C# and .NET Programming 061S761

C# PROGRAMMING AND .NET
PART - A

UNIT -1 6 Hours

The Philosophy of .NET: Understanding the Previous State of Affairs, The. NET
Solution, The Building Block of the .NET Platform (CLR,CTS, and CLS), The Role of
the .NET Base Class Libraries, What C# Brings to the Table, An Overview of .NET
Binaries (aka Assemblies), the Role of the Common Intermediate Language, The
Role of .NET Type Metadata, The Role of the assembly Manifast, Compiling CIL
to Platform — Specific Instructions, Understanding the Common Type System,
Intrinsic CTS Data Types, Understanding the Common Languages Specification,
Understanding the Common Language Runtime A tour of the .NET Namespaces,
Increasing Your Namespace Nomenclature, Deploying the .NET Runtime.

UNIT -2 6 Hours
Building C# Applications: The Role of the Command Line Complier (csc.exe),
Building C# Application using csc.exe Working with csc.exe Response Files,
Generating Bug Reports, Remaining g C# Complier Options, The Command Line
Debugger (cordbg.exe) Using the, Visual studio .NET IDE, Other Key Aspects of the
VS.NET IDE, C# “Preprocessor:” Directives, an Interesting Aside: The System.
Environment Class.

UNIT -3 8 Hours

C# Language Fundamentals: The Anatomy of Basic C# Class, Creating objects:
Constructor Basics, The Composition of a C# Application, Default assignment and
Variable Scope, The C# Member Initialisation Syntax, Basic Input and Output with
the Console Class, Understanding Value Types and Reference Types, The Master
Node: System, Object, The System Data Types (and C# Aliases), Converting Between
Value Types and Reference Types: Boxing and Unboxing, Defining Program
Constants, C# Iteration Constructs, C# Controls Flow Constructs, The Complete Set
of C# Operators, Defining Custom Class Methods, Understating Static Methods,
Methods Parameter Modifies, Array Manipulation in C#, String Manipulation
in C#, C# Enumerations, Defining Structures in C#, Defining Custom Namespaces.

UNIT -4 6 Hours
Object- Oriented Programming with C#: Forms Defining of the C# Class, Definition
the “Default Public Interface” of a Type, Recapping the Pillars of OOP, The First
Pillars: C#’s Encapsulation Services, Pseudo- Encapsulation: Creating Read-Only
Fields, The Second Pillar: C#’s Inheritance Supports, keeping Family Secrets: The
Protected” Keyword, Nested Type Definitions,The Third Pillar: C #’s Polymorphic
Support, Casting Between .

PART - B

Dept. of ISE,S]BIT Page 1

C# and .NET Programming 0615761

UNIT -5 6 Hours

Exceptions and Object Lifetime: Ode to Errors, Bugs, and Exceptions, The Role of
NET Exception Handing, the System. Exception Base Class, Throwing a Generic
Exception, Catching Exception, CLR System — Level Exception(System. System
Exception), Custom Application-Level Exception(System. System Exception),
Handling Multiple Exception, The Family Block, the Last Chance Exception
Dynamically Identifying Application — and System Level Exception Debugging
System Exception Using VS. NET, Understanding Object Lifetime, the CIT of
“new’, The Basics of Garbage Collection,, Finalization a Type, The Finalization
Process, Building an Ad Hoc Destruction Method, Garbage Collection Optimizations,
The System. GC Type.

UNIT -6 6 Hours
Interfaces and Collections: Defining Interfaces Using C# Invoking Interface Members
at the object Level, Exercising the Shapes Hierarchy, Understanding Explicit
Interface Implementation, Interfaces As Polymorphic Agents, Building Interface
Hierarchies, Implementing, Implementation, Interfaces Using VS .NET,
understanding the IConvertible Interface, Building a Custom Enumerator (IEnumerable
and Enumerator), Building Cloneable

objects (ICloneable), Building Comparable Objects (I Comparable), Exploring
the system. Collections Namespace, Building a Custom Container (Retrofitting the
Cars Type).

UNIT -7 8 Hours

Callback Interfaces, Delegates, and Events, Advanced Techniques: Understanding
Callback Interfaces, Understanding the .NET Delegate Type, Members of System.
Multicast Delegate, The Simplest Possible Delegate Example, , Building More a
Elaborate Delegate Example, Understanding Asynchronous Delegates, Understanding
(and Using)Events.

The Advances Keywords of C#, A Catalog of C# Keywords Building a Custom
Indexer, A Variation of the Cars Indexer Internal Representation of Type Indexer .
Using C# Indexer from VB .NET. Overloading operators, The Internal Representation
of Overloading Operators, interacting with Overload Operator from Overloaded-
Operator- Challenged Languages, Creating Custom Conversion Routines, Defining
Implicit Conversion Routines, The Internal Representations of Customs Conversion
Routines

UNIT -8 6 Hours
Understanding .NET Assembles: Problems with Classic COM Binaries, An Overview
of NET Assembly, Building a Simple File Test Assembly, A C#. Client Application,
A Visual Basic .NET Client Application, Cross Language Inheritance, Exploring the
CarLibrary’s, Manifest, Exploring the CarLibrary’s Types, Building the Multifile
Assembly, Using Assembly, Understanding

Private Assemblies, Probing for Private Assemblies (The Basics), Private Assemblies
XML Configurations Files, Probing for Private Assemblies (The Details),
Understanding Shared Assembly, Understanding Shared Names, Building a

Dept. of ISE,S]BIT Page 2

C# and .NET Programming 0615761

Shared Assembly, Understanding Delay Signing, Installing/Removing Shared
Assembly, Using a Shared Assembly

Text Books:

1. Andrew Troelsen: Pro C# with NET 3.0, 4" Edition, Wiley India, 2009.
Chapters: 1 to 11 (up to pp. 369)

2. E. Balagurusamy: Programming in C#, 2" Edition, Tata McGraw Hill, 2004.
(Programming Examples 3.7, 3.10, 5.5, 6.1, 7.2, 7.4, 7.5, 7.6, 8.1,8.2, 8.3, 8.5, 8.7,
8.8, 9.1, 9.2, 9.3, 94, 10.2, 104, 11.2, 11.4, 12.1,12.4, 12.5, 12.6, 13.1, 13.2, 13.3,
13.6, 14.1, 14.2, 14.4, 15.2, 15.3,16.1, 16.2, 16.3, 18.3, 18.5.18.6)

Reference Books:
1. Tom Archer: Inside C#, WP Publishers, 2001.
2. Herbert Schildt: C# The Complete Reference, Tata McGraw Hill, 2004.

Dept. of ISE,S]BIT Page 3

C# and .NET Programming 0615761

Table of Content Page no

UNIT -1 The philosophy of .NET 1-19

1.1 Understanding the Previous State of Affairs

1.2 The .NET Solution,

1.3 The Building Block of the .NET Platform (CLR,CTS, and CLS)
1.4 The Role of the .NET Base Class Librarie

1.5 What C# Brings to the Table

1.6 An Overview of .NET Binaries

1.7 The Role of the Common Intermediate Language

1.8 The Role of .NET Type Metadata

1.9 The Role of the Assembly Manifest

1.10 Compiling CIL to Platform —Specific Instructions
1.11 Understanding the Common Type System

1.12 Intrinsic CTS Data Types,

1.13 Understanding the Common Languages Specification,
1.14 Understanding the Common Language Runtime

1.15 A tour of the .NET Namespaces,

UNIT-2 Building C# Applications 21-30

2.1 The Role of the Command Line Complier (csc.exe)
2.2 Building C # Application using csc.exe

2.3 Working with csc.exe Response Files, Generating Bug
Reports

2.4 The Command Line Debugger (cordbg.exe)

2.5 Using the, Visual Studio .NET IDE6

2.6 Other Key Aspects of the VS.NET IDE

2.7 C#“Preprocessor:” Directives

2.8 An Interesting Aside: The System. Environment Class.

UNIT-3 The C# Programming Language 31-66

3.1 The Anatomy of a Basic C# Class

3.2 Creating objects: Constructor Basics

3.3 The Composition of a C# Application

3.4 Default Assignment and Variable Scope

3.5 The C# Member Initialization Syntax

3.6 Basic Input and Output with the Console Class

3.7 Understanding Value Types and Reference Types

3.8 The Master Node: System, Object

3.9 The System Data Types (and C# Aliases)

3.10 Converting Between Value Types and Reference Types:
Boxing and Unboxing,

Dept. of ISE,S]BIT Page 4

C# and .NET Programming 0615761

3.11 Defining Program Constants
3.12 C# Iteration Constructs

3.13 C# Controls Flow Constructs
3.14 The Complete Set of C

3.15 Methods Parameter Modifies
3.16 Array Manipulation in C #
3.17 String Manipulation in C#
3.18 C# Enumerations

3.19 Defining Structures in C#

3.20 Defining Custom Namespaces.

UNIT - 4 OOP with C# 67-78

4.1 Defining of the C# Class,

4.2 Definition the “Default Public Interface” of a Type

4.3 Recapping the Pillars of OOP,

4.4 The First Pillars: C#’s Encapsulation Services, Pseudo-

Encapsulation: Creating Read-Only Fields

4.5The Second Pillar:C#’s Inheritance Supports

4.6 keeping Family Secrets: The “ Protected” Keyword,
Nested Type Definitions,

4.7 The Third Pillar: C #’s Polymorphic Support,

4.8 Casting Between.

UNIT - 5 Exceptions and Object Lifetime 79-90

5.10de to Errors, Bugs, and Exceptions,

5.2 The Role of .NET Exception Handing,

5.3 The System. Exception Base Class,

5.4 Throwing a Generic Exception,

5.5 Catching Exception,

5.6 CLR System — Level Exception (System. System Exception),

5.7 Custom Application-Level Exception (System. System

Exception),

5.8 Handling Multiple Exception

5.9 The Fanily Block, the Last Chance Exception Dynamically
Identifying Application — and System Level Exception

Debugging System

5.10 Exception Using VS. NET,

5.11 Understanding Object Lifetime,

5.12 The CIT of “new’,

5.13 The Basics of Garbage Collection,

5.14 Finalization a Type, The Finalization Process,

5.15 Building an Ad Hoc Destruction Method,

5.16 Garbage Collection Optimizations,

5.17 The System. GC Type.

Dept. of ISE,S]BIT Page 5

C# and .NET Programming 061S761

UNIT - 6 Interfaces and Collections 91-102

6.1 Defining Interfaces Using C#

6.2 Invoking Interface Members at the object Level,

6.3 Exercising the Shapes Hierarchy

6.4 Understanding Explicit Interface Implementation,

6.5 Interfaces As Polymorphic Agents,

6.6 Building Interface Hierarchies Implementation,

6.7 Interfaces Using VS .NET,understanding the IConvertible Interface,
6.8 Building a Custom Enumerator (IEnumerable and Enumerator),
6.9 Building Clone able objects (ICloneable),

6.10 Building Comparable Objects I Comparable

6.11 Exploring the system. Collections Namespace

6.12 Building a Custom Container (Retrofitting the Cars Type).

UNIT-7 Callback Interfaces, Delegates, and Events 103-114

7.1Understanding Callback Interfaces,

7.2Understanding the .NET Delegate Type,

7.3 Members of System. Multicast Delegate, The Simplest Possible
Delegate Example, Building More a Elaborate Delegate Example

7.4 Understanding Asynchronous Delegates,

7.5 Understanding (and Using) Events

7.6 The Advances Keywords of C#, A Catalog of C# Keywords

7.7 Building a Custom Indexer, A Variation of the Cars Indexer Internal
Representation of Type Indexer

7.8 Using C# Indexer from VB .NET. Overloading operators, The Internal
Representation of Overloading Operators, The Internal Representations
of Customs Conversion Routines

UNIT -8 Understanding the Format of a .NET Assembly 115-120

8.1 Problems with Classic COM Binaries,

8.2 An Overview of .NET Assembly,

8.3 Building a Simple File Test Assembly

8.4 A C# Client Application,

8.5A Visual Basic .NET Client Application, Exploring the Car Library’s
Manifest

8.6 Exploring the Car Library’s Types

Dept. of ISE,S]BIT Page 6

C# and .NET Programming 061S761

Introducing C# and the .NET Platform
UNIT-1

UNIT -1 The philosophy of .NET

1.1 Understanding the Previous State of Affairs

1.2 The .NET Solution,

1.3 The Building Block of the .NET Platform (CLR,CTS, and CLS)
1.4 The Role of the NET Base Class Librarie

1.5 What C# Brings to the Table

1.6 An Overview of .NET Binaries

1.7 The Role of the Common Intermediate Language

1.8 The Role of .NET Type Metadata

1.9 The Role of the Assembly Manifest

1.10 Compiling CIL to Platform —Specific Instructions
1.11 Understanding the Common Type System

1.12 Intrinsic CTS Data Types,

1.13 Understanding the Common Languages Specification,
1.14 Understanding the Common Language Runtime

1.15 A tour of the .NET Namespaces,

Dept. of ISE,S]BIT Page 7

C# and .NET Programming 0615761

1.1 Understanding the Previous State of Affairs

Before examining the specifics of the .NET universe, it’s helpful to consider some of
the issues that motivated the genesis of Microsoft’s current platform. To get in the
proper mind-set, let’s begin this chapter with a brief and painless history lesson to
remember our roots and understand the limitations of the previous state of affairs
(after all, admitting you have a problem is the first step toward finding a solution).
After completing this quick tour of life as we knew it, we turn our attention to the
numerous benefits provided by C# and the .NET platform.

Life As a C/Win32 API Programmer

Traditionally speaking, developing software for the Windows family of operating
systems involved using the C programming language in conjunction with the
Windows application programming interface (API). While it is true that numerous
applications have been successfully created using this time-honored approach, few of
us would disagree that building applications using the raw API is a complex
undertaking.

The first obvious problem is that C is a very terse language. C developers are forced to
contend with manual memory management, ugly pointer arithmetic, and ugly
syntactical constructs. Fur thermore, given that C is a structured language, it lacks the
benefits provided by the object-oriented approach (can anyone say spaghetti code?)
When you combine the thousands of global functions and data types defined by the
Win32 API to an already formidable language, it is little wonder that there are so many
buggy applications floating around today.

Life As a C++/MFC Programmer

One vast improvement over raw C/API development is the use of the C++
programming language. In many ways, C++ can be thought of as an object-oriented
layer on top of C. Thus, even though C++ programmers benefit from the famed
“pillars of OOP” (encapsulation, inheritance, and polymorphism), they are still at the
mercy of the painful aspects of the C language (e.g., manual memory management,
ugly pointer arithmetic, and ugly syntactical constructs). Despite its complexity,
many C++ frameworks exist today. For example, the Microsoft Foundation Classes
(MFC) provides the developer with a set of C++ classes that facilitate the construction
of Win32 applications. The main role of MFC is to wrap a “sane subset” of the raw
Win32 API behind a number of classes, magic macros, and numerous code-generation
tools (aka wizards). Regardless of the helpful assistance offered by the MFC framework
(as well as many other C++-based windowing toolkits), the fact of the matter is that
C++ programming remains a difficult and error-prone experience, given its historical
roots in C.

Life As a Visual Basic 6.0 Programmer

Due to a heartfelt desire to enjoy a simpler lifestyle, many programmers have shifted
away from the world of C(++)-based frameworks to kinder, gentler languages such as
Visual Basic 6.0 (VB6). VB6 is popular due to its ability to build complex user
interfaces, code libraries (e.g., COM servers), and data access logic with minimal fuss
and bother. Even more than MFC, VB6 hides the complexities of the raw Win32 API

Dept. of ISE,S]BIT Page 8

C# and .NET Programming 0615761

from view using a number of integrated code wizards, intrinsic data types, classes, and
VB-specific functions.

The major downfall of VB6 (which has been rectified given the advent of Visual Basic
.NET) is that it is not a fully object-oriented language; rather, it is “object aware.” For
example, VB6 does not allow the programmer to establish “is-a” relationships between
types (i.e., no classical inheritance) and has no intrinsic support for parameterized
class construction. Moreover, VB6 doesn’t provide the ability to build multithreaded
applications unless you are willing to drop down to low-level Win32 API calls
(which is complex at best and dangerous at worst).

Life As a Java/J2EE Programmer

Enter Java. The Java programming language is (almost) completely object oriented and
has its syntactic roots in C++. As many of you are aware, Java’s strengths are far greater
than its support for platform independence. Java (as a language) cleans up many
unsavory syntactical aspects of C++. Java (as a platform) provides programmers with a
large number of predefined “packages” that contain various type definitions. Using these
types, Java programmers are able to build “100% Pure Java” applications complete with
database connectivity, messaging support, web-enabled front ends, and a rich user
interface. Although Java is a very elegant language, one potential problem is that using
Java typically means that you must use Java front-to-back during the development
cycle. In effect, Java offers little hope of language integration, as this goes against the
grain of Java’s primary goal (a single programming language for every need). In
reality, however, there are millions of lines of existing code out there in the world that
would ideally like to commingle with newer Java code. Sadly, Java makes this task
problematic. Pure Java is simply not appropriate for many graphically or numerically
intensive applications hese cases, you may find Java’s execution speed leaves
something to be desired). A better approach for such programs would be to use a
lower-level language (such as C++) where appropriate. Alas, while Java does provide
a limited ability to access non-Java APIs, there is little support for true cross-language
integration.

Life As a COM Programmer

The Component Object Model (COM) was Microsoft’s previous application
development framework. COM is an architecture that says in effect, “If you build your
classes in accordance with the rules of COM, you end up with a block of reusable
binary code.”

The beauty of a binary COM server is that it can be accessed in a language-
independent manner. Thus, C++ programmers can build COM classes that can be used
by VB6. Delphi programmers can use COM classes built using C, and so forth.
However, as you may be aware, COM’s language independence is somewhat limited.
For example, there is no way to derive a new COM class using

an existing COM class (as COM has no support for classical inheritance). Rather, you
must make use of the more cumbersome “has-a” relationship to reuse COM class
types.

