boxes on the lifelines are activation

boxes, also called method-invocation boxes, which indicate processing is being performed by

the target object/class to fulfill a message. I will only draw activation boxes when I’m using a

tool that natively supports them, such as a sophisticated CASE tool, and when I want to explore

performance issues. Activation boxes are too awkward to draw on whiteboards or with simple

drawing tools such that don’t easily support them.

The X at the bottom of an activation box, an example of which is presented in Figure 4, is a UML

convention to indicate an object has been removed from memory. In languages such as C++

where you need to manage memory yourself you need to invoke an object’s destructor, typically

modeled a message with the stereotype of <<destroy>>. In languages such as Java or C# where

memory is managed for you and objects that are no longer needed are automatically removed

from memory, something often referred to as garbage collection, you do not need to model the

message. I generally don’t bother with modeling object destruction at all and will instead trust

that the programmers, often myself, will implement low-level details such as this appropriately.

Figure 4 presents a complex UML sequence diagram for the basic course of action for the Enroll

in Seminar use case. This is an alternative way for modeling the logic of a usage scenario,

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse

Object Oriented Modeling And Design

 41

instead of doing it at the system-level such as Figure 1 you simply dive straight into modeling the

detailed logic at the object-level. I’ll take this approach when I’m working with developers who

are experienced sequence diagrammers and I have a large working space (either a huge

whiteboard or a CASE tool installed on a workstation with a very large screen and good graphic

card). Most of the time I’ll draw system-level diagrams first and then create small diagrams also

the lines of what is shown in Figures 2 and 3.

Figure 4. Basic course of action for the Enroll in Seminar use case.

Messages are indicated on UML sequence diagrams as labeled arrows, when the source and

target of a message is an object or class the label is the signature of the method invoked in

response to the message. However, if either the source or target is a human actor, then the

message is labeled with brief text describing the information being communicated. For example,

in Figure 4 the EnrollInSeminar object sends the message isEligibleToEnroll(theStudent) to the

instance of Seminar. Notice how I include both the method’s name and the name of the

parameters, if any, passed into it. The Student actor provides information to

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure1#Figure1
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure2ServiceLevel#Figure2ServiceLevel
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure3EnrollingInSeminar#Figure3EnrollingInSeminar
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse

Object Oriented Modeling And Design

 42

the SecurityLogon object via the messages labeled name and student number (these really aren’t

messages, they are actually user interactions).

Return values are optionally indicated using a dashed arrow with a label indicating the return

value. For example, the return value theStudent is indicated coming back from the Student class

as the result of invoking a message, whereas no return value is indicated as the result of sending

the message isEligibleToEnroll(theStudent) toSeminar. My style is not to indicate the return

values when it’s obvious what is being returned, so I don’t clutter my sequence diagrams (as you

can see, sequence diagrams get complicated fairly quickly). Figure 5 shows an alternate way to

indicate return values using the format message: returnValue for messages, as you

withisEligibleToEnroll(theStudent): false.

Notice the use of stereotypes throughout the diagram. For the boxes, I applied the stereotypes

<<actor>>, <<controller>>, and <<UI>> indicating they represent an actor, a controller class, or a

user interface (UI) class, respectively. I’ve also used visual stereotypes on some diagrams – a

stick figure for actors; the robustness diagram visual stereotypes for controller, interface, and

entity objects; and a drum for the database. Stereotypes are also used on messages. Common

practice on UML diagrams is to indicate creation and destruction messages with the stereotypes

of <<create>> and <<destroy>>, respectively. For example, you see theSecurityLogon object is

created in this manner (actually, this message would likely be sent to the class that would then

result in a return value of the created object, so I cheated a bit). This object later destroys itself

in a similar manner, presumably when the window is closed.

I used a UML note in Figure 4; notes are basically free-form text that can be placed on any UML

diagram, to provide a header for the diagram ,indicating its title and identifier (as you may have

noticed, I give unique identifiers to all artifacts that I intend to keep). Notes are depicted as a

piece of paper with the top-right corner folded over. I also used a note to indicate future work

that needs to be done, either during analysis or design, in this

diagramthe qualifications() message likely represents a series of messages sent to the student

object. Common UML practice is to anchor a note to another model element with a dashed line

when appropriate, in this case the note is attached to the message.