Another benefit of COM is its location-transparent nature. Using constructs such as
application identifiers (ApplDs), stubs, proxies, and the COM runtime environment,

Dept. of ISE,S]BIT Page 9

C# and .NET Programming 0615761

programmers can avoid the need to work with raw sockets, RPC calls, and other low-
level details. For example, consider the following

VB6 COM client code:

' This block of VB6 code can activate a COM class written in

' any COM-aware language, which may be located anywhere

' on the network (including your local machine).

Dim ¢ as MyCOMClass

Set ¢ = New MyCOMClass ' Location resolved using AppID.

c.DoSomeWork

Although COM can be considered a very successful object model, it is extremely
complex under the hood (at least until you have spent many months exploring its
plumbing—especially if you happen to be a C++ programmer). To help simplify the
development of COM binaries, numerous COM-aware frameworks have come into
existence. For example, the Active Template Library (ATL) provides another set of C++
classes, templates, and macros to ease the creation of COM types. Many other
languages also hide a good part of the COM infrastructure from view. However, language
support alone is not enough to hide the complexity of COM. Even when you choose a
relatively simply COM-aware language such as VB6, you are still forced to contend
with fragile registration entries and numerous deployment-related issues (collectively
termed DLL hell).

Life As a Windows DNA Programmer

To further complicate matters, there is a little thing called the Internet. Over the last
several years,Microsoft has been adding more Internet-aware features into its family of
operating systems and products. Sadly, building a web application using COM-based
Windows Distributed interNet Applications Architecture (DNA) is also quite complex.
Some of this complexity is due to the simple fact that Windows DNA requires the use
of numerous technologies and languages (ASP, HTML, XML, JavaScript, VBScript, and
COM(+), as well as a data access API such as ADO). One problem is that many of these
technologies are completely unrelated from a syntactic point of view. For example,
JavaScript has a syntax much like C, while VBScript is a subset of VB6. The COM
servers that are created to run under the COM+ runtime have an entirely different look
and feel from the ASP pages that invoke them. The result is a highly confused mishmash
of technologies.

Furthermore, and perhaps more important, each language and/or technology has its
own type system (that may look nothing like another’s type system). An “int” in
JavaScript is not quite the same as an “Integer” in VB6.

1.2 The .NET Solution

So much for the brief history lesson. The bottom line is that life as a Windows
programmer has been tough. The .NET Framework is a rather radical and brute-force
approach to making our lives easier. The solution proposed by .NET is “Change
everything” (sorry, you can’t blame the messenger for the message). As you will see
during the remainder of this book, the .NET Framework is a completely new model for
building systems on the Windows family of operating systems, as well as on
numerous non-Microsoft operating systems such as Mac OS X and various Unix/Linux

Dept. of ISE,S]BIT Page 10

C# and .NET Programming 0615761

distributions. To set the stage, here is a quick rundown of some core features provided
courtesy of .NET:

» Full interoperability with existing code: This is (of course) a good thing. Existing COM
binaries can commingle (i.e., interop) with newer .NET binaries and vice versa. Also,
Platform Invocation Services (PInvoke) allows you to call C-based libraries (including
the underlying API of the operating system) from .NET code.

» Complete and total language integration: Unlike COM, .NET supports cross-
language inheritance, cross-language exception handling, and cross-language
debugging.

* A common runtime engine shared by all NET-aware languages: One aspect of this
engine is a well-defined set of types that each .NET-aware language “understands.”

* A base class library: This library provides shelter from the complexities of raw API
calls and offers a consistent object model used by all .NET-aware languages.

* No more COM plumbing:IClassFactory, IUnknown, IDispatch, IDL code, and the evil
VARIANT compliant data types (BSTR, SAFEARRAY, and so forth) have no place in a native
.NET binary.

* A truly simplified deployment model: Under .NET, there is no need to register a
binary unit

into the system registry. Furthermore, .NET allows multiple versions of the same
*.dl1l to exist in harmony on a single machine. As you can most likely gather from the
previous bullet points, the .NET platform has nothing to do with COM (beyond the
fact that both frameworks originated from Microsoft). In fact, the only way .NET and
COM types can interact with each other is using the interoperability layer.

1.3 Introducing the Building Blocks of the .NET

Platform (the CLR, CTS, and CLS)

Now that you know some of the benefits provided by .NET, let’s preview three key (and
interrelated) entities that make it all possible: the CLR, CTS, and CLS. From a
programmer’s point of view, .NET can be understood as a new runtime environment
and a comprehensive base class library. The run-time layer is properly referred to as
the common language runtime, or CLR. The primary role of the CLR is to locate, load,
and manage .NET types on your behalf. The CLR also takes care of a number of low-
level details such as memory management and performing security checks. Another
building block of the .NET platform is the Common Type System, or CTS. The CTS
specification fully describes all possible data types and programming constructs
supported by the runtime, specifies how these entities can interact with each other,
and details how they are represented in the .NET metadata format (more information
on metadata later in this chapter).

Understand that a given .NET-aware language might not support each and every
feature defined by the CTS. The Common Language Specification (CLS) is a related
specification that defines a subset of common types and programming constructs that
all .NET programming languages can agree on. Thus, if you build .NET types that only
expose CLS-compliant features, you can rest assured that all .NET-aware languages can
consume them. Conversely, if you make use of a data type or programming construct
that is outside of the bounds of the CLS, you cannot guarantee that every .NET
program- ming language can interact with your .NET code library.

Dept. of ISE,S]BIT Page 11

C# and .NET Programming 0615761

The Role of the Base Class Libraries

In addition to the CLR and CTS/CLS specifications, the .NET platform provides a base
class library that is available to all .NET programming languages. Not only does this
base class library encapsulate various primitives such as threads, file input/output
(I/0), graphical rendering, and interaction with various external hardware devices, but
it also provides support for a number of services required by most real-world
applications. For example, the base class libraries define types that facilitate database
access, XMLmanipulation, programmatic security, and the construction of web-
enabled (as well as traditional desktop and console-based) front ends. From a high
level, you can visualize the relationship between the CLR, CTS, CLS, and the base
class library.

1.4 What C# Brings to the Table

Given that .NET is such a radical departure from previous technologies, Microsoft
has developed a new programming language, C# (pronounced ‘“see sharp”),
specifically for this new platform. C# is a programming language that looks very
similar (but not identical) to the syntax of Java. However, to call C# a Java rip-off is
inaccurate. Both C# and Java are based on the syntactical constructs of C++. Just as
Java is in many ways a cleaned-up version of C++, C# can be viewed as a cleaned-up
version of Java—alfter all, they are all in the same family of languages.

The truth of the matter is that many of C#’s syntactic constructs are modeled after
various aspects of Visual Basic 6.0 and C++. For example, like VB6, C# supports the
notion of formal type properties (as opposed to traditional getter and setter methods)
and the ability to declare methods taking varying number of arguments (via
parameter arrays). Like C++, C# allows you to overload operators, as well as to create
structures, enumerations, and callback functions (via delegates). Due to the fact that
C# is a hybrid of numerous languages, the result is a product that is as syntactically
clean—if not cleaner—than Java, is about as simple as VB6, and provides just about
as much power and flexibility as C++ (without the associated ugly bits). In a nutshell,
the C# language offers the following features (many of which are shared by other
.NET-aware programming languages):

* No pointers required! C# programs typically have no need for direct pointer
manipulation

(although you are free to drop down to that level if absolutely necessary).

* Automatic memory management through garbage collection. Given this, C# does
not sup -port a delete keyword.

* Formal syntactic constructs for enumerations, structures, and class properties.

» The C++-like ability to overload operators for a custom type, without the complexity
(e.g., making sure to “return *this to allow chaining” is not your problem).

* As of C# 2005, the ability to build generic types and generic members using a syntax
very similar to C++ templates.

e Full support for interface-based programming techniques.

» Full support for aspect-oriented programming (AOP) techniques via attributes. This
brand of development allows you to assign characteristics to types and their members to
further qualify their behavior.

Dept. of ISE,S]BIT Page 12

C# and .NET Programming 0615761

Perhaps the most important point to understand about the C# language shipped
with the Microsoft .NET platform is that it can only produce code that can execute
within the .NET runtime (you could never use C# to build a native COM server or a
unmanaged Win32 API application). Officially speaking, the term used to describe the
code targeting the .NET runtime is managed code. The binary unit that contains the
managed code is termed an assembly (more details on assemblies in just a bit).
Conversely, code that cannot be directly hosted by the .NET runtime is termed
unmanaged code.

1.5 Additional .NET-Aware Programming Languages

Understand that C# is not the only language targeting the .NET platform. When the
.NET platform was first revealed to the general public during the 2000 Microsoft
Professional Developers Conference (PDC), several vendors announced they were busy
building .NET-aware versions of their respective compilers. At the time of this writing,
dozens of different languages have undergone .NET enlightenment. In addition to the
five languages that ship with Visual Studio 2005 (C#, J#,Visual Basic .NET, Managed
Extensions for C++, and JScript .NET), there are .NET compilers for Smalltalk, COBOL,
and Pascal (to name a few). Although this book focuses (almost) exclusively on C#, Table
1-1 lists a number of .NET-enabled programming languages and where to learn more
about them (do note that these URLSs are subject to change).

Table 1-1. 4 Sampling of .NET-Aware Programming Languages

.NET Language Web Link Meaning in Life
http://www.oberon.ethz.ch/oberon.net Homepage for Active Oberon .NET.
http://www.usafa.af.mil/df/dfcs/bios/ Homepage for A# mcc html/a sharp.cfm

http://www.netcobol.com For those interested in COBOL .NET.
http://www.eiffel.com For those interested in Eiffel .NET.
http://www.dataman.ro/dforth For those interested in Forth .NET.

http://www.silverfrost.com/11/ftn95/ For those interested in Fortran .NET.
ftn95 fortran 95 for windows.asp
http://www.vmx-net.com Yes, even Smalltalk .NET is available.

Please be aware that Table 1-1 is not exhaustive. Numerous websites maintain a list of
NET-aware compilers, one of which would be
http://www.dotnetpowered.com/languages.aspx (again, the exact

URL is subject to change). I encourage you to visit this page, as you are sure to find
many .NET languages worth investigating (LISP .NET, anyone?).

Life in a Multilanguage World

As developers first come to understand the language-agnostic nature of .NET,
numerous questions arise. The most prevalent of these questions would have to be, “If
all .NET languages compile down to ‘managed code,” why do we need more than one
compiler?” There are a number of ways to answer this question. First, we programmers
are a very particular lot when it comes to our choice of programming language (myself
included). Some of us prefer languages full of semicolons and curly brackets, with as few
language keywords as possible. Others enjoy a language that offers more “human-
readable” syntactic tokens (such as Visual Basic .NET). Still others may want to

Dept. of ISE,S]BIT Page 13

C# and .NET Programming 0615761

leverage their mainframe skills while moving to the .NET platform (via COBOL .NET).
Now, be honest. If Microsoft were to build a single “official” .NET language that was
derived from the BASIC family of languages, can you really say all programmers
would be happy with this choice? Or, if the only “official” .NET language was based on
Fortran syntax, imagine all the folks out

there who would ignore .NET altogether. Because the .NET runtime couldn't care less
which language was used to build a block of managed code, .NET programmers can
stay true to their syntactic preferences, and share the compiled assemblies among
teammates, departments, and external organizations (regardless of which .NET
language others choose to use). Another excellent byproduct of integrating various
.NET languages into a single unified software solution is the simple fact that all
programming languages have their own sets of strengths and weak-nesses. For
example, some programming languages offer excellent intrinsic support for
advanced mathematical processing. Others offer superior support for financial
calculations, logical calculations, interaction with mainframe computers, and so forth.
When you take the strengths of a particular programming language and then incorporate
the benefits provided by the .NET platform, everybody wins. Of course, in reality the
chances are quite good that you will spend much of your time building software using
your .NET language of choice. However, once you learn the syntax of one .NET
language, it is very easy to master another. This is also quite beneficial, especially to
the consultants of the world. If your language of choice happens to be C#, but you are
placed at a client site that has committed to Visual Basic .NET, you should be able to
parse the existing code body almost instantly (honest!) while still continuing to
leverage the .NET Framework. Enough said.

1.6 An Overview of .NET Assemblies

Regardless of which .NET language you choose to program with, understand that
despite the fact that .NET binaries take the same file extension as COM servers and
unmanaged Win32 binaries (*.d11lor *.exe), they have absolutely no internal. Perhaps
most important, .NET binaries do not contain platform-specific instructions, but rather
platform-agnostic intermediate language (IL) and type metadata. Figure 1-2 shows the
big picture of the story thus far.

C#

Source Code
N

C# Compiler

Perl .NET
Source Code
L >

Perl .NET Compiler
IL

and
Metadata
(*.d11 or *.exe)

COBOL .NET

Source Code
I ~

COBOL .NET Compiler

Managed C++
Source Code

Managed C++ Compiler

N

—
Figure 1-2. A/l NET-aware compilers emit IL instructions and metadata.

Dept. of ISE,S]BIT Page 14

C# and .NET Programming 0615761

Note There is one point to be made regarding the abbreviation “IL.” During the development of .NET,
the offi-
cial term for IL was Microsoft intermediate language (MSIL). However with the final release of .NET, the
term was changed to common intermediate language (CIL). Thus, as you read the .NET literature,
understand that IL, MSIL, and CIL are all describing the same exact entity. In keeping with the current
terminology, | will use the abbreviation “CIL” throughout this text.
Whena *.dllor *.exe has been created using a .NET-aware compiler, the resulting
module is bundled into an assembly. You will examine numerous details of NET
assemblies in However, to facilitate the discussion of the .NET runtime environment,
you do need to understand some basic properties of this new file format. As
mentioned, an assembly contains CIL code, which is conceptually similar to Java
bytecode in that it is not compiled to platform-specific instructions until absolutely
necessary. Typically, “absolutely necessary” is the point at which a block of CIL
instructions (such as a method imple-
mentation) is referenced for use by the .NET runtime.
In addition to CIL instructions, assemblies also contain metadata that describes in
vivid detail the characteristics of every “type” living within the binary. For example, if
you have a class named SportsCar, the type metadata describes details such as
SportsCar’s base class, which interfaces are implemented by SportsCar (if any), as well
as a full description of each member supported by the SportsCar type. .NET metadata
is a dramatic improvement to COM type metadata. As you may already know, COM
binaries are typically described using an associated type library (which is little more
than a binary version of Interface Definition Language [IDL] code). The problems with
COM type information are that it is not guaranteed to be present and the fact that IDL
code has no way to document the externally referenced servers that are required for
the correct operation of the current COM server. In contrast, .NET metadata is
always present and is automatically generated by a given .NET-aware compiler.
Finally, in addition to CIL and type metadata,assemblies themselves are also described
using metadata, which is officially termed a manifest. The manifest contains
information about the current version of the assembly, culture information (used for
localizing string and image resources), and a list of all externally referenced
assemblies that are required for proper execution. You’ll examine various tools that
can be used to examine an assembly’s types, metadata, and manifest information over
the course of the next few chapters.

1.7 Single-File and Multifile Assemblies

In a great number of cases, there is a simple one-to-one correspondence between a
.NET assembly and the binary file (*.d11 or *.exe). Thus, if you are building a .NET
*.d11, it is safe to cosider that the binary and the assembly are one and the same.
Likewise, if you are building an executable desktop application, the *.exe can simply
be referred to as the assembly itself. however, this is not completely accurate.
Technically speaking, if an assembly is composed of a single *.d11 or *.exe module, you
have a single-file assembly. Single-file assemblies contain all the necessary CIL,
metadata, and associated manifest in an autonomous, single, well-defined package.

Dept. of ISE,S]BIT Page 15

C# and .NET Programming 0615761

Multifile assemblies, on the other hand, are composed of numerous .NET binaries, each
of which is termed a module. When building a multifile assembly, one of these
modules (termed the primary module) must contain the assembly manifest (and
possibly CIL instructions and metadata for various types). The other related modules
contain a module level manifest, CIL, and type metadata. As you might suspect, the
primary module documents the set of required secondary modules within the
assembly manifest. So, why would you choose to create a multifile assembly? When
you partition an assembly into discrete modules, you end up with a more flexible
deployment option. For example, if a user is referencing a remote assembly that needs
to be downloaded onto his or her machine, the runtime will only download the
required modules. Therefore, you are free to construct your assembly in such a way that
less frequently required types (such as a type named HardDriveReformatter) are kept
in a separate stand-alone module.

In contrast, if all your types were placed in a single-file assembly, the end user may
end up downloading a large chunk of data that is not really needed (which is
obviously a waste of time). Thus, as you can see, an assembly is really a logical
grouping of one or more related modules that are intended to be initially deployed
and versioned as a single unit.

1.8 The Role of the Common Intermediate Language

Now that you have a better feel for .NET assemblies, let’s examine the role of the
common intermediate language (CIL) in a bit more detail. CIL is a language that sits
above any particular platform-specific instruction set. Regardless of which .NET-
aware language you choose, the associated compiler emits CIL instructions. For
example, the following C# code models a trivial calculator. Don’t concern yourself
with the exact syntax for now, but do notice the format of the Add () method in the
Calc class:

// Calc.cs

using System;

namespace CalculatorExample

{

// This class contains the app's entry point.

public class CalcApp

{

static void Main()

{

Calc ¢ = new Calc();

int ans = c.Add(10, 84);

Console.WriteLine("10 + 84 is {0}.", ans);

// Wait for user to press the Enter key before shutting down.
Console.ReadlLine();

}

}

Dept. of ISE,S]BIT Page 16

C# and .NET Programming 0615761

// The C# calculator.

public class Calc

{

public int Add(int x, int y)

{ return x + y; }

}

}

Once the C# compiler (csc.exe) compiles this source code file, you end up with a
single-file *.exe assembly that contains a manifest, CIL instructions, and metadata
describing each aspect of the Calc and CalcApp classes. For example, if you were to
open this assembly using ildasm.exe (examined a little later in this chapter), you
would find that the Add () method is represented using CIL such as the following:
.method public hidebysig instance int32 Add(int32 x, int32 y) cil managed
{

// Code size 8 (0x8)

.maxstack 2

.locals init ([0] 1nt32 CS$1$0000)

IL 0000: 1ldarg.l

IL 0001: ldarg.2

IL_0002: add

IL 0003: stloc.0

IL 0004: br.s IL 0006

IL 0006: 1dloc.0

IL 0007: ret

} // end of method Calc::Add

Don’t worry if you are unable to make heads or tails of the resulting CIL for this
method—will describe the basics of the CIL programming language. The point to
concentrate on is that the C# compiler emits CIL, not platform-specific instructions.
Now, recall that this is true of all .NET-aware compilers. To illustrate, assume you
created this same application using Visual Basic .NET (VB .NET), rather than C#

' Calc.vb

Imports System

Namespace CalculatorExample

' A VB .NET 'Module' is a class that only contains
' static members.

Module CalcApp

Sub Main ()

Dim ans As Integer

Dim ¢ As New Calc

ans = c.Add (10, 84)

Console.WriteLine ("10 + 84 is {0}.", ans)
Console.ReadLine ()

End Sub

End Module

Dept. of ISE,S]BIT Page 17

C# and .NET Programming 061S761

Class Calc

Public Function Add(ByVal x As Integer, ByVal y As Integer) As Integer
Return x + vy

End Function

End Class

End Namespace

If you examine the CIL for the Add () method, you find similar instructions (slightly
tweaked by

the VB .NET compiler):

.method public instance int32 Add(int32 x, int32 y) cil managed
{

// Code size 9 (0x9)

.maxstack 2

.locals init ([0] int32 Add)

IL 0000: nop

IL 0001: Ildarg.l

IL 0002: 1ldarg.2

IL 0003: add.ovf

IL 0004: stloc.0

IL 0005: br.s IL 0007

IL 0007: 1dloc.0

IL 0008: ret

} // end of method Calc::Add

Benefits of CIL

At this point, you might be wondering exactly what is gained by compiling source
code into CIL rather than directly to a specific instruction set. One benefit is
language integration. As you have already seen, each .NET-aware compiler produces
nearly identical CIL instructions. Therefore, all languages are able to interact within a
well-defined binary arena. Furthermore, given that CIL is platform-agnostic, the .NET
Framework itself is platform-agnostic, providing the same benefits Java developers have
grown accustomed to (i.e., a single code base running on numerous operating systems).
In fact, there is an international standard for the C# language, and a large subset of the
.NET platform and implementations already exist for many non-Windows operating
systems (more details at the conclusion of this chapter). In contrast to Java, however,
.NET allows you to build applications using your language of choice.

Compiling CIL to Platform-Specific Instructions

Due to the fact that assemblies contain CIL instructions, rather than platform-specific
instructions, CIL code must be compiled on the fly before use. The entity that compiles
CIL code into meaningful CPU instructions is termed a just-in-time (JIT) compiler,
which sometimes goes by the friendly name of Jitter. The .NET runtime environment
leverages a JIT compiler for each CPU targeting the runtime,each optimized for the
underlying platform. For example, if you are building a .NET application that is to be
deployed to a handheld device (such as a Pocket PC), the corresponding Jitter is well
equipped to run within low-memory environment. On the other hand, if you are
deploying your assembly to a back-end server (where memory is seldom an issue),

Dept. of ISE,S]BIT Page 18

C# and .NET Programming 0615761

the Jitter will be optimized to function in a high-memory environment. In this way,
developers can write a single body of code that can be efficiently JIT-compiled and
executed on machines with different architectures. Furthermore, as a given Jitter
compiles CIL instructions into corresponding machine code, it will cache the results in
memory in a manner suited to the target operating system. In this way, if a call is made to
a method named PrintDocument (), the CIL instructions are compiled into platform-
specific instructions on the first invocation and retained in memory for later use.
Therefore, the next time PrintDocument () is called, there is no need to recompile the CIL.

1.9 The Role of .NET Type Metadata

In addition to CIL instructions, a .NET assembly contains full, complete, and accurate
metadata, which describes each and every type (class, structure, enumeration, and so
forth) defined in the binary, as well as the members of each type (properties, methods,
events, and so on). Thankfully, it is always the job of the compiler (not the
programmer) to emit the latest and greatest type meta- data. Because .NET metadata is
so wickedly meticulous, assemblies are completely self-describing entities—so much
so, in fact, that .NET binaries have no need to be registered into the system registry. To
illustrate the format of .NET type metadata, let’s take a look at the metadata that has
been generated for the Add () method of the C# Calc class you examined previously (the
metadata generated for the VB .NET version of the Add () method is similar):

TypeDef #2 (02000003)

TypDefName: CalculatorExample.Calc (02000003)

Flags : [Public] [AutoLayout] [Class]

[AnsiClass] [BeforeFieldInit] (00100001)

Extends : 01000001 [TypeRef] System.Object

Method #1 (06000003)

MethodName: Add (06000003)

Flags : [Public] [HideBySig] [ReuseSlot] (00000086)

RVA : 0x00002090

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: I4

2 Arguments

Argument #1: 1I4

Argument #2: I4

2 Parameters

(1) ParamToken : (08000001) Name : x flags: [none] (00000000)

(2) ParamToken : (08000002) Name : y flags: [none] (00000000)

Metadata is used by numerous aspects of the .NET runtime environment, as well as by
various development tools. For example, the IntelliSense feature provided by Visual
Studio

Dept. of ISE,S]BIT Page 19

C# and .NET Programming 0615761

2005 is made possible by reading an assembly’s metadata at design time. Metadata is
also used by various object browsing utilities, debugging tools, and the C# compiler
itself. To be sure, metadata is the backbone of numerous .NET technologies including
remoting, reflection, late binding, XML web services, and object serialization.

1.10 The Role of the Assembly Manifest

Last but not least, remember that a .NET assembly also contains metadata that
describes the assembly itself (technically termed a manifest). Among other details, the
manifest documents all external assemblies required by the current assembly to
function correctly, the assembly’s version number, copyright information, and so
forth. Like type metadata, it is always the job of the compiler to generate the
assembly’s manifest. Here are some relevant details of the

CSharpCalculator.exe manifest:

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 EO 89)

.ver 2:0:0:0

}

.assembly CSharpCalculator

{

.hash algorithm 0x00008004

.ver 0:0:0:0

}

.module CSharpCalculator.exe

.imagebase 0x00400000

.subsystem 0x00000003

.file alignment 512

.corflags 0x00000001

In a nutshell, this manifest documents the list of external assemblies required by
CSharpCalculator.exe (via the .assembly externdirective) as well as various
characteristics of the assembly itself (version number, module name, and so on).

1.11 Understanding the Common Type System

A given assembly may contain any number of distinct “types.” In the world of .NET,
“type” is simply a generic term used to refer to a member from the set {class,
structure, interface, enumeration, delegate}. When you build solutions using a .NET-
aware language, you will most likely interact with each of these types. For example,
your assembly may define a single class that implements some number of interfaces.
Perhaps one of the interface methods takes an enumeration type as an input
parameter and returns a structure to the caller. Recall that the Common Type System
(CTYS) is a formal specification that documents how types must be defined in order to
be hosted by the CLR. Typically, the only individuals who are deeply concerned with
the inner workings of the CTS are those building tools and/or compilersthat target the
.NET platform. It is important, however, for all .NET programmers to learn about how

Dept. of ISE,S]BIT Page 20

C# and .NET Programming 0615761

to work with the five types defined by the CTS in their language of choice. Here is a
brief overview.

CTS Class Types

Every .NET-aware language supports, at the very least, the notion of a class type, which
is the cornerstone of object-oriented programming (OOP). A class may be composed
of any number of members (such as properties, methods, and events) and data points
(fields). In C#, classes are declared using the class keyword:

// A C# class type.

public class Calc

{

public int Add(int x, int y)

{ return x + y; }

}

Table 1-2. CTS Class Characteristics

Class Characteristic Meaning in Life

Is the class “sealed” or not? Sealed classes cannot function as a base
class to other classes.

Does the class implement any interfaces? An interface is a collection of abstract
members that provide a contract between
the object and object user. The

CTS allows a class to implement any number of interfaces.

Is the class abstract or concrete? Abstract classes cannot be directly created, but are
intended to define common behaviors for derived types. Concrete classes can be
created directly. What is the “visibility” of this class? Each class must be configured
with a visibility attribute. Basically, this trait defines if the class may be used by
external

assemblies, or only from within the defining assembly (e.g., a private helper class).
CTS Structure Types

The concept of a structure is also formalized under the CTS. If you have a C background,
you should be pleased to know that these user-defined types (UDTs) have survived in the
world of .NET (although they behave a bit differently under the hood). Simply put, a
structure can be thought of as a lightweight class type having value-based semantics. For
more details on the subtleties of structures, see Chapter 3. Typically, structures are best
suited for modeling geometric and mathematical data, and are created in C# using the
struct keyword:

// A C# structure type.

struct Point

{

// Structures can contain fields.

public int xPos, yPos;

// Structures can contain parameterized constructors.
public Point (int x, int vy)
{ xPos = x; yPos = y;}

Dept. of ISE,S]BIT Page 21

C# and .NET Programming 0615761

// Structures may define methods.

public void Display()

{

Console.WriteLine (" ({0}, {1}", xPos, yPos);

}

CTS Interface Types

Interfaces are nothing more than a named collection of abstract member definitions,
which may be supported (i.e., implemented) by a given class or structure. Unlike COM,
NET interfaces do not derive a common base interface such as IUnknown. In C#,
interface types are defined using the interfacekey- word, for example:

// A C# interface type.

public interface IDraw

{

vold Draw () ;

}

On their own, interfaces are of little use. However, when a class or structure
implements a given interface in its unique way, you are able to request access to the
supplied functionality using an interface reference in a polymorphic manner.

CTS Enumeration Types

Enumerations are a handy programming construct that allows you to group
name/value pairs. For example, assume you are creating a video-game application that
allows the player to select one of three character categories (Wizard, Fighter, or Thief).
Rather than keeping track of raw numerical values to represent each possibility, you
could build a custom enumeration using the enumkeyword:

// A C# enumeration type.

public enum CharacterType

{

Wizard = 100,

Fighter = 200,

Thief = 300

}

By default, the storage used to hold each item is a 32-bit integer; however, it is possible
to alter this storage slot if need be (e.g., when programming for a low-memory device
such as a Pocket PC). Also, the CTS demands that enumerated types derive from a
common base class, System.Enum. As you will see in Chapter 3, this base class defines a
number of interesting members that allow you to extract, manipulate, and transform
the underlying name/value pairs programmatically.

CTS Delegate Types

Delegates are the .NET equivalent of a type-safe C-style function pointer. The key
difference is that a .NET delegate is a class that derives from
System.MulticastDelegate, rather than a simple pointer to a raw memory address. In
C#, delegates are declared using the delegate keyword:

// This C# delegate type can 'point to' any method

// returning an integer and taking two integers as input.

public delegate int BinaryOp(int x, int y);

Dept. of ISE,S]BIT Page 22

C# and .NET Programming 0615761

Delegates are useful when you wish to provide a way for one entity to forward a call to
another entity, and provide the foundation for the .NET event architecture. delegates
have intrinsic support for multicasting (i.e., forwarding a request to multiple recipients)
and

asynchronous method invocations.

CTS Type Members

Now that you have previewed each of the types formalized by the CTS, realize that
most types take any number of members. Formally speaking, a type member is
constrained by the set {constructor, finalizer, static constructor, nested type, operator,
method, property, indexer, field, read only field, constant, event}. The CTS defines
various “adornments” that may be associated with a given member. For example, each
member has a given visibility trait (e.g., public, private, protected, and so forth). Some
members may be declared as abstract to enforce a polymorphic behavior on derived
types as well as virtual to define a canned (but overridable) implementation. Also,
most members may be configured as static (bound at the class level) or instance
(bound at the object level). The construction of

type members is examined over the course of the next several chapters.

Intrinsic CTS Data Types

The final aspect of the CTS to be aware of for the time being is that it establishes a well
defined set of core data types. Although a given language typically has a unique
keyword used to declare an intrinsic CTS data type, all language keywords ultimately
resolve to the same type defined in an assembly named mscorlib.dll. Consider Table
1-3, which documents how key CTS data types are expressed in various .NET
languages.

Table 1-3. The Intrinsic CTS Data Types

CTS Data Type VB .NET Keyword C# Keyword Managed Extensions for C++ Keyword
System.Byte Byte byte unsigned char

System.SByte SByte sbyte signed char

System.Intl6 Short short short

System.Int32 Integer int int or long

System.Int64 Long long __into4

System.UIntlé6 UShort ushort unsigned short

System.UInt32 Ulnteger uint unsigned intor unsigned long
System.UInt64 ULong ulong unsigned into64
System.Single Single float Float

System.Double Double double Double

System.Object Object object Object”

System.Char Char char wchar t

System.String String string String”

System.Decimal Decimal decimal Decimal

System.Boolean Boolean bool Bool

1.12 Understanding the Common Language Specification
As you are aware, different languages express the same programming constructs in
unique, language specific terms. For example, in C# you denote string concatenation

Dept. of ISE,S]BIT Page 23

C# and .NET Programming 0615761

using the plus operator (+), while in VB .NET you typically make use of the ampersand
(&). Even when two distinct languages express the same programmatic idiom (e.g., a
function with no return value), the chances are very good that the syntax will appear
quite different on the surface:

' VB .NET method returning nothing.

Public Sub MyMethod()

' Some interesting code...

End Sub

// C# method returning nothing.

public void MyMethod ()

{

// Some interesting code...

}

As you have already seen, these minor syntactic variations are inconsequential in the
eyes of the .NET runtime, given that the respective compilers (vbc.exe or csc.exe, in
this case) emit a similar set of CIL instructions. However, languages can also differ with
regard to their overall level of functionality. For example, a .NET language may or may
not have a keyword to represent unsigned data, and may or may not support pointer
types. Given these possible variations, it would be ideal to have a baseline to which all
.NET-aware languages are expected to conform. The Common Language Specification
(CLS) is a set of rules that describe in vivid detail the minimal and complete set of
features a given .NET-aware compiler must support to produce code that can be
hosted by the CLR, while at the same time be accessed in a uniform manner by all
languages that target the .NET platform. In many ways, the CLS can be viewed as a
subset of the full functionality defined by the CTS.

The CLS is ultimately a set of rules that compiler builders must conform to, if they
intend their products to function seamlessly within the .NET universe. Each rule is
assigned a simple name (e.g., “CLS Rule 6) and describes how this rule affects those
who build the compilers as well as those who (in some way) interact with them. The
creme de la créme of the CLS is the mighty Rule 1:

* Rule I: CLS rules apply only to those parts of a type that are exposed outside the
defining

assembly. Given this rule, you can (correctly) infer that the remaining rules of the CLS
do not apply to the logic used to build the inner workings of a .NET type. The only
aspects of a type that must conform to the CLS are the member definitions
themselves (i.e., naming conventions, parameters, and return types). The
implementation logic for a member may use any number of non-CLS techniques, as
the outside world won’t know the difference. To illustrate, the following Add () method
is not CLS-compliant, as the parameters and return values make use of unsigned data
(which is not a requirement of the CLS):

public class Calc

{
// Exposed unsigned data is not CLS compliant!

public ulong Add(ulong x, ulong V)
{ return x + y;}

Dept. of ISE,S]BIT Page 24

C# and .NET Programming 061S761

}

However, if you were to simply make use of unsigned data internally as follows:
public class Calc

{

public int Add(int x, int y)

{

// As this ulong variable is only used internally,

// we are still CLS compliant.

ulong temp;

return x + y;

}

}

you have still conformed to the rules of the CLS, and can rest assured that all .NET
languages are able to invoke the Add () method. Of course, in addition to Rule 1, the
CLS defines numerous other rules. For example, the CLS describes how a given
language must represent text strings, how enumerations should be represented
internally (the base type used for storage), how to define static members, and so forth.
Luckily, you don’t have to commit these rules to memory to be a proficient .NET
developer. Again, by and large, an intimate understanding of the CTS and CLS
specifications is only of interest to tool/compiler builders.

Ensuring CLS Compliance

As you will see over the course of this book, C# does define a number of programming
constructs that are not CLS-compliant. The good news, however, is that you can
instruct the C# compiler to check your code for CLS compliance using a single .NET
attribute:

// Tell the C# compiler to check for CLS compliance.

[assembly: System.CLSCompliant (true)]

1.13 The Assembly/Namespace/Type Distinction

Each of us understands the importance of code libraries. The point of libraries such as
MFC, J2EE, and ATL is to give developers a well-defined set of existing code to
leverage in their applications. However, the C# language does not come with a
language-specific code library. Rather, C# developers leverage the language-neutral
.NET libraries. To keep all the types within the base class libraries well organized, the
NET platform makes extensive use of the namespace concept. To clarify, Figure 1-4
shows a screen shot of the Visual Studio 2005 Object Brower utility. This tool allows you
to examine the assemblies referenced by your current project, the namespaces within
a particular assembly, the types within a given namespace, and the members of a
specific type. Note that mscorlib.dll contains many different namespaces, each with its
own semantically related types.

Dept. of ISE,S]BIT Page 25

C# and .NET Programming 0615761

Some .NET
Compiler
Your .NET
Source Code
from Some l
.NET-Aware
Language *.d11l or *.exe
Assembly
= (CIL, Metadata, and Manifest)
.NET Execution Engine
(mscoree.dll)
Base Class Class Loader
Libraries

(mscorlib.d1l)
and So Forth) Jitter

Platform-
Specific
Instructions

Execute the
member.