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure5AlternateCourse#Figure5AlternateCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse

Object Oriented Modeling And Design

 43

Although Figure 4 models the logic of the basic course of action for the Enroll in Seminar use

case how would you go about modeling alternate courses? The easiest way to do so is to create

a single sequence diagram for each alternate course, as you see depicted in Figure 5. This

diagram models only the logic of the alternate course, as you can tell by the numbering of the

steps on the left-hand side of the diagram, and the header note for the diagram indicates it is an

alternate course of action. Also notice how the ID of this diagram includes that this is alternate

course C, yet another modeling rule of thumb I have found useful over the years.

Figure 5. An alternate course of action for the Enroll in Seminar use case.

Let’s consider other sequence diagramming notation. Figure 5 includes an initial

message, Student chooses seminar, which is indicated by the filled in circle. This could easily

have been indicated via a method invocation, perhaps enrollIn(seminar). Figure 6 shows

another way to indicate object creation – sending the newmessage to a class. We’ve actually

seen three ways to achieve this, the other two being to send a message with the <<create>>

stereotype and/or to send a message into the side of the classifier symbol (for example in Figure

4 the message going into the side of EnrollInSeminar or in Figure 6 the message going into the

side ofStudentInfoPage. My advice is to choose one style and stick to it.

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure5AlternateCourse#Figure5AlternateCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure5AlternateCourse#Figure5AlternateCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure6OutputtingTranscripts#Figure6OutputtingTranscripts
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure4BasicCourse#Figure4BasicCourse
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure6OutputtingTranscripts#Figure6OutputtingTranscripts

Object Oriented Modeling And Design

 44

Figures 6 and 7 each depict a way to indicate looping logic. One way is to show a frame with the

label loop and a constraint indicating what is being looped through, such as for each

seminar in Figure 6. Another approach is to simply precede a message that will be invoked

several times with an asterisk, as you see in Figure 7 with the inclusion of the Enroll in

Seminar use case.

Figure 6. Outputting transcripts.

Figure 6 includes an asynchronous message, the message to the system printer which has the

partial arrowhead. An asynchronous message is one where the sender doesn’t wait for the

result of the message, instead it processes the result when and if it ever comes back. Up until

this point all other messages have been synchronous, messages where the sender waits for the

result before continuing on. It is common to send asynchronous messages to hardware devices

or autonomous software services such as message buses.

../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure6OutputtingTranscripts#Figure6OutputtingTranscripts
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure7EnrollingUniversity#Figure7EnrollingUniversity
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure6OutputtingTranscripts#Figure6OutputtingTranscripts
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure7EnrollingUniversity#Figure7EnrollingUniversity
../Local%20Settings/Temporary%20Internet%20Files/Content.IE5/pictures/sequenceDiagram.htm#Figure6OutputtingTranscripts#Figure6OutputtingTranscripts

Object Oriented Modeling And Design

 45

Activity model

Activity diagramsare graphical representations ofworkflows of stepwise activities and actions

with support for choice, iteration and concurrency.[1] In theUnified Modeling Language, activity

diagrams can be used to describe the business and operational step-by-step workflows of

components in a system. An activity diagram shows the overall flow of control.

http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/Activity_diagram#cite_note-0#cite_note-0
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Workflow

Object Oriented Modeling And Design

 46

Activity diagrams are constructed from a limited repertoire of shapes, connected with

arrows. The most important shape types:

 rounded rectangles represent activities;

 diamonds represent decisions;

 bars represent the start (split) or end (join) of concurrent activities;

 a black circle represents the start (initial state) of the workflow;

 an encircled black circle represents the end (final state).

Arrows run from the start towards the end and represent the order in which activities

happen.

Hence they can be regarded as a form of flowchart. Typical flowchart techniques lack

constructs for expressing concurrency. However, the join and split symbols in activity

diagrams only resolve this for simple cases; the meaning of the model is not clear when

they are arbitrarily combined with decisions or loops.