Figure 1-4. A4 single assembly can have any number of namespaces.

1.14 The Assembly/Namespace/Type Distinction

Each of us understands the importance of code libraries. The point of libraries such as
MFC, J2EE, and ATL is to give developers a well-defined set of existing code to
leverage in their applications. However, the C# language does not come with a
language-specific code library. Rather, C# developers leverage the language-neutral
.NET libraries. To keep all the types within the base class libraries well organized, the
.NET platform makes extensive use of the namespace concept. Simply put, a
namespace is a grouping of related types contained in an assembly. For example, the
System.IOnamespace contains file I/O related types, the System.Data namespace
defines basic database types, and so on. It is very important to point out that a single
assembly (such as mscorlib.dll) can contain any number of namespaces, each of
which can contain any number of types.

Table 1-4. 4 Sampling of .NET Namespaces

.NET Namespace Meaning in Life

System Within Systemyou find numerous useful types dealing with

Dept. of ISE,S]BIT Page 26

C# and .NET Programming 0615761

intrinsic data, mathematical computations, random
number generation, environment variables, and garbage
collection, as well as a number of commonly used
exceptions and attributes.

System.Collections These namespaces define a number of stock container
objects

System.Collections.Generic (ArrayList, Queue, and so forth), as well as base
types

and interfaces that allow you to build customized
collections. As of .NET 2.0, the collection types

have

been extended with generic capabilities.
System.Data These namespaces are used for interacting with databases
using

1.15 Deploying the .NET Runtime

It should come as no surprise that .NET assemblies can be executed only on a machine
that has the .NET Framework installed. As an individual who builds .NET software, this
should never be an issue, as your development machine will be properly configured at
the time you install the freely available .NET Framework 2.0 SDK (as well as
commercial .NET development environments such as Visual Studio 2005). However, if
you deploy an assembly to a computer that does not have .NET installed, it will fail to
run. For this reason, Microsoft provides a setup package nameddotnetfx.exe that can
be freely shipped and installed along with your custom software. This installation
program is included with the .NET Framework 2.0 SDK, and it is also freely
downloadable from Microsoft. Once dotnetfx.exeis installed, the target machine will
now contain the .NET base class libraries, .NET runtime (mscoree.dll), and additional
.NET infrastructure (such as the GAC).

1.16 The Platform-Independent Nature of .NET

To close this chapter, allow me to briefly comment on the platform-independent nature
of the .NET platform. To the surprise of most developers, .NET assemblies can be
developed and executed on non-Microsoft operating systems (Mac OS X, numerous
Linux distributions, BeOS, and FreeBSD, to name a few). To understand how this is
possible, you need to come to terms to yet another abbreviation in the .NET universe:
CLI (Common Language Infrastructure). When Microsoft released the C#
programming language and the .NET platform, it also crafted a set of formal
documents that described the syntax and semantics of the C# and CIL languages, the
.NET assembly format, core .NET namespaces, and the mechanics of a hypothetical
NET runtime engine (known as the Virtual Execution System, or VES). Better yet, these
documents have been submitted to Ecma International as official international standards
(http://www.ecma-international.org). The specifications of interest are

* ECMA-334: The C# Language Specification

Dept. of ISE,S]BIT Page 27

C# and .NET Programming 0615761

Recommended Questions:
1. Explain the builing block of .NET framework
2. Bring out the important differences between single and multifile assemblies
3. Whatarenamespaces? Listand explain the purpose of at least five namespaces.
4. What is .NET? With a neat diagram explain the important building blocks of .NET
platform.

Dept. of ISE,S]BIT Page 28

C# and .NET Programming 0615761

Building C# Applications
UNIT-2

2.1 The Role of the Command Line Complier (csc.exe)
2.2 Building C # Application using csc.exe

2.3 Working with csc.exe Response Files, Generating Bug
Reports

2.4 The Command Line Debugger (cordbg.exe)

2.5 Using the, Visual Studio .NET IDE6

2.6 Other Key Aspects of the VS.NET IDE

2.7 C#“Preprocessor:” Directives

2.8 An Interesting Aside: The System. Environment Class.

Dept. of ISE,S]BIT Page 29

C# and .NET Programming 0615761

2.1 The C# Command-Line Compiler (csc.exe)

There are a number of techniques you may use to compile C# source code. In addition
to Visual Studio 2005 (as well as various third-party .NET IDESs), you are able to create
.NET assemblies using the C# command-line compiler, csc.exe(where cscstands for C-
Sharp Compiler). This tool is included with the .NET Framework 2.0 SDK. While it is true
that you may never decide to build a large-scale application using the command-line
compiler, it is important to understand the basics of how to compile your *.cs files by
hand. I can think of a few reasons you should get a grip on the process:

* The most obvious reason is the simple fact that you might not have a copy of Visual
Studio 2005.

* You plan to make use of automated build tools such as MSBuild or NAnt.

* You want to deepen your understanding of C#. When you use graphical IDEs to build
applications, you are ultimately instructing csc.exe how to manipulate your C# input
files. In this light, it’s edifying to see what takes place behind the scenes. Another nice
by-product of working with csc.exe in the raw is that you become that much more
comfortable manipulating other command-line tools included with the .NET
Framework 2.0 SDK. As you will see throughout this book, a number of important
utilities are accessible only from the command line.

Configuring the C# Command-Line Compiler

Before you can begin to make use of the C# command-line compiler, you need to
ensure that your development machine recognizes the existence of csc.exe. If your
machine is not configured correctly, you are forced to specify the full path to the
directory containing csc.exe before you can compile your C# files.

To equip your development machine to compile *.cs files from any directory, follow
these steps (which assume a Windows XP installation; Windows NT/2000 steps will
differ slightly):

1. Right-click the My Computer icon and select Properties from the pop-up menu.

2. Select the Advanced tab and click the Environment Variables button.

3. Double-click the Path variable from the System Variables list box.

4. Add the following line to the end of the current Path value (note each value in the
Path variable is separated by a semicolon):
C:\Windows\Microsoft.NET\Framework\v2.0.50215

Of course, your entry may need to be adjusted based on your current version and
location of the .NET Framework 2.0 SDK (so be sure to do a sanity check using
Windows Explorer). Once you have updated the Path variable, you may take a test run
by closing any command windows open in the background (to commit the settings),
and then opening a new command window and entering

csc /?

If you set things up correctly, you should see a list of options supported by the C#
compiler.

Configuring Additional .NET Command-Line Tools

Before you begin to investigate csc.exe, add the following additional Path variable to
the System Variables list box (again, perform a sanity check to ensure a valid
directory):

Dept. of ISE,S]BIT Page 30

C# and .NET Programming 061S761

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin

Recall that this directory contains additional command-line tools that are commonly
used during .NET development. With these two paths established, you should now be
able to run any .NET utility from any command window. If you wish to confirm this
new setting, close any open command windows, open a new command window, and
enter the following command to view the options of the GAC utility, gacutil.exe:
gacutil /?

2.2 Building C# Applications Using csc.exe

Now that your development machine recognizes csc.exe, the next goal is to build a
simple single file assembly named TestApp.exe using the C# command-line compiler
and Notepad. First, you need some source code. Open Notepad and enter the
following:

// A simple C# application.

using System;

class TestApp
{

public static void Main()

{

Console.WriteLine ("Testing! 1, 2, 3");
}
}

Once you have finished, save the file in a convenient location (e.g., C:\CscExample)
as TestApp.cs. Now, let’s get to know the core options of the C# compiler. The first
point of interest is to understand how to specify the name and type of assembly to
create (e.g., a console application named MyShell.exe, a code library named
MathLib.dl1l, a Windows Forms application named MyWinApp.exe, and so forth). Each
possibility is represented by a specific flag passed into csc.exeas a command-line
parameter (see Table 2-2).

Table 2-2. Output-centric Options of the C# Compiler

Option Meaning in Life
/out This option is used to specify the name of the assembly to be
created. By
default, the assembly name is the same as the name of the initial
input *.cs file (in the case of a*.d1l) or the name of the type
containing the program’s Main () method (in the case of an *.exe).
/target:exe This option builds an executable console application. This is the
default file output type, and thus may be omitted when building
this
application type.
/target:library This option builds a single-file *.d11 assembly.
/target:module This option builds a module. Modules are elements of multifile

assemblies (fully described in Chapter 11).

Dept. of ISE,S]BIT Page 31

C# and .NET Programming 0615761

/target:winexe Although you are free to build Windows-based applications.

To compile TestApp.cs into a console application named TestApp.exe, change to the
directory containing your source code file and enter the following command set (note
that command-line flags must come before the name of the input files, not after):

csc /target:exe TestApp.cs

Here I did not explicitly specify an /out flag, therefore the executable will be named
TestApp.exe,

given that TestApp is the class defining the program’s entry point (the Main () method).
Also be aware that most of the C# compiler flags support an abbreviated version, such
as /trather than /target (you can view all abbreviations by entering csc /?at the
command prompt): csc /t:exe TestApp.cs Furthermore, given that the /t:exe flag is
the default output used by the C# compiler, you could also compile TestApp.cs simply
by typing csc TestApp.cs TestApp.exe can now be run from the command line.
Referencing External Assemblies

Next up, let’s examine how to compile an application that makes use of types defined
in a separate .NET assembly. Speaking of which, just in case you are wondering how
the C# compiler understood your reference to the System.Console type, recall from
Chapter 1 that mscorlib.dll is automatically referenced during the compilation process
(if for some trange reason you wish to disable this behavior, you may specify the
/nostdlib flag). To illustrate the process of referencing external assemblies, let’s update
the TestApp application to display a Windows Forms message box. Open your
TestApp.cs file and modify it as follows:

using System;

// Add this!

using System.Windows.Forms;

class TestApp
{

public static void Main()

{

Console.WritelLine ("Testing! 1, 2, 3");

// Add this!

MessageBox.Show ("Hello...");

}

}

Notice the reference to the System.Windows.Forms namespace via the C# using keyword
(introduced in Chapter 1). Recall that when you explicitly list the namespaces used
within a given *.cs file, you avoid the need to make use of fully qualified names
(which can lead to hand cramps). At the command line, you must inform

csc.exe which assembly contains the “used” namespaces. Given that you have made
use of the MessageBox class, you must specify the System.Windows. Forms.dl1 assembly
using the /reference flag (which can be abbreviated to /r):

csc /r:System.Windows.Forms.dll testapp.cs

Dept. of ISE,S]BIT Page 32

C# and .NET Programming 0615761

Compiling Multiple Source Files with csc.exe

The current incarnation of the TestApp.exe application was created using a single
*.cs source code file. While it is perfectly permissible to have all of your .NET types
defined in a single *.cs file, most projects are composed of multiple *.cs files to keep
your code base a bit more flexible. Assume you have authored an additional class
contained in a new file named HelloMsg.cs:

// The HelloMessage class

using System;

using System.Windows.Forms;

class HelloMessage
{
public void Speak()
{

MessageBox.Show ("Hello...");

}

}

Now, update your initial TestApp class to make use of this new type, and comment out
the previous Windows Forms logic:

using System;

// Don't need this anymore.
// using System.Windows.Forms;

class TestApp
{
public static void Main ()

{

Console.WriteLine ("Testing! 1, 2, 3");

// Don't need this anymore either.
// MessageBox.Show("Hello...");

// Exercise the HelloMessage class!
HelloMessage h = new HelloMessage();
h.Speak() ;
}
}
You can compile your C# files by listing each input file explicitly:
csc /r:System.Windows.Forms.dll testapp.cs hellomsg.cs
As an alternative, the C# compiler allows you to make use of the wildcard character (*)
to inform csc.exe to include all *.cs files contained in the project directory as part of
the current build:
csc /r:System.Windows.Forms.dll *.cs

Dept. of ISE,S]BIT Page 33

C# and .NET Programming 0615761

When you run the program again, the output is identical. The only difference between
the two applications is the fact that the current logic has been split among multiple
files.

Referencing Multiple External Assemblies

On a related note, what if you need to reference numerous external assemblies using
csc.exe? Simply list each assembly using a semicolon-delimited list. You don’t need to
specify multiple external assemblies for the current example, but some sample usage
follows:

csc /r:System.Windows.Forms.dll;System.Drawing.dll *.cs

2.3 Working with csc.exe Response Files

As you might guess, if you were to build a complex C# application at the command
prompt, your life would be full of pain as you type in the flags that specify numerous
referenced assemblies and *.cs input files. To help lessen your typing burden, the C#
compiler honors the use of response files. C# response files contain all the instructions
to be used during the compilation of your current build. By convention, these files end
in a *.rsp (response) extension. Assume that you have created a response file named
TestApp.rsp that contains the following arguments (as you can see, comments are
denoted with the # character):

This is the response file

for the TestApp.exe app

of Chapter 2.

External assembly references.
/r:System.Windows.Forms.dll

output and files to compile (using wildcard syntax).

/target:exe /out:TestApp.exe *.cs

Now, assuming this file is saved in the same directory as the C# source code files to be
compiled, you are able to build your entire application as follows (note the use of the
@symbol): csc @TestApp.rsp

If the need should arise, you are also able to specify multiple *.rsp files as input (e.g.,
csc @FirstFile.rsp @SecondFile.rsp @ThirdFile.rsp). If you take this approach, do
be aware that the compiler processes the command options as they are encountered!
Therefore, command-line arguments in a later *.rsp file can override options in a
previous response file. Also note that flags listed explicitly on the command line
before a response file will be overridden by the specified *. rsp file. Thus, if you were to
enter

csc /out:MyCoolApp.exe @TestApp.rsp

the name of the assembly would still be TestApp.exe (rather than MyCoolApp.exe),
given the

/out:TestApp.exe flag listed in the TestApp.rsp response file. However, if you list flags
after a response file, the flag will override settings in the response file.

Dept. of ISE,S]BIT Page 34

C# and .NET Programming 0615761

The Default Response File (csc.rsp)

The final point to be made regarding response files is that the C# compiler has an
associated default response file (csc.rsp), which is located in the same directory as
csc.exeitself (e.g., C:\Windows\Microsoft. NET\Framework\v2.0.50215) . If you were to
open this file using Notepad, you will find that numerous .NET assemblies have
already been specified using the /r: flag. When you are building your C# programs
using csc.exe, this file will be automatically referenced, even when you supply a
custom *.rsp file. Given the presence of the default response file, the current
TestApp.exe application could be successfully compiled using the following command
set (as System.Windows.Forms.dll is referenced within csc.rsp):

csc /out:TestApp.exe *.cs

In the event that you wish to disable the automatic reading of csc.rsp, you can
specify the /noconfig option:

csc @TestApp.rsp /noconfig

Obviously, the C# command-line compiler has many other options that can be used to
control how the resulting .NET assembly is to be generated. If you wish to learn more
details regarding the functionality of csc.exe, look up my article titled “Working with
the C# 2.0 Command Line Compiler” online at http://msdn.microsoft.com.

2.4 The Command-Line Debugger (cordbg.exe)

Before moving on to our examination of building C# applications using TextPad, I
would like to briefly point out that the .NET Framework 2.0 SDK does ship with a
command-line debugger named cordbg.exe. This tool provides dozens of options
that allow you to debug your assembly. You may view them by specifying the /? flag:
cordbg /?

Table 2-3 documents some (but certainly not all) of the flags recognized by

cordbg.exe (with

the alternative shorthand notation) once you have entered a debugging session.

Table 2-3. 4 Handful of Useful cordbg.exe Command-Line Flags

Flag Meaning in Life

b[reak] Set or display current breakpoints.

del[ete] Remove one or more breakpoints.

ex[it] Exit the debugger.

glo] Continue debugging the current process until hitting next
breakpoint.

ofut] Step out of the current function.

plrint] Print all loaded variables (local, arguments, etc.).

si Step into the next line.

SO Step over the next line.

As I assume that most of you will choose to make use of the Visual Studio 2005
integrated debugger, I will not bother to comment on each flag of cordbg.exe. However,

Dept. of ISE,S]BIT Page 35

C# and .NET Programming 0615761

for those of you who are interested, the following section presents a minimal walk-
through of the basic process of debugging at the command line.

Debugging at the Command Line

Before you can debug your application using cordbg.exe, the first step is to generate
debugging symbols for your current application by specifying the /debug flag of
csc.exe. For example, to generate debugging data for TestApp.exe, enter the following
command set:

csc Qtestapp.rsp /debug

This generates a new file named (in this case) testapp.pdb. If you do not have an
associated *.pdb file, it is still possible to make use of cordbg.exe; however, you will
not be able to view your C# source code during the process (which is typically no fun
whatsoever, unless you wish to complicate matters by reading CIL code).

Once you have generated a *.pdb file, open a session with cordbg.exe by specifying
your .NET assembly as a command-line argument (the *.pdb file will be loaded
automatically):

cordbg.exe testapp.exe

When you wish to quit debugging with cordbg.exe, simply type exit (or the shorthand
ex). Again, unless you are a command-line junkie, I assume you will opt for the
graphical debugger provided by your IDE. If you require more information, look up
cordbg.exe in the .NET Framework 2.0 SDK documentation.

2.5 Using The, Visual Studio .NET IDE

While Notepad is fine for creating simple .NET programs, it offers nothing in the way
of developer productivity. It would be ideal to author *.cs files using an editor that
supports (at a minimum) keyword coloring, code snippets, and integration with a C#
compiler. As luck would have it, such a tool does exist: TextPad. TextPad is an editor
you can use to author and compile code for numerous programming languages,
including C#. The chief advantage of this product is the fact that it is very simple to use
and provides just enough bells and whistles to enhance your coding efforts. To obtain
TextPad, navigate to http://www.textpad.com and download the current version (4.7.3
at the time of this writing). Once you have installed the product, you will have a
feature-complete version of TextPad; however, this tool is not freeware. Until you
purchase a single-user license (for around US$30.00 at the time of this writing), you
will be presented with a “friendly reminder” each time you run the application.
TextPad is not equipped to understand C# keywords or work with csc.exe out of the box.
To do so, you will need to install an additional add-on. Navigate to
http://www.textpad.com/add-ons/syna2g.html

and download csharp8.zipusing the “C# 2005” link option. This add-on takes into
account the new keywords introduced with C# 2005 (in contrast to the “C#” link, which is
limited to C# 1.1). Once you have unzipped csharp8.zip, place a copy of the extracted
csharp8.synfile in the Samples subdirectory of the TextPad installation (e.g.,

Dept. of ISE,S]BIT Page 36

C# and .NET Programming 0615761

C:\Program Files\TextPad 4\Samples). Next, launch TextPad and perform the following
tasks using the New Document Wizard.

1. Activate the Configure = New Document Class menu option.

2. Enter the name C# 2.0 in the “Document class name” edit box.

3. In the next step, enter *.csin the “Class members” edit box.

4. Finally, enable syntax highlighting, choose csharp8.syn from the drop-down list
box, and

close the wizard. You can now tweak TextPad’s C# support using the Document
Classes node accessible from the Configure.

Configuring the *.cs File Filter

The next configuration detail is to create a filter for C# source code files displayed by
the Open and Save dialog boxes:

1. Activate the Configure Preferences menu option and select File Name Filters from
the

tree view control.

2. Click the New button, and enter C# into the Description field and *.cs into the Wild
cards text box.

3. Move your new filter to the top of the list using the Move Up button and click OK.
Hooking Into csc.exe

The last major configuration detail to contend with is to associate csc.exe with
TextPad so you can compile your C# files. The first way to do so is using the Tools

Run menu option. Here you are presented with a dialog box that allows you to specify
the name of the tool to run and any necessary command-line flags. To compile
TextPadTest.cs into a .NET console-based executable, follow these steps:

1. Enter the full path to csc.exeinto the Command text box (e.g.,
C:\Windows\Microsoft. NET\

Framework\v2.0. 50215\csc.exe).

2. Enter the command-line options you wish to specify within the Parameters text box
(e.g.,

/out:myApp.exe *.cs). Recall that you can specify a custom response file to simplify
matters

(e.g., @myInput.rsp)

3. Enter the directory containing the input files via the Initial folder text box
(C:\TextPadTestApp in this example).

4. 1f you wish TextPad to capture the compiler output directly (rather than within a
separate

command window), select the Capture Output check box.

At this point, you can either run your program by double-clicking the executable using
Windows Explorer or leverage the Tools.

Associating Run Commands with Menu Items

TextPad also allows you to create custom menu items that represent predefined run
commands. Let’s create a custom item under the Tools menu named “Compile C#
Console” that will compile all C# files in the current directory:

1. Activate the Configure Preferences menu option and select Tools from the tree view
control.

2. Using the Add button, select Program and specify the full path to csc.exe.

Dept. of ISE,S]BIT Page 37

C# and .NET Programming 0615761

3. If you wish, rename csc.exe to a more descriptive label (Compile C#) by clicking the
tool

name and then clicking OK.

4. Finally, activate the Configure Preferences menu option once again, but this time
select

Compile C# from the Tools node, and specify *.cs as the sole value in the Parameters
field.

During the summer of 2004, Microsoft introduced a brand-new line of IDEs that fall
under the designation of “Express” products (http://msdn.microsoft.com/express) . To
date, there are six members of the Express family:

» Visual Web Developer 2005 Express: A lightweight tool for building dynamic websites
and

XML web services using ASP.NET 2.0

* Visual Basic 2005 Express: A streamlined programming tool ideal for novice
programmers who want to learn how to build applications using the user-friendly syntax
of Visual Basic .NET Visual C# 2005 Express, Visual C++ 2005 Express, and Visual J#
2005 Express: Targeted IDEs for students and enthusiasts who wish to learn the
fundamentals of computer science in their syntax of choice

* SQL Server 2005 Express: An entry-level database management system geared toward
hobbyists, enthusiasts, and student developers

2.6 Other Key Aspects of the VS.NET IDE

Visual Studio 2005 gives us the ability to design classes visually (but this capability is
not included in Visual C# 2005 Express). The Class Designer utility allows you to view
and modify the relationships of the types (classes, interfaces, structures, enumerations,
and delegates) in your project. Using this tool, you are able to visually add (or remove)
members to (or from) a type and have your modifications reflected in the corresponding
C# file. As well, as you modify a given C# file, changes are reflected in the class
diagram.

To work with this aspect of Visual Studio 2005, the first step is to insert a new class
diagram file. There are many ways to do so, one of which is to click the View Class
Diagram button located on Solution Explorer’s right side

2.7 C# Preprocessor Directives

Like many other languages in the C family, C# supports the use of various symbols that
allow you to interact with the compilation process. Before examining various C#
preprocessor directives, let’s get our terminology correct. The term “C# preprocessor
directive” is not entirely accurate. In reality, this term is used only for consistency with
the C and C++ programming languages. In C#, there is no separate preprocessing step.
Rather, preprocessing directives are processed as part of the lexical analysis phase of
the compiler.

In any case, the syntax of the C# preprocessor directives is very similar to that of the
other mem bers of the C family, in that the directives are always prefixed with the pound
sign (#). Table 9-4 defines some of the more commonly used directives (consult the .NET
Framework 2.0 SDK documentation for complete details).

Table 9-4. Common C# Preprocessor Directives

Directives Meaning in Life

Dept. of ISE,S]BIT Page 38

C# and .NET Programming 0615761

tregion, #endregion Used to mark sections of collapsible source code
#define, #undef Used to define and undefine conditional compilation symbols
#1if,#elif, #else,#endif Used to conditionally skip sections of source code (based
on

specified compilation symbols)
Specifying Code Regions
Perhaps some of the most useful of all preprocessor directives are #region and
tendregion. Using these tags, you are able to specify a block of code that may be
hidden from view and identified by a friendly textual marker. Use of regions can help
keep lengthy *.cs files more manageable. For example, you could create one region for a
type’s constructors, another for type properties, and so forth:
class Car

{
private string petName;
private int currSp;

#region Constructors

public Car ()

{ ...}

public Car Car(int currSp, string petName)

{...}
#endregion

#region Properties
public int Speed

{ ...}

public string Name
{...}

#endregion

}

2.8 An Interesting Aside: The System.Environment
Class

Let’s examine the System.Environment class in greater detail. This class allows you to
obtain a number of details regarding the operating system currently hosting your .NET
application using various static members. To illustrate this class’s usefulness, update
your Main () method with the following logic:

public static int Main(string[] args)

{

// OS running this app?
Console.WriteLine ("Current 0S: {0} ", Environment.OSVersion);

// Directory containing this app?
Console.WritelLine ("Current Directory: {0} ",
Environment.CurrentDirectory);

Dept. of ISE,S]BIT Page 39

C# and .NET Programming 0615761

// List the drives on this machine.

string[] drives = Environment.GetLogicalDrives();
for(int i = 0; 1 < drives.Length; i++)
Console.WriteLine ("Drive {0} : {1} ", i, drives[i]);

// Which version of the .NET platform is running this app?
Console.WritelLine ("Executing version of .NET: {0} ",
Environment.Version);

}

The System.Environment type defines members other than those presented in the
previous

example. Table 3-1 documents some additional properties of interest; however, be sure
to check out the .NET Framework 2.0 SDK documentation for full details.

Table 3-1. Select Properties of System.Environment

Property Meaning in Life

MachineName Gets the name of the current machine

NewLine Gets the newline symbol for the current environment
ProcessorCount Returns the number of processors on the current machine
SystemDirectory Returns the full path to the system directory

UserName Returns the name of the entity that started this application

Dept. of ISE,S]BIT Page 40

C# and .NET Programming 0615761

Recommended Questions:

1. Expalin with a neat diagram the workflow that takes place between your source code, a
given .NET compiler and the .NET execution engine.

2. How .NET framework different from other programming environments like
COM,C++,VB6,java etc?

3. Briefly discuss the state of affairs that eventually led to the .NET platform. What is the
NET solution and what C# brings t the tables?

4. What are the basic building blocks of .NET platform? Explain the common type system
in detail.

Dept. of ISE,S]BIT Page 41

C# and .NET Programming 061S761

UNIT-3
The C# Programming Language

3.1 The Anatomy of a Basic C# Class

3.2 Creating objects: Constructor Basics

3.3 The Composition of a C# Application

3.4 Default Assignment and Variable Scope

3.5 The C# Member Initialization Syntax

3.6 Basic Input and Output with the Console Class
3.7 Understanding Value Types and Reference Types
3.8 The Master Node: System, Object

3.9 The System Data Types (and C# Aliases)

3.10 Converting Between Value Types and Reference Types: Boxing and
Unboxing,

3.11 Defining Program Constants

3.12 C# Iteration Constructs

3.13 C# Controls Flow Constructs

3.14 The Complete Set of C

3.15 Methods Parameter Modifies
3.16 Array Manipulation in C #
3.17 String Manipulation in C#
3.18 C# Enumerations

3.19 Defining Structures in C#

3.20 Defining Custom Namespaces.

Dept. of ISE,S]BIT Page 42

C# and .NET Programming 0615761

3.1 The Anatomy of a Simple C# Program

C# demands that all program logic is contained within a type definition (recall from
Chapter 1 that #ype is a term referring to a member of the set {class, interface,
structure, enumeration, delegate}). Unlike in C(++), in C# it is not possible to create
global functions or global points of data. In its simplest form, a C# program can be
written as follows:

// By convention, C# files end with a *.cs file extension.

using System;

class HelloClass

{

public static int Main(string[] args)

{

Console.WriteLine ("Hello World!");

Console.ReadLine () ;

return 0;

}

}

Here, a definition is created for a class type (HelloClass) that supports a single method
named Main (). Every executable C# application must contain a class defining a

Main () method, which is used to signify the entry point of the application. As you can
see, this signature of Main () is adorned with the publicand static keywords. Later in
this chapter, you will be supplied with a formal definition of “public” and “static.”
Until then, understand that public members are accessible from other types, while
static members are scoped at the class level (rather than the object level) and can thus
be invoked without the need to first create a new class instance.

Variations on the Main() Method

The previous iteration of Main () was defined to take a single parameter (an array of
strings) and return an integer data type. This is not the only possible form of Main (),
however. It is permissible to construct your application’s entry point using any of the
following signatures (assuming it is contained within a C# class or structure definition):
// No return type, array of strings as argument.

public static void Main(string[] args)

{

}

// No return type, no arguments.
public static void Main()

{

}

// Integer return type, no arguments.
public static int Main()

{

}

Dept. of ISE,S]BIT Page 43

C# and .NET Programming 0615761

Processing Command-Line Arguments

Assume that you now wish to update HelloClass to process possible command-line
parameters:

// This time, check if you have been sent any command-line arguments.

using System;

class HelloClassf{

public static int Main(string[] args)

{

Console.WriteLine ("***** Command line args ****x");
for(int 1 = 0; i1 < args.Length; i++)
Console.WriteLine ("Arg: {0} ", argsl[i]);

}
}
Here, you are checking to see if the array of strings contains some number of items

using the Length property of System.Array (as you’ll see later in this chapter, all C#
arrays actually alias the System.Arraytype, and therefore have a common set of
members). As you loop over each item in the array, its value is printed to the console
window. Supplying the arguments at the command line is equally as simple. As an
alternative to the standard for loop, you may iterate over incoming string arrays using
the C# foreach keyword. This bit of syntax is fully explained later in this chapter, but
here is some sample usage:

// Notice you have no need to check the size of the array when using
'foreach'.

public static int Main(string[] args)

{

foreach(string s in args)
Console.WriteLine ("Arg: {0} ", s);

}

Finally, you are also able to access command-line arguments using the static
GetCommand LineArgs () method of the System.Environment type. The return value of
this method is an array of strings. The first index identifies the current directory
containing the application itself, while the remaining elements in the array contain
the individual command-line arguments (when using this technique, you no longer
need to define the Main () method as taking a string array parameter)

public static int Main(string[] args)

{

Dept. of ISE,S]BIT Page 44

C# and .NET Programming 061S761

// Get arguments using System.Environment.
string[] theArgs = Environment.GetCommandLineArgs();
Console.WriteLine ("Path to this app is: {0}", theArgs[0]);

}

3.2 Creating Objects:Constructor Basics

Now that you have the role of Main () under your belt, let’s move on to the topic of
object construction. All object-oriented (OO) languages make a clear distinction
between classes and objects. A class is a definition (or, if you will, a blueprint) for a
user-defined type (UDT). An object is simply a term describing a given instance of a
particular class in memory. In C#, the new keyword is the de facto way to create an
object. Unlike other OO languages (such as C++), it is not possible to allocate a class
type on the stack; therefore, if you attempt to use a class variable that has not been
“new-ed,” you are issued a compile-time error. Thus the following C# code is illegal:
using System;

class HelloClass

{

public static int Main(string[] args)

{

// Error! Use of unassigned local variable! Must use 'new'.

HelloClass cl;

cl.SomeMethod();

}

}

To illustrate the proper procedures for object creation, observe the following update:
using System;

class HelloClass

{

public static int Main(string[] args)

{

// You can declare and create a new object in a single line...
HelloClass cl = new HelloClass();

// ...or break declaration and creation into two lines.
HelloClass c2;
c2 = new HelloClass();

}

}

The newkeyword is in charge of calculating the correct number of bytes for the specified
object and acquiring sufficient memory from the managed heap. Here, you have
allocated two objects of the HelloClass class type. Understand that C# object variables
are really a reference to the object in memory, not the actual object itself. Thus, in this

Dept. of ISE,S]BIT Page 45

C# and .NET Programming 061S761

light, c1 and c2 each reference a unique HelloClass object allocated on the managed
heap.

3.3 The Composition of a C#

The previous HelloClass objects have been constructed using the default constructor,
which by definition never takes arguments. Every C# class is automatically provided
with a free default constructor, which you may redefine if need be. The default
constructor ensures that all member data is set to an appropriate default value (this
behavior is true for all constructors). Contrast this to C++, where unini- tialized state
data points to garbage (sometimes the little things mean a lot). Typically, classes
provide additional constructors beyond the default. In doing so, you provide the object
user with a simple way to initialize the state of an object at the time of creation. Like in
Java and C++, in C# constructors are named identically to the class they are
constructing, and they never provide a return value (not even void). Here is the
HelloClasstype once again, with a custom constructor, a redefined default constructor,
and a point of public string data:

// HelloClass, with constructors.

using System;

class HelloClass

{

// A point of state data.

// Default constructor.

public HelloClass()

{ Console.WriteLine ("Default ctor called!"); }

// This custom constructor assigns state data
// to a user-supplied value.

public HelloClass (string msg)

{

Console.WriteLine ("Custom ctor called!");
userMessage = msg;

}

// Program entry point.

public static int Main(string[] args)

{

// Call default constructor.

HelloClass cl = new HelloClass();

Console.WriteLine ("Value of userMessage: {0}\n", cl.userMessage);

// Call parameterized constructor.

HelloClass c2;

c2 = new HelloClass("Testing, 1, 2, 3");

Console.WriteLine ("Value of userMessage: {0}", cZ2.userMessage);
Console.ReadLine();

Dept. of ISE,S]BIT Page 46

C# and .NET Programming 061S761

return 0;
}
}

3.4 Default Assignment and variable scope

Currently, the HelloClass type has been constructed to perform two duties. First, the
class defines the entry point of the application (the Main () method). Second,
HelloClass maintains a point of field data and a few constructors. While this is all well
and good, it may seem a bit strange (although syntactically well-formed) that the static
Main () method creates an instance of the very class in which it was defined:

class HelloClass

{

public static int Main(string[] args)
{
HelloClass cl = new HelloClass();

}

}

Many of my initial examples take this approach, just to keep focused on illustrating the
task at hand. However, a more natural design would be to refactor the current
HelloClass type into two distinct classes: HelloClass and HelloApp. When you build C#
applications, it becomes quite common to have one type functioning as the “application
object” (the type that defines the Main () method) and numerous other types that
constitute the application at large In OO parlance, this is termed the separation of
concerns. In a nutshell, this design principle states that a class should be responsible
for the least amount of work. Thus, we could reengineer the current program into the
following (notice that a new member named PrintMessage () has been added to the
HelloClass type):

class HelloClass

{

public string userMessage;

public HelloClass()
{ Console.WriteLine ("Default ctor called!"); }

public HelloClass(string msq)
{

Console.WriteLine ("Custom ctor called!"™);
userMessage = msg;

}

public void PrintMessage ()

{

Console.WriteLine ("Message is: {0}", userMessage);

Dept. of ISE,S]BIT Page 47

C# and .NET Programming 061S761

}
}

class HelloApp

{

public static int Main(string[] args)

{

HelloClass cl = new HelloClass("Hey there...");
cl.PrintMessage () ;

}

}

3.5 C# Member Intialization Syntax

Many of the example applications created over the course of these first few chapters
make extensive use of the System.Console class. While a console user interface (CUI) is
not as enticing as a Windows or web UI, restricting the early examples to a CUI will
allow us to keep focused on the concepts under examination, rather than dealing with
the complexities of building GUIs. As its name implies, the Console class
encapsulates input, output, and error stream manipulations for console-based
applications. With the release of .NET 2.0, theConsoletype has been enhanced with
additional functionality. Table 3-2 lists some (but not all) new members of interest.
Table 3-2. Select .NET 2.0—Specific Members of System.Console

Member Meaning in Life
BackgroundColor These properties set the background/foreground colors for
the

current
ForegroundColor output. They may be assigned any member of the
ConsoleColor

enumeration.
BufferHeight These properties control the height/width of the console’s
buffer

area.
BufferWidth
Clear () This method clears the buffer and console display area.
Title This property sets the title of the current console.
WindowHeight These properties control the dimensions of the console in
relation

to
WindowWidth the established buffer.
WindowTop
WindowlLeft

3.6 Basic Input and Output with the Console Class

In addition to the members in Table 3-2, the Console type defines a set of methods to
capture input and output, all of which are defined as static and are therefore called at

Dept. of ISE,S]BIT Page 48

C# and .NET Programming 0615761

the class level. As you have seen, WriteLine () pumps a text string (including a carriage
return) to the output stream. The Write () method pumps text to the output stream
without a carriage return. ReadLine () allows you to receive information from the input
stream up until the carriage return, while Read () is used to capture a single character
from the input stream. To illustrate basic I/O using the Console class, consider the
following Main () method, which prompts the user for some bits of information and
echoes each item to the standard output stream.