While in UML 1.x, activity diagrams were a specialized form of state diagrams, in UML

2.x, the activity diagrams were reformalized to be based on Petri net-like semantics,

increasing the scope of situations that can be modeled using activity diagrams. These

changes cause many UML 1.x activity diagrams to be interpreted differently in UML 2.x.

http://en.wikipedia.org/wiki/Flowchart
http://en.wikipedia.org/wiki/Petri_net

Object Oriented Modeling And Design

 47

Use Case Relationships

This section describes how to relate use cases to each other. A dashed line between use

cases is used to indicate these relationships.

 Include - Subroutine - Factors out and organizes common subtasks. Extra behavior is

added into a base use case. This behavior describes the insertion explicitly. The included

use case is not a complete process. Use "include" when multiple use cases have a

common function that can be used by all. Dashed line with arrow points to subroutine

use case.

 Extend - Rarely used - Must perform a pre-task (Used only for critical order). The base

and extended use cases are complete processes on their own. The base use case does

not know about the extended use case. Arrow points to event that comes first.

secure session

«include»

«include»

make trade

validate password

Object Oriented Modeling And Design

 48

 Generalization-specialization (Gen-Spec) - The gen-spec use case adds features to a

generic use case. The gen-spec use case inherits features of the base use case. The gen

spec can be used for use cases and actors since both can be specialized.

Include relationships

In UML modeling, an include relationship is a relationship in which one use case (the base use

case) includes the functionality of another use case (the inclusion use case). The include

relationship supports the reuse of functionality in a use-case model.

You can add include relationships to your model to show the following situations:

 The behavior of the inclusion use case is common to two or more use cases.

 The result of the behavior that the inclusion use case specifies, not the behavior itself, is

important to the base use case.

Include relationships usually do not have names. If you name an include relationship, the

name is displayed beside the include connector in the diagram.

As the following figure illustrates, an include relationship is displayed in the diagram

editor as a dashed line with an open arrow pointing from the base use case to the

inclusion use case. The keyword «include» is attached to the connector.

trade stocks

margin trading short sale

«extend»«extend»

limit order

«extend»

trade options

«extend»

make trade

trade bonds trade stocks trade options

Object Oriented Modeling And Design

 49

Extend relationships

In UML modeling, you can use an extend relationship to specify that one use case (extension)

extends the behavior of another use case (base). This type of relationship reveals details about a

system or application that are typically hidden in a use case.

The extend relationship specifies that the incorporation of the extension use case is

dependent on what happens when the base use case executes. The extension use case

owns the extend relationship. You can specify several extend relationships for a single

base use case.

While the base use case is defined independently and is meaningful by itself, the

extension use case is not meaningful on its own. The extension use case consists of one

or several behavior sequences (segments) that describe additional behavior that can

incrementally augment the behavior of the base use case. Each segment can be inserted

into the base use case at a different point, called an extension point.

The extension use case can access and modify the attributes of the base use case;

however, the base use case is not aware of the extension use case and, therefore, cannot

access or modify the attributes and operations of the extension use case.

You can add extend relationships to a model to show the following situations:

 A part of a use case that is optional system behavior

 A subflow is executed only under certain conditions

 A set of behavior segments that may be inserted in a base use case

Extend relationships do not have names.

Object Oriented Modeling And Design

 50

As the following figure illustrates, an extend relationship is displayed in the diagram

editor as a dashed line with an open arrowhead pointing from the extension use case to

the base use case. The arrow is labeled with the keyword «extend».

Generalization relationships

In UML modeling, a generalization relationship is a relationship in which one model element

(the child) is based on another model element (the parent). Generalization relationships are

used in class, component, deployment, and use-case diagrams to indicate that the child receives

all of the attributes, operations, and relationships that are defined in the parent.

To comply with UML semantics, the model elements in a generalization relationship

must be the same type. For example, a generalization relationship can be used between

actors or between use cases; however, it cannot be used between an actor and a use case.