Figure 3-5 shows a test run.

// Make use of the Console class to perform basic I/0.
static void Main(string[] args)

{

// Echo some stats.

Console.Write ("Enter your name: ");

string s = Console.ReadLine();

Console.WriteLine ("Hello, {0} ", s);

Console.Write ("Enter your age: ");

s = Console.ReadLine();

Console.WriteLine ("You are {0} years old", s);

}

3.7 Understanding Value Types and Reference Types

Like any programming language, C# defines a number of keywords that represent
basic data types such as whole numbers, character data, floating-point numbers, and
Boolean values. If you come from a C++ background, you will be happy to know that
these intrinsic types are fixed constants in the universe, meaning that when you create
an integer data point, all .NET-aware languages understand the fixed nature of this
type, and all agree on the range it is capable of handling.

Specifically speaking, a .NET data type may be value-based or reference-based. Value-
based types, which include all numerical data types (int, float, etc.), as well as
enumerations and structures, are allocated on the stack. Given this factoid, value types
can be quickly removed from memory once they fall out of the defining scope:

// Integers are value types!

public void SomeMethod ()

{

int 1 = 0;

Console.WritelLine (i);

} // 'i' is popped off the stack here!

When you assign one value type to another, a member-by-member copy is achieved by
default. In terms of numerical or Boolean data types, the only “member” to copy is the
value of the variable itself:

// Assigning two intrinsic value types results in

// two independent variables on the stack.

public void SomeMethod ()

{
int 1 = 99;

Dept. of ISE,S]BIT Page 49

C# and .NET Programming 061S761

int j = i;

// After the following assignment, 'i' is still 99.

i = 8732;

}

While the previous example is no major newsflash, understand that .NET structures (and
enumerations, which are examined later in this chapter) are also value types. Structures,
simply put, provide a way to achieve the bare-bones benefits of object orientation (i.e.,
encapsulation) while having the efficiency of stack-allocated data. Like a class,
structures can take constructors (provided they have arguments) and define any
number of members. All structures are implicitly derived from a class named
System.ValueType. Functionally, the only purpose of System.ValueTypeis to “override”
the virtual methods defined by System.Object (described in just a moment) to honor
value-based, versus reference-based, semantics. In fact, the instance methods defined
bySystem.ValueType are identical to those of System.Object:

// Structures and enumerations extend System.ValueType.

public abstract class ValueType : object

{

public virtual bool Equals(object obj);

public virtual int GetHashCode();

public Type GetType();

public virtual string ToString();

}

Assume you have created a C# structure named MyPoint, using the C# struct keyword:
// Structures are value types!

struct MyPoint

{

public int x, y;

}

To allocate a structure type, you may make use of the new keyword, which may seem
counterintuitive given that we typically think new always implies heap allocation. This is
part of the smoke and mirrors maintained by the CLR. As programmers, we can
assume everything is an object and new value types. However, when the runtime
encounters a type derived from System.ValueType, stack allocation is achieved:

// Still on the stack!

MyPoint p = new MyPoint();

As an alternative, structures can be allocated without using the new keyword:

MyPoint pl;
pl.x = 100;
pl.y = 100;

If you take this approach, however, you must initialize each piece of field data before
use.

Failing to do so results in a compiler error.

Value Types, References Types, and the Assignment Operator

static void Main(string[] args)

{

Dept. of ISE,S]BIT Page 50

C# and .NET Programming 061S761

Console.WriteLine ("***** Value Types / Reference Types *****x");
Console.WriteLine ("-> Creating pl");

MyPoint pl = new MyPoint ();

pl.x = 100;

pl.y = 100;

Console.WriteLine ("-> Assigning p2 to pl\n");

MyPoint p2 = pl;

// Here is pl.

Console.WriteLine("pl.x = {0}", pl.x);
Console.WriteLine("pl.y = {0}", pl.y);
// Here is p2.

Console.Writeline("p2.x = {0}", p2.x);
Console.WriteLine ("p2.y = {0}", p2.y);

// Change p2.x. This will NOT change pl.x.
Console.Writeline ("-> Changing p2.x to 900");
p2.x = 900;

// Print again.

Console.WriteLine ("-> Here are the X values again...");
Console.WriteLine("pl.x = {0}", pl.x);
Console.WriteLine ("p2.x {0}", p2.x);
Console.ReadLine();

}

// Classes are always reference types.
class MyPoint // <= Now a class!

{

public int x, y;

}

Value Types Containing Reference Types

Now that you have a better feeling for the differences between value types and
reference types, let’s examine a more complex example. Assume you have the
following reference (class) type that maintains an informational string that can be set
using a custom constructor:

class Shapelnfo

{

public string infoString;

public ShapeInfo(string info)

{ infoString = info; }

}

Now assume that you want to contain a variable of this class type within a value type
named MyRectangle. To allow the outside world to set the value of the inner
ShapeInfo, you also provide a custom constructor (as explained in just a bit, the
default constructor of a structure is reserved and cannot be redefined):

Dept. of ISE,S]BIT Page 51

C# and .NET Programming 061S761

struct MyRectangle

{

// The MyRectangle structure contains a reference type member.
public ShapeInfo rectInfo;

public int top, left, bottom, right;

public MyRectangle(string info)

{

rectInfo = new ShapeInfo(info);

top = left = 10;

bottom = right = 100;

}

}

At this point, you have contained a reference type within a value type. The million-
dollar question now becomes, what happens if you assign one MyRectangle variable to
another? Given what you already know about value types, you would be correct in
assuming that the integer data (which is indeed a structure) should be an independent
entity for each MyRectangle variable.

static void Main(string[] args)

{

// Create the first MyRectangle.

Console.WriteLine ("-> Creating rl");

MyRectangle rl = new MyRectangle ("This is my first rect");

// Now assign a new MyRectangle to rl.
Console.WriteLine ("-> Assigning r2 to rl");
MyRectangle r2;

r2 =rl;

// Change values of r2.

Console.WriteLine ("-> Changing all values of r2");
r2.rectInfo.infoString = "This is new info!";
r2.bottom = 4444;

// Print values
Console.WriteLine ("-> Values after change:");
Console.WriteLine ("-> rl.rectInfo.infoString: {
Console.WritelLine ("-> r2.rectInfo.infoString: {
("->
(">

1", rl.rectInfo.infoString);
}", r2.rectInfo.infoString);
) .
)

o O

Console.WriteLine (' rl.bottom: {0}", rl.bottom
Console.WriteLine r2.bottom: {0}", r2.bottom

}

4
|l

4

Value and Reference Types: Final Details
To wrap up this topic, ponder the information in Table 3-8, which summarizes the
core distinctions between value types and reference types.

Table 3-8. Value Types and Reference Types Side by Side

Dept. of ISE,S]BIT Page 52

C# and .NET Programming 0615761

Intriguing Question Value Type Reference Type

Where is this type Allocated on the stack. Allocated on the managed
allocated? heap.

How is a variable Value type variables are Reference type variables
represented? local are copies.pointing to the

memory occupied by the
allocated instance.
What is the base type? Must derive from Can derive from any other

type
3.8 The Master Node: System.Object

In .NET, every type is ultimately derived from a common base class: System.Object.
The Object class defines a common set of members supported by every type in the
NET universe. When you create a class that does not explicitly specify its base class,
you implicitly derive from System.Object:

// Implicitly deriving from System.Object.

class HelloClass

{...}

If you wish to be more clear with your intension, the C# colon operator (:) allows you to
explicitly specify a type’s base class (such as System.Object):

// In both cases we are explicitly deriving from System.Object.

class ShapeInfo : System.Object

{...}

class ShapelInfo : object

{...}

System.Object defines a set of instance-level and class-level (static) members. Note that
some of the instance-level members are declared using the virtual keyword and can
therefore be overridden by a derived class:

// The topmost class in the .NET universe: System.Object
namespace System

{

public class Object

{

public Object();

public virtual Boolean Equals(Object obj);

public virtual Int32 GetHashCode();

public Type GetType();

public virtual String ToString();

protected virtual void Finalize();

protected Object MemberwiseClone();

public static bool Equals(object objA, object objB);

public static bool ReferenceEquals(object objA, object objB);
}

}

Dept. of ISE,S]BIT Page 53

C# and .NET Programming 0615761

The Default Behavior of System.Object

To illustrate some of the default behavior provided by the System.0Object base class,
assume a class

named Person defined in a custom namespace named ObjectMethods:

// The 'namespace' keyword is fully examined at the end of this chapter.
namespace ObjectMethods

{

class Person

{

public Person(string fname, string lname, string s, byte a)

{

firstName = fname;

lastName = lname;

SSN = s7;

age = a;

}

public Person() {}

// The state of a person.

public string firstName;public string lastName;

public string SSN;

public byte age;

}

}

Now, within our Main () method, we make use of the Person type as so:
static void Main(string[] args)

{

Console.WriteLine ("***** Working with Object *****\n");

Person fred = new Person("Fred", "Clark", "111-11-1111", 20);
Console.WriteLine ("-> fred.ToString: {0}", fred.ToString());
Console.WriteLine ("-> fred.GetHashCode: {0}", fred.GetHashCode());
// Make some other references to 'fred'.

Person p2 = fred;

object o = p2;

// BAre all 3 instances pointing to the same object in memory?

if (o.Equals(fred) && p2.Equals (o))

Console.WritelLine ("fred, p2 and o are referencing the same object!");
Console.ReadLine ();

}

First, notice how the default implementation of ToString () simply returns the fully
qualified name of the type (e.g., namespace.typename). GetType () retrieves

a System.Type object, which defines a property named BaseType (as you can guess, this
will identify the fully qualified name of the type’s base class). Now, reexamine the code
that leverages the Equals () method. Here, a new Personobject is placed on the managed

Dept. of ISE,S]BIT Page 54

C# and .NET Programming 0615761

heap, and the reference to this object is stored in the fredreference variable.p2 is also of
type Person, however, you are not creating a new instance of the Personclass, but
assigning p2 to fred. Therefore, fredand p2 are both pointing to the same object in
memory, as is the variable o (of type object, which was thrown in for good measure).

Given that fred, p2, and o all point to the same object in memory, the equality test
succeeds.

Overriding Some Default Behaviors of

System.Object Although the canned behavior of System.Object can fit the bill in most
cases, it is quite common for your custom types to override some of these inherited
methods. Chapter 4 provides a complete examination of OOP under C#, but in a
nutshell, overriding is the process of redefining the behavior of an inherited virtual
member in a derived class. As you have just seen, System.0Object defines a number of
virtual methods (such as= ToString () and Equals()) that do define a canned
implementtation. However, if you want to build a custom implementation of these
virtual members for a derived type, you make use of the C# override keyword.
Overriding System.Object.ToString()

Overriding the ToString () method provides a way to quickly gain a snapshot of an
object’s current state. As you might guess, this can be helpful during the debugging
process. To illustrate, let’s override System.Object.ToString() to return a textual
representation of a person’s state (note we are using a new namespace named
System.Text):

// Need to reference System.Text to access StringBuilder type.

using System;

using System.Text;

class Person

{

// Overriding System.Object.ToString().

public override string ToString()

{

StringBuilder sb = new StringBuilder();
sb.AppendFormat (" [FirstName={0};", this.firstName);
(
(

sb.AppendFormat (" LastName={0};", this.lastName);
sb.AppendFormat (" SSN={0};", this.SSN);
sb.AppendFormat (" Age={0}]", this.age);

return sb.ToString();

}

}

How you format the string returned from System.Object.ToString () is largely a matter of
personal choice. In this example, the name/value pairs have been contained within
square brackets, with each pair separated by a semicolon (a common technique within
the .NET base class libraries). Also notice that this example makes use of a new type,
System.Text.StringBuilder (which is also a matter of personal choice). This type is

Dept. of ISE,S]BIT Page 55

C# and .NET Programming 0615761

described in greater detail later in the chapter. The short answer, however, is that
StringBuilderis a more efficient alternative to C# string concatenation.

Overriding System.Object.Equals()

Let’s also override the behavior of System.Object.Equals () to work with value-based
semantics. Recall that by default, Equals () returns true only if the two references being
compared are pointing to the same object on the heap. In many cases, however, you
don’t necessary care if two references are pointing to the same object in memory, but
you are more interested if the two objects have the same state data (name, SSN, and

age in the case of aPerson):

public override bool Equals (object o)

{

// Make sure the caller sent a valid
// Person object before proceeding.
if (o != null && o is Person)

{

// Now see if the incoming Person

// has the exact same information as
// the current object (this).

Person temp = (Person)o;
if (temp.firstName == this.firstName &&
temp.lastName == this.lastName &&

temp.SSN == this.SSN &&
temp.age == this.age)
return true;

}

return false; // Not the same!

}

Here you are first verifying the caller did indeed pass in aPerson object to the

Equals () metho using the C# is keyword. After this point, you go about examining the
values of the incoming parameter against the values of the current object’s field data
(note the use of the thiskeyword, which refers to the current object).

The prototype of System.Object.Equals () takes a single argument of type object. Thus,
you are required to perform an explicit cast within the Equals () method to access the
members of the Person type. If the name, SSN, and age of each are identical, you have
two objects with the same state data and therefore return true. If any point of data is
not identical, you return false. If you override System.Object.ToString() for a given
class, you can take a very simple shortcut when overriding System.Object.Equals ().
Given that the value returned from ToString () should take into account all of the
member variables of the current class (and possible data declared in base classes),
Equals () can simply compare the values of the string types:

public override bool Equals (object o)

{

if (o !'= null && o is Person)

{
if (this.ToString() == o0.ToString())
return true;

Dept. of ISE,S]BIT Page 56

C# and .NET Programming 061S761

else
return false;

}

return false;

}

Now, for the sake of argument, assume you have a type named Car, and attempt to pass
in a Car instance to the Person.Equals () method as so:

// Cars are not people!

Car ¢ = new Car();

Person p = new Person();

p.Equals(c);

Given your runtime check for a true-blue Personobject (via the is operator) the
Equals () method returns false. Now consider the following invocation:

// Oops!

Person p = new Person();

p.Equals (null);

This would also be safe, given your check for an incoming null reference.

Overriding System.Object.GetHashCode()

When a class overrides the Equals () method, best practices dictate that you should
also override System.Object.GetHashCode () . If you fail to do so, you are issued a
compilerwarning. The role of GetHashCode () is to return a numerical value that
identifies an object based on its internal state data. Thus, if you have two

Person objects that have an identical first name, last name, SSN, and age, you should
obtain the same hash code.

There are many algorithms that can be used to create a hash code—some fancy, others
not so fancy. As mentioned, an object’s hash value will be based on its state data. As
luck would have it, the System.Stringclass has a very solid implementation of
GetHashCode () that is based on the string’s character data. Therefore, if you can
identify a string field that should be unique among objects (such as the Person’s
SSN field), you can simply call GetHashCode () on the field’s string representation:

// Return a hash code based on the person's SSN.

public override int GetHashCode ()

{

return SSN.GetHashCode();

}

If you cannot identify a single point of data in your class, but have overridden
ToString (), you

can simply return the hash code of the string returned from your custom

ToString () implementation:

// Return a hash code based our custom ToString() .

public override int GetHashCode ()

{

return ToString().GetHashCode () ;

}

Dept. of ISE,S]BIT Page 57

C# and .NET Programming 0615761

3.10 Converting Between Value Types and Reference Types: Boxing and
Unboxing Operations

Given that .NET defines two major categories of types (value based and reference
based), you may occasionally need to represent a variable of one category as a variable
of the other category. C# provides a very simple mechanism, termed boxing, to convert
a value type to a reference type. Assume that you have created a variable of type short:
// Make a short value type.

short s = 25;

If, during the course of your application, you wish to represent this value type as a
reference type, you would “box” the value as follows:

// Box the value into an object reference.

object objShort = s;

Boxing can be formally defined as the process of explicitly converting a value type into
a corresponding reference type by storing the variable in aSystem.Object. When you
box a value, the CLR allocates a new object on the heap and copies the value type’s value
(in this case, 25) into that instance. What is returned to you is a reference to the newly
allocated object. Using this technique, .NET developers have no need to make use of a
set of wrapper classes used to temporarily treat stack data as heap-allocated objects.
The oppositen operation is also permitted through unboxing. Unboxing is the process of
converting

the value held in the object reference back into a corresponding value type on the stack.
The unboxing operation begins by verifying that the receiving data type is equivalent to
the boxed type, and if so, it copies the value back into a local stack-based variable. For
example, the following unboxing operation works successfully, given that the underlying
type of the objShortis indeed ashort(you’ll examine the C# casting operator in detail in
the next chapter, so hold tight for now):

// Unbox the reference back into a corresponding short.

short anotherShort = (short)objShort;

Again, it is mandatory that you unbox into an appropriate data type. Thus, the
following

unboxing logic generates an InvalidCastException exception (more details on
exception handling in Chapter 6):

// Illegal unboxing.

static void Main(string[] args)

{

try

{

// The type contained in the box is NOT a int, but a short!

int 1 = (int)objShort;

}

catch(InvalidCastException e)

{

Console.WriteLine ("OOPS!'\n{0} ", e.ToString());

}

Dept. of ISE,S]BIT Page 58

C# and .NET Programming 061S761

Some Practical (Un)Boxing Examples

So, you may be thinking, when would you really need to manually box (or unbox) a data

type? The previous example was purely illustrative in nature, as there was no good

reason to box (and then unbox) the short data point. The truth of the matter is that you

will seldom—if ever—need to manually box data types. Much of the time, the C#
compiler automatically boxes variables when appropriate. For example, if you pass a
value type into a method requiring an object parameter, boxing occurs behind the
curtains.

class Program

{

static void Main(string[] args)

{

// Create an int (value type).

int myInt = 99;

// Because myInt is passed into a

// method prototyped to take an object,
// myInt is 'boxed' automatically.
UseThisObject (myInt);
Console.ReadLine();

}

static void UseThisObject (object o)

{

Console.WriteLine ("Value of o is: {0}", o);

}

}

Automatic boxing also occurs when working with the types of the .NET base class
libraries. For example, the System.Collections namespace (formally examined in
Chapter 7) defines a class type named ArrayList. Like most collection types,
ArrayList provides members that allow you to insert, obtain, and remove items:
public class System.Collections.ArrayList : object,
System.Collections.IList,

System.Collections.ICollection,

System.Collections.IEnumerable,

ICloneable

{

public virtual int Add(object value);

public virtual void Insert (int index, object value);
public virtual void Remove (object obj);

public virtual object this[int index] {get; set; }

}

Dept. of ISE,S]BIT Page 59

C# and .NET Programming 0615761

As you can see, these members operate on generic System.Object types. Given that
everything ultimately derives from this common base class, the following code is
perfectly legal:

static void Main(string[] args)

{

Arraylist myInts = new ArrayList();

myInts.Add(88);

myInts.Add(3.33);

myInts.Add (false);

}

However, given your understanding of value types and reference types, you might
wonder exactly what was placed into the ArrayList type. (References? Copies of
references? Copies of structures?) Just like with the previous UseThisObject () method, it
should be clear that each of the System.Int32 data types were indeed boxed before
being placed into the ArrayList type. To retrieve an item from the

ArrayList type, you are required to unbox accordingly:

static void BoxAndUnboxInts ()

{

// Box ints into ArrayList.

ArrayList myInts = new ArrayList();

myInts.Add (88);

myInts.Add(3.33);

myInts.Add (false);

// Unbox first item from ArrayList.

int firstItem = (int)myInts([0];

Console.WriteLine ("First item is {0}", firstItem);

}

To be sure, boxing and unboxing types takes some processing time and, if used without
restraint, could hurt the performance of your application. However, with this .NET
technique, you are able to symmetrically operate on value-based and reference-based

types.

3.11 Defining Program Constant

Now that you have seen how to declare class variables, let’s see how to define data that
should never be reassigned. C# offers the const keyword to define variables with a fixed,
unalterable value. Once the value of a constant has been established, any attempt to
alter it results in a compiler error. Unlike in C++, in C# the const keyword cannot be
used to qualify parameters or return values, and is reserved for the creation of local or
instance-level data. It is important to understand that the value assigned to a constant
variable must be known at compile time, and therefore a constant member cannot be
assigned to an object reference (whose value is computed at runtime). To illustrate the
use of the const keyword, assume the following class type:

class ConstData

Dept. of ISE,S]BIT Page 60

C# and .NET Programming 061S761

{

// The value assigned to a const must be known
// at compile time.

public const string BestNbaTeam = "Timberwolves";
public const double SimplePI = 3.14;

public const bool Truth = true;

public const bool Falsity = !Truth;

}

Notice that the value of each constant is known at the time of compilation. In fact, if
you were to view these constants using ildasm.exe, you would find the value hard-
coded directly into the assembly.

3.12 C# lteration Constructs

All programming languages provide ways to repeat blocks of code until a terminating
condition has been met. Regardless of which language you have used in the past, the
C# iteration statements should not raise too many eyebrows and should require little
explanation. C# provides the following

four iteration constructs:

» forloop

* foreach/inloop

e whileloop

* do/whileloop

Let’s quickly examine each looping construct in turn.

The for Loop

When you need to iterate over a block of code a fixed number of times, the for statement
is the construct of champions. In essence, you are able to specify how many times a
block of code repeats itself, as well as the terminating condition. Without belaboring the
point, here is a sample of the syntax:

// A basic for loop.

static void Main(string[] args)

{

// Note! '"i' is only visible within the scope of the for loop.

for(int 1 = 0; 1 < 10; 1i++)

{

Console.WriteLine ("Number is: {0} ", 1i);

}

// 'i' is not visible here.

}

All of your old C, C++, and Java tricks still hold when building a C# for statement. You
can create complex terminating conditions, build endless loops, and make use of the
goto, continue, and break keywords. I’ll assume that you will bend this iteration construct
as you see fit. Consult the .NET Framework 2.0 SDK documentation if you require
further details on the C# for keyword.

Dept. of ISE,S]BIT Page 61

C# and .NET Programming 0615761

The foreach Loop

The C# foreach keyword allows you to iterate over all items within an array, without
the need to test for the array’s upper limit. Here are two examples using foreach, one to
traverse an array of strings and the other to traverse an array of integers:

// Iterate array items using foreach.

static void Main(string[] args)

{

string[] books = {"Complex Algorithms",

"Do you Remember Classic COM?",

"C# and the .NET Platform"};

foreach (string s in books)

Console.WritelLine(s);

int[] myInts = { 10, 20, 30, 40 };

foreach (int i in myInts)

Console.WritelLine (i);

}

In addition to iterating over simple arrays, foreach is also able to iterate over system
supplied or user-defined collections. I’ll hold off on the details until Chapter 7, as this
aspect of the foreach keyword entails an understanding of interface-based
programming and the role of the IEnumerator and IEnumerable interfaces.

The while and do/while Looping Constructs

The while looping construct is useful should you wish to execute a block of
statements until some terminating condition has been reached. Within the scope of
awhile loop, you will, of course, need to ensure this terminating event is indeed
established; otherwise, you will be stuck in an endless loop. In the following example,
the message “In while loop™ will be continuously printed until the user terminates the
loop by entering yes at the command prompt:

static void Main(string[] args)

{

string userIsDone = "no";

// Test on a lower class copy of the string.

while (userIsDone.ToLower () != "yes")

{

Console.Write ("Are you done? [yes] [no]: ");

userIsDone = Console.ReadLine();

Console.WriteLine ("In while loop");

}

}

Closely related to the while loop is the do/while statement. Like a simple while loop,
do/while is used when you need to perform some action for an undetermined number
of times. The difference is that do/whileloops are guaranteed to execute the
corresponding block of code at least once (in con- trast, it is possible that a simple
while loop may never execute if the terminating condition is false from the onset).

Dept. of ISE,S]BIT Page 62

C# and .NET Programming 061S761

static void Main(string[] args)

{

string userIsDone = "";

{

Console.WriteLine ("In do/while loop");

Console.Write ("Are you done? [yes] [no]: ");

userIsDone = Console.ReadLine();

}while (userIsDone.ToLower () != "yes"); // Note the semicolon!

}

3.13 C# Control flow Constructs

Now that you can iterate over a block of statements, the next related concept is how to
control the flow of program execution. C# defines two simple constructs to alter the
flow of your program, based on various contingencies:

* The if/else statement

* The switch statement

The if/else Statement

First up is our good friend the if/else statement. Unlike in C and C++, however, the
if/else statement in C# operates only on Boolean expressions, not ad hoc values such
as —1, 0. Given this, 1f/else statements typically involve the use of the C# operators
shown in Table 3-6 in order to obtain a literal Boolean value.

Table 3-6. C# Relational and Equality Operators

C# Equality/Relational Operator ~ Example Usage Meaning in Life

== if (age == 30) Returns true only if each expression is
the same

= if ("Foo" != myStr) Returns true only if each expression
is

different

< if (bonus < 2000) Returns true if expression A is less
than,

> if (bonus > 2000) greater than, less than or equal to,

<= if (bonus <= 2000) or greater than or equal to expression
B

>= if (bonus >= 2000)

Again, C and C++ programmers need to be aware that the old tricks of testing a
condition for a value “not equal to zero” will not work in C#. Let’s say you want to see if
the string you are working with is longer than zero characters. You may be tempted to
write \

// This is illegal, given that Length returns an int, not a bool.

string thoughtOfTheDay = "You CAN teach an old dog new tricks";

if (thoughtOfTheDay.Length)

{

Dept. of ISE,S]BIT Page 63

C# and .NET Programming 061S761

}
If you wish to make use of the String.Length property to determine if you have an
empty string, you need to modify your conditional expression as follows:

// Legal, as this resolves to either true or false.
if(0 !'= thoughtOfTheDay.Length)
{

}

An if statement may be composed of complex expressions as well and can contain
else statements to perform more-complex testing. The syntax is identical to C(++)
and Java (and not too far removed from Visual Basic). To build complex expressions,

C# offers an expected set of conditional operators, as shown in Table 3-7.
Table 3-7. C# Conditional Operators

Operator Example Meaning in Life

& if ((age == 30) && (name == "Fred")) Conditional AND
operator

| | if((age == 30) || (name == "Fred")) Conditional OR
operator

! if (!myBool) Conditional NOT operator

The switch Statement

The other simple selection construct offered by C# is the switch statement. As in other
C based languages, the switchstatement allows you to handle program flow based on a
predefined set of choices. For example, the following Main () logic prints a specific string
message based on one of two possible selections (the default case handles an invalid
selection):

// Switch on a numerical value.

static void Main(string[] args)

{

Console.WriteLine ("1 [C#], 2 [VB]");

Console.Write ("Please pick your language preference: ");

string langChoice = Console.Readline();
int n = int.Parse(langChoice);

switch (n)

{

case 1:

Console.WriteLine ("Good choice, C# is a fine language.");
break;

case 2:

Console.WriteLine ("VB .NET: OOP, multithreading, and more!");
break;

default:

Dept. of ISE,S]BIT Page 64

C# and .NET Programming 061S761

Console.WriteLine ("Well...good luck with that!");

break;

}

}

One nice feature of the C# switch statement is that you can evaluate string data in
addition to numeric data. Here is an updated switch statement that does this very thing
(notice we have no need to parse the user data into a numeric value with this
approach):

static void Main(string[] args)

{

Console.WriteLine ("C# or VB");

Console.Write ("Please pick your language preference: ");

string langChoice = Console.ReadLine();

switch (langChoice)

{

case "C#":

Console.WritelLine ("Good choice, C# is a fine language.");
break;

case "VB":

Console.WriteLine ("VB .NET: OOP, multithreading and more!");
break;

default:

Console.WriteLine ("Well...good luck with that!");

break;

}

}

3.14 The complete set of C

C# CLS

Shorthand Compliant? ~ System Type Range Meaning in Life

sbyte No System.SByte —128 to 127 Signed 8-bit
number

byte Yes System.Byte 0 to 255 Unsigned 8-bit
number

short Yes System.Intl6 -32,768 to 32,767 Signed 16-bit
number

ushort No System.UIntl6 0 to 65,535 Unsigned 16-bit
number

int Yes System.Int32 —2,147,483,648 to Signed 32-bit
number

2,147,483,647

uint No System.UInt32 0 to 4,294,967,295 Unsigned 32-bit
number

long Yes System.Int64 -9,223,372,036,854,775,808 Signed 64-bit
number

Dept. of ISE,S]BIT Page 65

C# and .NET Programming 0615761

to 9,223,372,036,854,775,807

ulong No System.UInt64 0 to Unsigned 64-bit
18,446,744,073,709,551,615 number

char Yes System.Char U0000 to Uffff A single 16-bit
Unicode character

float Yes System.Single 1.5 10%t0 3.4 10% 32-bit floating
point

number

double Yes System.Double 5.0 10°**to 1.7 10°® 64-bit floating
point

number

bool Yes System.Boolean trueor false Represents truth
or

falsity

decimal Yes System.Decimal 10°to 10%® A 96-bit signed
number

string Yes System.String Limited by system memory Represents a
set of

Unicode characters

object Yes System.Object Any type can be stored The base class
of all

in an object variable types in the .NET

universe

3.15 Method Parameter Modifiers

Methods (static and instance level) tend to take parameters passed in by the caller.
However, unlike some programming languages, C# provides a set of parameter
modifiers that control how arguments are sent into (and possibly returned from) a
given method, as shown in Table 3-5.

Table 3-5. C# Parameter Modifiers

Parameter Modifier Meaning in Life

(none) If a parameter is not marked with a parameter modifier, it is
assumed to

be passed by value, meaning the called method receives a copy of the

original data.

out Output parameters are assigned by the method being called (and
therefore

passed by reference). If the called method fails to assign output parameters,

you are issued a compiler error.

params This parameter modifier allows you to send in a variable
number of

identically typed arguments as a single logical parameter. A method can

have only a single params modifier, and it must be the final parameter of

Dept. of ISE,S]BIT Page 66

C# and .NET Programming 0615761

the method.

ref The value is initially assigned by the caller, and may be optionally
reassigned

by the called method (as the data is also passed by reference). No compiler

error is generated if the called method fails to assign a ref parameter.

The Default Parameter-Passing Behavior

The default manner in which a parameter is sent into a function is by value. Simply
put, if you do not mark an argument with a parameter-centric modifier, a copy of the
variable is passed into the function:

// Arguments are passed by value by default.

public static int Add(int x, int y)

{

int ans = x + y;

// Caller will not see these changes

// as you are modifying a copy of the

// original data.

x = 10000;

y = 88888;

return ans;

}

Here, the incoming integer parameters will be passed by value. Therefore, if you
change the values of the parameters within the scope of the member, the caller is
blissfully unaware, given that you are changing the values of copies of the caller’s
integer data types:

static void Main(string[] args)

{

int x =9, y=10;

Console.WriteLine ("Before call: X: {0}, Y: {1}", x, vy);

Console.WriteLine ("Answer is: {0}", Add(x, y));

Console.WriteLine ("After call: X: {0}, Y: {1}", x, V),

}

As you would hope, the values of xand yremain identical before and after the call to
Add ().

The out Modifier Next, we have the use of output parameters. Methods that have been
defined to take output parameters are under obligation to assign them to an appropriate
value before exiting the method in question (if you fail to ensure this, you will receive
compiler errors). To illustrate, here is an alternative version of the Add () method that
returns the sum of two integers using the C# out modifier (note the physical return value
of this method is now void):

// Output parameters are allocated by the member.

public static void Add(int x, int y, out int ans)

{

ans = x + yy;

}

Dept. of ISE,S]BIT Page 67

C# and .NET Programming 0615761

Calling a method with output parameters also requires the use of the out modifier.
Recall that local variables passed as output variables are not required to be assigned
before use (if you do so, the original value is lost after the call), for example:

static void Main(string[] args)

{

// No need to assign local output variables.

int ans;

Add (90, 90, out ans);

Console.WriteLine ("90 + 90 = {0} ", ans);

}

The previous example is intended to be illustrative in nature; you really have no reason
to return the value of your summation using an output parameter. However, the C#
out modifier does serve a very useful purpose: it allows the caller to obtain multiple
return values from a single method invocation.

// Returning multiple output parameters.

public static void FillTheseValues (out int a, out string b, out bool c)

{

a=79;

b = "Enjoy your string.";

c = true;

}

The caller would be able to invoke the following method:

static void Main(string[] args)

{

int i;

string str;

bool b;

FillTheseValues (out i, out str, out b);
Console.WriteLine ("Int is: {O0}", 1);
Console.WriteLine ("String is: {0}", str);
Console.WriteLine ("Boolean is: {0}", b);

}

The ref Modifier

Now consider the use of the C# ref parameter modifier. Reference parameters are
necessary when you wish to allow a method to operate on (and usually change the
values of) various data points declared in the caller’s scope (such as a sorting or
swapping routine). Note the distinction between output and reference parameters:

* Output parameters do not need to be initialized before they passed to the method.
The reason for this? The method must assign output parameters before exiting.

* Reference parameters must be initialized before they are passed to the method. The
reason for this? You are passing a reference to an existing variable. If you don’t assign it
to an initial value, that would be the equivalent of operating on an unassigned local
variable.

Let’s check out the use of the ref keyword by way of a method that swaps two strings:

Dept. of ISE,S]BIT Page 68

C# and .NET Programming 061S761

// Reference parameter.

public static void SwapStrings(ref string sl, ref string s2)
{

string tempStr = sl;

sl = s2;

s2 = tempStr;

}

This method can be called as so:

static void Main(string[] args)

{

string s = "First string";

string s2 = "My other string";
Console.WriteLine ("Before: {0}, {1} ", s, s2);
SwapStrings (ref s, ref s2);

Console.WriteLine ("After: {0}, {1} ", s, s2);

}

Here, the caller has assigned an initial value to local string data (s and s2). Once the
call to SwapStrings () returns, s now contains the value "My other string", while s2
reports the value "First string".

The params Modifier

The final parameter modifier is the params modifier, which allows you to create a
method that may be sent to a set of identically typed arguments as a single logical
parameter. Yes, this can be confusing. To clear the air, assume a method that returns the
average of any number of doubles:

// Return average of 'some number' of doubles.

static double CalculateAverage (params double[] values)

{

double sum = 0
for (int 1 =0
sum += values([1i]
return (sum / values.Length);

}

This method has been defined to take a parameter array of doubles. What this method is
in fact saying is, “Send me any number of doubles and I’ll compute the average.” Given
this, you can call CalculateAverage () in any of the following ways (if you did not make
use of the params modifier in the definition of CalculateAverage (), the first invocation of
this method would result in a compiler error):

static void Main(string[] args)

{

// Pass in a comma-delimited list of doubles...

double average;

average = CalculateAverage (4.0, 3.2, 5.7);

Console.WritelLine ("Average of 4.0, 3.2, 5.7 is: {0}", average);

// ...or pass an array of doubles.

double[] data = { 4.0, 3.2, 5.7 };

.
4

.
14

i < values.Length; i++)

Dept. of ISE,S]BIT Page 69

C# and .NET Programming 061S761

average = CalculateAverage (data);

Console.WritelLine ("Average of data is: {0}", average);

Console.ReadlLine ();

}

That wraps up our initial look at parameter modifiers. We’ll revisit this topic later in
the chapterwhen we examine the distinction between value types and reference types.
Next up, let’s check out the iteration and decision constructions of the C#
programming language.