You can add generalization relationships to capture attributes, operations, and

relationships in a parent model element and then reuse them in one or more child model

elements. Because the child model elements in generalizations inherit the attributes,

operations, and relationships of the parent, you must only define for the child the

attributes, operations, or relationships that are distinct from the parent.

The parent model element can have one or more children, and any child model element

can have one or more parents. It is more common to have a single parent model element

and multiple child model elements.

Generalization relationships do not have names.

Object Oriented Modeling And Design

 51

As the following figures illustrate, a generalization relationship is displayed in the

diagram editor as a solid line with a hollow arrowhead that points from the child model

element to the parent model element.

Combination of use case relationship

Procedural Sequence Models

1. Sequence diagrams with passive objects

A passive object is not activated until it has been called. Once the execution of an

operation completes and control returns to the caller, the passive object becomes inactive.

trade stocks

margin trading short sale

«extend»

«extend»

limit order

«extend»

trade options

make trade

trade bonds

secure session

«include»«include»

validate password
«include»

manage account

«include»

«extend»

Customer
Securities
exchange

Stock Brokerage System

Object Oriented Modeling And Design

 52

2. Sequence diagrams with transient objects

Special constructs for activity models

1. Sending and receiving signals.

The figure shows the sending of a signal as a convex pentagon and receiving a signal as a

concave pentagon.

service level (customer)

level

calculate commission (level, transaction)

commission

compute
commission ()

commission

:Transaction :CustomerTable :RateTable

operationE (c, d)

resultV

createC (arg)

{execute order}

operationE (m, n)

resultT

objectC

objectA objectB

Object Oriented Modeling And Design

 53

2. Swimlanes

Every column in partition of an activity diagram is called a swimlane as shown in the below

figure

3. Object flows

frequently the same pbject goes through several states during execution of an activity

diagram.

execute boot sequence

accept user login

request validation

networkwait for response

receive confirmation

ready

Flight attendant Ground crew Catering

clean trash add fuel
load food

and drinks

Object Oriented Modeling And Design

 54

An activity diagram showing object flows among different object states has most of the

advantages of a data flow diagram without most of their disadvantages.

:Airplane
[at gate] leave gate

:Airplane
[taxiing] take off

:Airplane
[in flight]

landing
:Airplane
[taxiing]park at gate

:Airplane
[at gate]

Object Oriented Modeling And Design

 55

UNIT 4

PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN ANALYSIS

Since conception is the primary part in the realization of a computer system and in order to help

designers describe their software, several languages and tools such the UML modeling language

have been proposed in the literature. UML knew an important success for the conception of

object oriented systems. In this paper, we propose a new approach of conception and

implementation of object oriented expert system based on the UML. For this we introduce our

approach of design of the object oriented expert system based on UML, then we define an

extension of the CLIPS, called VCLIPS_UML, in

order to support UML. VCLIPS_UML brings two main improvements to CLIPS. The first

improvement permits an easy access and modification of the CLIPS knowledge base. The user

introduces his knowledge base described with the UML class and the object diagram;

VCLIPS_UML gives the corresponding script directly. The second improvement concerns the

ease of its utilization by making the syntactic and semantics aspects of the CLIPS programming

language more transparent. The implementation of VCLIPS_UML is carried out in a way to make

it expandable and portable.

Development stages

• System Conception

– Conceive an application and formulate tentative requirements

• Analysis

– Deeply understand the requirements by constructing models

• System design

– Devise the architecture

• Class design

Object Oriented Modeling And Design

 56

– Determine the algorithms for realizing the operations

• Implementation

– Translate the design into programming code and database structures

• Testing

– Ensure that the application is suitable for actual use and actually satisfies

requirements

• Training

– Help users master the new application

• Deployment

– Place the application in the field and gracefully cut over from legacy application

• Maintenance

– Preserve the long term viability of the application

System Conception

Analysis

To specify what must be done.

• Domain analysis focuses on real-world things whose semantics the application captures.

• Application analysis addresses the computer aspects of the application that are visible

to users.

System Design

• Devise a high-level strategy — the architecture — for solving the application problem.

• The choice of architecture is based on the requirements as well as past experience.

Class Design

• To emphasis from application concepts toward computer concepts.

• To choose algorithms to implement major system functions.

Object Oriented Modeling And Design

 57

DEVELOPMENT LIFE CYCLE

Waterfall Development

• The stages in a rigid linear sequence with no backtracking.

• Suitable for well-understood applications with predictable outputs from analysis and

design.

Iterative Development

• First develop the nucleus of a system, then grow the scope of the system…

• There are multiple iterations as the system evolves to the final deliverable.

• Each iteration includes a full complement of stages:

– analysis, design, implementation, and testing.

SYSTEM CONCEPTION

• System conception deals with the genesis of an application.

DEVISING A SYSTEM CONCEPT

• New functionality

• Streamlining

• Simplification automate manual process

• Integration

• Analogies

• Globalization

ELABORATING A CONCEPT

Good system concept must answer the following questions

• Who is the application for?

– Stakeholders of the system

• What problems will it solve?

– Features

• Where will it be used?

Object Oriented Modeling And Design

 58

– Compliment the existing base, locally, distributed, customer base

• When is it needed?

– Feasible time, required time

• Why is it needed?

– Business case

• How will it work?

– Brainstorm the feasibility of the problem.

ATM CASE STUDY

• Who is the application for?

– We are vendor building the software

• What problems will it solve?

– Serve both bank and user

• Where will it be used?

– Locations throughout the world

• When is it needed?

– Revenue , investment

• Why is it needed?

– Economic incentive. We have to demonstrate the techniques in the book

• How will it work

– N-tier architecture, 3-tier architecture

PREPARING A PROBLEM STATEMENT

Design the software to support a computerized banking network including both human cashiers

and automatic teller machines (ATMs)to be shared by a consortium of banks. Each bank

provides its own computer to maintain own accounts and process transactions against them.

Cashier stations are owned by individual banks and communicate directly with their own bank’s

computers. Human cashiers enter account and transaction data.

Object Oriented Modeling And Design

 59

Central
Computer

Account

Account

Account

Account

Bank
Computer

Bank
Computer

Cashier
Station

ATM

ATM

ATM

Object Oriented Modeling And Design

 60

Analysis

Purpose

To produce a complete, consistent, and unambiguous

description of

• the problem domain and

• the functional requirements of the system.

In analysis, the models concentrate on describing what a system does, rather than how it does

it.

Results

Class Model: Defines the static structure of the information

in the system.

Behavior Model: Defines the input and output

communication of the system.

Object Oriented Modeling And Design

 61

Process of Analysis

0. Develop a Use Case Model

1. Develop the Domain Class Model for the problem

domain

2. Develop the System Context Model: identify actors,

events and system operations.

3. Produce the Analysis Class Model by adding the system

boundary to the Domain Class Model.

4. Develop the Analysis Behavior Model

4.1 Develop the System Interface Protocol

4.2 Develop the System Operation Model

Object Oriented Modeling And Design

 62

5. Check the Analysis Models for consistency and completeness

Domain Class Model

The Domain Class Model captures the concepts in the domain of the problem, and the

relationships between them. It establishes the vocabulary of the problem domain.

The Class Model notation is similar to the entity relationship model notation.

Analysis Object

An object is a thing or concept that can be distinctly identified, e.g. a specific person,

organization, machine, or event.

The identity of an object cannot be changed. An object can have values associated with it, called

(value) attributes, e.g. a person object could have the attributes name, address and occupation.

The values of the attributes can change, but not their number and names.

Attributes of an analysis object are not allowed to be objects. An analysis object does not have a

method interface.

Object Oriented Modeling And Design

 63

Association

Associations are the “glue” that holds together a system.Without associations, there is only a set

of unconnected classes.

An association models a relationship between objects.The existence of an association is

conditional: all related classes must exist. Similarly, an occurrence of an association can only

exist if the connected objects all exist.

Association: Multiplicity

The multiplicity (or cardinality) defines the number of objects which are allowed to be

associated with each other in an association. Multiplicity is shown by annotating the line end,

called the association end, connecting the class. The full form is a range (or even a set of

ranges), e.g. 0..1, 1..1, 1..4, 0..*, 1..*, an asterisk * meaning that the upper

limit is unlimited. Sometimes short forms are used: 1 for 1..1, 2 for 2..2, etc.,

and * for 0..*. Multiplicity in UML is written on the opposite branch of the association compared

with other (especially French) entityrelationship model notations.

Object Oriented Modeling And Design

 64

Association Class

Object Oriented Modeling And Design

 65

An association class is an association that is also a class. An association class has both

association and class properties: it connects two or more classes, and it also has attributes and

sometimes operations. Like for all associations, the identity of an occurrence

stems from the connected objects. Like all classes, an association class can have attributes, and

sometimes operations. In the UML, an association class can participate in an association. We do

not recommend this practice.

“A domain model captures the most important types of objects in the context of the business.

The domain model represents the ‘things’ that exist or events that transpire in the business

environment.”

• Gives a conceptual framework of the things in the problem space

• Helps you think – focus on semantics

• Provides a glossary of terms – noun based

• It is a static view - meaning it allows us convey time invariant business rules

• Foundation for use case/workflow modelling

Object Oriented Modeling And Design

 66

• Based on the defined structure, we can describe the state of the problem domain at any

time.

Simple domain model

Features of a domain model

• The following features enable us to express time invariant static business rules for a

domain:-

o Domain classes – each domain class denotes a type of object.

o Attributes – an attribute is the description of a named slot of a specified type in a

domain class; each instance of the class separately holds a value.

o Associations – an association is a relationship between two (or more) domain classes

that describes links between their object instances. Associations can have roles,

describing the multiplicity and participation of a class in the relationship.

o Additional rules – complex rules that cannot be shown with symbology can be shown

with attached notes.

Domain classes

Company

name

Person

first name : String

last name : String

salary 0..11..*

Car

type

name

*

+employer+employee

+owner

1..* 0..1

*

<<Rule>>

If a person is not employed by a

company then they do not have a car.

Association

Role

Domain class

Object Oriented Modeling And Design

 67

• Each domain class denotes a type of object. It is a descriptor for a set of things that

share common features. Classes can be:-

o Business objects - represent things that are manipulated in the business e.g. Order.

o Real world objects – things that the business keeps track of e.g. Contact, Site.

o Events that transpire - e.g. sale and payment.

• A domain class has attributes and associations with other classes (discussed below). It is

important that a domain class is given a good description

Perform the following in very short iterations:

o Make a list of candidate domain classes.

o Draw these classes in a UML class diagram.

o If possible, add brief descriptions for the classes.

o Identify any associations that are necessary.

o Decide if some domain classes are really just attributes.

o Where helpful, identify role names and multiplicity for associations.

o Add any additional static rules as UML notes that cannot be conveyed with UML

symbols.

o Group diagrams/domain classes by category into packages.

Concentrate more on just identifying domain classes in early iterations !

• An obvious way to identify domain classes is to identify nouns and phrases in textual

descriptions of a domain.

• Consider a use case description as follows:-

• 1. Customer arrives at a checkout with goods and/or services to purchase.

• 2. Cashier starts a new sale.

• 3. Cashier enters item identifier.

• 4. System records the sale line item and presents the item description, price and

running total.

• A domain class sounds like an attribute if: -

Object Oriented Modeling And Design

 68

o It relies on an associated class for it’s identity – e.g. ‘order number’ class associated to

an ‘order’ class. The ‘order number’ sounds suspiciously like an attribute of ‘order’.

o It is a simple data type – e.g. ‘order number’ is a simple integer. Now it really sounds like

an attribute!

Use Cases—sets of sequences of actions

By a sequence of actions, I mean an interaction, a sequence of messages between the system

and things outside of the system(users). By a set of sequences of actions, I mean that a single

use case covers several related scenarios and specifies the user’s view of essential system

behaviour, including variants. This is important. Use cases do not model all tasks that the system

performs. They are written from the user’s perspective, and model just system functionality that

can be initiated by the environment. We want to think about the system’s functionality in terms

of the different ways the system can be used.

Object Oriented Modeling And Design

 69

The system is drawn as a box. Use cases are inside and actors are outside the box. A use case

diagram will usually show all of the system’s use cases, all of the actors that might use the

system, and associate actors with the use cases they might be involved in.

Object Oriented Modeling And Design

 70

Use Case Relationships

As Fowler and Scott say:

_ Use include when you are repeating yourself in two or more separate use cases and you want

to avoid repetition.

_ Use generalization when you are describing a variation on normal behavior and you wish to

describe it casually.

_ Use extend when you are describing a variation on normal behavior and you wish to use the

more controlled form, declaring your extension points in your base use case.

Sequence Diagrams = event traces

Scenarios may be depicted using sequence diagrams. _ column = object; give name and class,

and underline the name.

_ vertical line is life line of object.

_ rectangle on life line; called several things. _ horizontal arrow expresses event conveyed by

source object to target object.

_ “*” or note in the margin expresses iteration._ looping arrow expresses recursion or calls to

self.

Object Oriented Modeling And Design

 71

As you elaborate the problem domain and specify in more detail the entities that the system

senses and controls, the self calls become messages to these other entities._ create transient

objects in response to a <<create>>._ destroy transient objects either because it receives a

<<destroy>> message or because it destroys itself. Now for an expansion of the previous

sequence diagram:

Class Diagram

Object Oriented Modeling And Design

 72

Class Diagram—depicts the types of objects involved in the problem and their relationships

Before we begin looking at class diagrams, I would like to point out an important subtlety in the

way people use them. There are really three perspectives from which a class diagram can be

read or written.

Three Perspectives of UML diagrams

1. Conceptual—the diagram represents the problem that the software should solve In

conceptual diagrams, classes model real-world entities in the system’s environment. It may very

well be that these concepts will also relate to the software classes that implement them. E.g.,

customers, from the problem domain, are clearly related to customer records, from the system.

Phone numbers and bills are real-world entities that might be modelled as classes in a software

system, but there need not be a direct mapping from a conceptual class to a software class.

Whether there is would be a decision for the software designer.

2. Design—the diagram depicts only the interfaces of software classes.

Design diagrams are supposed to be used as the medium in which to carry out design without

having to consider implementation details. Class interfaces were one of the key

advances of ADTs and effective OO programming, namely, that we can abstract from a class to

its interface, which describes the services that class offers to other classes

without describing how that class is implemented. This enables us to visualize, understand, and

reason about larger designs, in terms of classes and their services, and not get bogged down in

implementation details.

3. Implementation—the diagram depicts interfaces and implementations of classes.

An implementation class diagram shows all of the operations implemented by a class, regardless

of whether the operations are accessible to other classes and whether

Object Oriented Modeling And Design

 73

classes have implementations attached to them. The perspective of a diagram has a huge

impact on how one thinks about a class diagram and what decisions one makes when

constructing the diagram.

UML defines several models for representing systems:

 The class model captures the static structure

 The state model expresses the dynamic behavior of objects.

 The use case model describes the requirements of the user.

 The interaction model represents the scenarios and messages flows

 The implementation model shows the work units

 The deployment model provides details that pertain to process allocation

UML Diagrams

UML defines nine different types of diagram:

1. Use case diagrams: represent the functions of a system from the user's point of view.

2. Sequence diagrams: are a temporal representation of objects and their interactions.

3. Collaboration diagrams: spatial representation of objects, links, and interactions.

4. Object diagrams :represent objects and their relationships and correspond to simplified

collaboration diagrams that do not represent message broadcasts.

5. Class diagrams represent the static structure in terms of classes and relationships

6. Statechart diagrams: represent the behavior of a class in terms of states at run time.

7. Activity diagrams: represent the behavior of an operation as a set of actions

8. Component diagrams: represent the physical components of an application

9. Deployment diagrams: represent the deployment of components on particular pieces

of hardware

The different types of diagrams defined by UML

Object Oriented Modeling And Design

 74

Relationship among various UML Diagrams in OOAD (Object Oriented Analysis and

design) is illustrated in the following diagrams of Business Model, Use Case Diagram ,

Sequence Diagram , Class Diagram and Code generation..