3.16 Array Manipulation in C#

Formally speaking, an array is a collection of data points, of the same defined data
type, that are accessed using a numerical index. Arrays are references types and derive
from a common base class named System.Array. By default, NET arrays always have a
lower bound of zero, although it is possible to create an array with an arbitrary lower
bound using the static System.Array.CreateInstance () method.

C# arrays can be declared in a handful of ways. First of all, if you are creating an array
whose values will be specified at a later time (perhaps due to yet-to-be-obtained user
input), specify the size of the array using square brackets ([]) at the time of its
allocation, for example:

// Assign a string array containing 3 elements {0 - 2}

string[] booksOnCOM;

booksOnCOM = new string[3];

// Initialize a 100 item string array, numbered {0 - 99}

string[] booksOnDotNet = new string[100];

Once you have declared an array, you can make use of the indexer syntax to fill each
item with a value:

// Create, populate, and print an array of three strings.

string[] booksOnCOM;

booksOnCOM = new string[3];

booksOnCOM[(0] = "Developer's Workshop to COM and ATL 3.0";
booksOnCOM[1] = "Inside COM";
booksOnCOM[2] = "Inside ATL";

foreach (string s in booksOnCOM)

Console.WritelLine (s);

As a shorthand notation, if you know an array’s values at the time of declaration, you
may specify these values within curly brackets. Note that in this case, the array size is
optional (as it is calculated on the fly), as is the newkeyword. Thus, the following
declarations are identical:

// Shorthand array declaration (values must be known at time of declaration).
int[] n = new int[] { 20, 22, 23, 0 };

int[] n3 = { 20, 22, 23, 0 };

There is one final manner in which you can create an array type:

int[] n2 = new int[4] { 20, 22, 23, 0 }; // 4 elements, {0 - 3}

In this case, the numeric value specified represents the number of elements in the array,
not the value of the upper bound. If there is a mismatch between the declared size and
the number of initial- izers, you are issued a compile time error.

Dept. of ISE,S]BIT Page 70

C# and .NET Programming 0615761

Regardless of how you declare an array, be aware that the elements in a .NET array are
automatically set to their respective default values until you indicate otherwise. Thus, if
you have an array of numerical types, each member is set to 0 (or 0.0 in the case of
floating-point numbers), objects are set to null, and Boolean types are set to false.

Arrays As Parameters (and Return Values)

Once you have created an array, you are free to pass it as a parameter and receive it as a
member return value. For example, the following PrintArray () method takes an incoming
array of ints and prints each member to the console, while the

GetStringArray () method= populates an array of strings and returns it to the caller:
static void PrintArray(int[] myInts)

{

for(int i = 0; 1 < myInts.Length; i++)

Console.WriteLine("Item {0} is {1}", i, myInts[i]);

}

static string[] GetStringArray()

{

string[] theStrings = { "Hello", "from", "GetStringArray" };
return theStrings;

}

These methods may be invoked from aMain () method as so:
static void Main(string[] args)

{

int[] ages = {20, 22, 23, 0} ;

PrintArray (ages);

string[] strs = GetStringArray();

foreach(string s in strs)

Console.WriteLine(s);

Console.ReadLine();

}

Working with Multidimensional Arrays

In addition to the single-dimension arrays you have seen thus far, C# also supports two
varieties of multidimensional arrays. The first of these is termed a rectangular array,
which is simply an array of multiple dimensions, where each row is of the same length.
To declare and fill a multidimensional rectangular array, proceed as follows:

static void Main(string[] args)

{

// A rectangular MD array.
int[,] myMatrix;
myMatrix = new int[6,6];

// Populate (6 * 6) array.
for(int 1 = 0; 1 < 6; 1i++)
for (int j 0; 7 < 6; j+t)

Dept. of ISE,S]BIT Page 71

C# and .NET Programming 061S761

myMatrix[i, j] =1 * J;

// Print (6 * 6) array.
for(int 1 = 0; 1 < 6; i++)

{

for(int 3 = 0; j < 6; j++)
Console.Write (myMatrix[i, j] + "\t");
Console.WriteLine();

}

}

The second type of multidimensional array is termed a jagged array. As the name
implies,

jagged arrays contain some number of inner arrays, each of which may have a unique
upper limit, for example:

static void Main(string[] args)

{

// A jagged MD array (i.e., an array of arrays).
// Here we have an array of 5 different arrays.
int[][] myJagArray = new int[5][];

// Create the jagged array.
for (int 1 = 0; i < myJagArray.Length; i++)
myJagArray[i] = new int[i + 7];

// Print each row (remember, each element is defaulted to zero!)
for(int 1 = 0; 1 < 5; i++4)

{

Console.Write ("Length of row {0} is {1} :\t", i, myJagArray[i].Length);
for(int j = 0; j < myJagArray[i].Length; j++)

Console.Write (myJagArray[i]l[J] + " ");

Console.Writeline();

}

}

Now that you understand how to build and populate C# arrays, let’s turn our
attention to the ultimate base class of any array: System.Array.

The System.Array Base Class

Every .NET array you create is automatically derived from System.Array. This class
defines a number of helpful methods that make working with arrays much more
palatable. Table 3-14 gives a rundown of some (but not all) of the more interesting
members.

Table 3-14. Select Members of System.Array
Member Meaning in Life

Dept. of ISE,S]BIT Page 72

C# and .NET Programming 0615761

BinarySearch () This static method searches a (previously sorted) array for a
given item.

If the array is composed of custom types you have created, the type in

question must implement the IComparer interface (see Chapter 7) to

engage in a binary search.

Clear () This static method sets a range of elements in the array to
empty values

(0 for value types; null for reference types).

CopyTo () This method is used to copy elements from the source array
into the

destination array.

Length This read-only property is used to determine the number of
elements

in an array.

Rank This property returns the number of dimensions of the current
array.

Reverse () This static method reverses the contents of a one-dimensional
array.

Sort () This method sorts a one-dimensional array of intrinsic types. If
the

elements in the array implement the IComparer interface, you can also

sort your custom types (again, see Chapter 7).

Let’s see some of these members in action. The following code makes use of the static
Reverse () and Clear () methods (and the Length property) to pump out some
information about an array of strings named firstNames to the console:

// Create some string arrays and exercise some System.Array members.

static void Main(string[] args)

{

// Array of strings.

string[] firstNames = { "Steve", "Dominic", "Swallow", "Baldy"}

// Print names as declared

Console.WriteLine ("Here is the array:");
for(int i = 0; 1 < firstNames.Length; i++)
Console.Write ("Name: {0}\t", firstNames[i]);
Console.WriteLine ("\n");

// Reverse array and print.

Array.Reverse (firstNames) ;

Console.WriteLine ("Here is the array once reversed:");
for(int i = 0; 1 < firstNames.Length; i++)
Console.Write ("Name: {0}\t", firstNames[i]);

Dept. of ISE,S]BIT Page 73

C# and .NET Programming 061S761

Console.WriteLine ("\n");

// Clear out all but Baldy.

Console.WritelLine ("Cleared out all but Baldy...");
Array.Clear (firstNames, 1, 3);

for(int i = 0; 1 < firstNames.Length; i++)
Console.Write ("Name: {0}\t", firstNames[i]);
Console.ReadLine();

}

3.17 String Manipulation in C#

The C# string keyword is a shorthand notation of the System.String type, which
provides a number of members you would expect from such a utility class. Table 3-12
lists some (but not all) of the interesting members.

Table 3-12. Select Members of System.String

Member Meaning in Life

Length This property returns the length of the current string.

Contains () This method is used to determine if the current string object
contains

a specified string.

Format () This static method is used to format a string literal using other
primitives

(i.e., numerical data and other strings) and the {0} notation examined earlier
in this chapter.

Insert () This method is used to receive a copy of the current string that
contains

newly inserted string data.

PadLeft () These methods return copies of the current string that has been
padded

PadRight () with specific data.

Remove () Use these methods to receive a copy of a string, with modifications
Replace () (characters removed or replaced).

Substring () This method returns a string that represents a substring of the
current string.

ToCharArray () This method returns a character array representing the current
string.

ToUpper () These methods create a copy of a given string in uppercase or
lowercase.

ToLower ()

Basic String Operations

To illustrate some basic string operations, consider the following Main () method:
static void Main(string[] args)

{

Console.WriteLine ("***** Fun with Strings ****x");

string s = "Boy, this is taking a long time.";

Dept. of ISE,S]BIT Page 74

C# and .NET Programming 061S761

Console.WritelLine("--> s contains 'oy'?: {0}", s.Contains("oy"));
Console.WritelLine ("--> s contains 'Boy'?: {0}", s.Contains("Boy"));
Console.WriteLine (s.Replace('.', '!"));
Console.WriteLine(s.Insert (0, "Boy O' "));

Console.ReadLine();

}

You should be aware that although stringis a reference type, the equality operators
(==and !=) are defined to compare the value with the string objects, not the memory to
which they refer. Therefore, the following comparison evaluates to true:

string sl = "Hello ";

string s2 = "Hello ";

Console.WriteLine("sl == s2: {0}", sl == s2);

whereas this comparison evaluates to false:

string sl = "Hello ";

string s2 = "World!";

Console.WriteLine("sl == s2: {0}", sl == s2);

When you wish to concatenate existing strings into a new string that is the sum of all
its parts, C# provides the +operator as well as the static String.Concat () method.
Given this, the following statements are functionally equivalent:

// Concatenation of strings.

string newString = s + sl + s2;

Console.WriteLine("s + sl + s2 = {0}", newString);

Console.WriteLine ("string.Concat (s, sl, s2) = {0}", string.Concat(s, sl, s2));
Another helpful feature of the string type is the ability to iterate over each individual
character using an arraylike syntax. Formally speaking, objects that support arraylike
access to their contents make use of an indexer method. You’ll learn how to build
indexers in Chapter 9; however, to illustrate the concept, the following code prints each
character of the sl string object to the console:

// System.String also defines an indexer to access each

// character in the string.

for (int k = 0; k < sl.Length; k++)

Console.WriteLine ("Char {0} is {1}", k, sl[k]);

As an alternative to interacting with the type’s indexer, the string class can also be used
within the C# foreach construct. Given that System.String is maintaining an array of
individual System.Char types, the following code also prints each character of s1to the
console:

foreach (char ¢ in sl)

Console.Writeline(c);

Escape Characters

Like in other C-based languages, in C# string literals may contain various escape
characters, which qualify how the character data should be printed to the output
stream. Each escape character begins with a backslash, followed by a specific token. In
case you are a bit rusty on the meanings behind these escape characters, Table 3-13
lists the more common options.

Table 3-13. String Literal Escape Characters

Dept. of ISE,S]BIT Page 75

C# and .NET Programming 0615761

Character Meaning in Life

\! Inserts a single quote into a string literal.

\" Inserts a double quote into a string literal.

\\ Inserts a backslash into a string literal. This can be quite helpful
when

defining file paths.

\a Triggers a system alert (beep). For console applications, this can be
an audio

clue to the user.

\n Inserts a new line (on Win32 platforms).

\r Inserts a carriage return.

\t Inserts a horizontal tab into the string literal.

For example, to print a string that contains a tab between each word, you can make
use of the \t escape character:

// Literal strings may contain any number of escape characters.

string s3 = "Hello\tThere\tAgain";

Console.WritelLine (s3);

As another example, assume you wish to create a string literal that contains quotation
marks, another that defines a directory path, and a final string literal that inserts
three blank lines after printing the character data. To do so without compiler errors,
you would need to make use of the \",

\\, and \n escape characters:

Console.WriteLine ("Everyone loves \"Hello World\"");

Console.WriteLine ("C:\\MyApp\\bin\\debug");

Console.WriteLine ("All finished.\n\n\n");

Working with C# Verbatim Strings

C# introduces the @-prefixed string literal notation termed a verbatim string. Using
verbatim strings, you disable the processing of a literal’s escape characters. This can be
most useful = when working with strings representing directory and network paths.
Therefore, rather than making use of \\ escape characters, you can simply write the
following: // The following string is printed verbatim

// thus, all escape characters are displayed.

Console.WriteLine (@"C:\MyApp\bin\debug") ;

Also note that verbatim strings can be used to preserve white space for strings that
flow over multiple lines:

// White space is preserved with verbatim strings.

string myLongString = @"This is a very

very

very

long string";

Console.Writeline (myLongString);

You can also insert a double quote into a literal string by doubling the " token, for
example:

Dept. of ISE,S]BIT Page 76

C# and .NET Programming 0615761

The Role of System.Text.StringBuilder

While the stringtype is perfect when you wish to represent basic string variables (first
name, SSN, etc.), it can be inefficient if you are building a program that makes heavy use
of textual = data. The reason has to do with a very important fact regarding .NET strings:
the value of a string cannot be modified once established. C# strings are immutable.

On the surface, this sounds like a flat-out lie, given that we are always assigning new
values to string variables. However, if you examine the methods of System.String, you
notice that the methods that seem to internally modify a string in fact return a
modified copy of the original string. For example, when you call ToUpper () on a string
object, you are not= modifying the underlying buffer of an existing string object, but
receive a new string object in uppercase form:

static void Main(string[] args)

{

// Make changes to strFixed? Nope!

System.String strFixed = "This is how I began life";
Console.WritelLine (strFixed);

string upperVersion = strFixed.ToUpper();
Console.WritelLine (strFixed);

Console.WriteLine ("{0}\n\n", upperVersion);

}

In a similar vein, when you assign an existing string object to a new value, you have
actually

allocated a new string in the process (the original string object will eventually be
garbage collected). A similar process occurs with string concatenation.

To help reduce the amount of string copying, the System.Text namespace defines a
class named StringBuilder (first seen during our examination of System.Object earlier
in this chapter). Unlike System.String, StringBuilder provides you direct access to the
underlying buffer. Like System.String, StringBuilder provides numerous members that
allow you to append, format, insert, and remove data from the object (consult the NET
Framework 2.0 SDK documentation for full details).

When you create aStringBuilder object, you may specify (via a constructor argument)
the initial number of characters the object can contain. If you do not do so, the default
capacity of a StringBuilder is 16. In either case, if you add more character data to
aStringBuilderthan it = is able to hold, the buffer is resized on the fly. Here is an

example of working with this class type:

using System;

using System.Text; // StringBuilder lives here.

class StringApp

{

static void Main(string[] args)

{

StringBuilder myBuffer = new StringBuilder ("My string data");
Console.WriteLine ("Capacity of this StringBuilder: {0}",

Dept. of ISE,S]BIT Page 77

C# and .NET Programming 061S761

myBuffer.Capacity);

myBuffer.Append (" contains some numerical data: ");
myBuffer.AppendFormat ("{0}, {1}.", 44, 99);

Console.WritelLine ("Capacity of this StringBuilder: {O}",
myBuffer.Capacity);

Console.WriteLine (myBuffer);

}

}

Now, do understand that in many cases, System.String will be your textual object of
choice. For most applications, the overhead associated with returning modified copies
of character data will be negligible. However, if you are building a text-intensive
application (such as a word processor program), you will most likely find that using
System.Text.StringBuilder improves performance.

3.18 Working with .NET Enumerations

In addition to structures, enumerations (or simply enums) are the other member of the
.NET value type category. When you build a program, it is often convenient to create a
set of symbolic names for underlying numerical values. For example, if you are
creating an employee payroll system, you may wish to use the constants
Manager,Grunt, Contractor, and VPrather than simple numerical values such as {0, 1,
2, 3}.C# supports the notion of = custom enumerations for this very reason. For
example, here is the EmpType enumeration:

// A custom enumeration.

enum EmpType

{

Manager, // =0
Grunt, // =1
Contractor, // = 2
VP /] =3

}

The EmpType enumeration defines four named constants corresponding to specific
numerical values. In C#, the numbering scheme sets the first element to zero (0) by
default, followed by an n + I progression. You are free to change this behavior as you
see fit:

// Begin numbering at 102.

enum EmpType

{
Manager = 102,

Grunt, // = 103
Contractor, // = 104
VP // = 105

}
Enumerations do not necessarily need to follow a sequential order. If (for some

reason) it made good sense to establish your EmpType as follows, the compiler
continues to be happy:

Dept. of ISE,S]BIT Page 78

C# and .NET Programming 061S761

// Elements of an enumeration need not be sequentiall!
enum EmpType
{

Manager = 10,

Grunt = 1,
Contractor = 100,
VP = 9

}
Under the hood, the storage type used for each item in an enumeration maps to

aSystem.Int32 by default. You are also free to change this to your liking. For example, if
you want to set the underlying storage value of EmpType to be a byte rather than an int,
you would write the following:

// This time, EmpType maps to an underlying byte.

enum EmpType : byte

{

Manager = 10,

Grunt = 1,
Contractor = 100,
VP =9

}

Note C# enumerations can be defined in a similar manner for any of the numerical types
(byte, sbyte, short, ushort, int,uint, long, or ulong). This can be helpful if you are programming
for low-memory devices such as Pocket PCs or .NET-enabled cellular phones.

Once you have established the range and storage type of your enumeration, you can
use them in place of so-called magic numbers. Assume you have a class defining a static
function, taking EmpType as the sole parameter:

static void AskForBonus (EmpType e)

{

switch (e)

{

case EmpType.Contractor:

Console.WriteLine ("You already get enough cash...");
break;

case EmpType.Grunt:

Console.WriteLine ("You have got to be kidding...");
break;

case EmpType.Manager:

Console.WritelLine ("How about stock options instead?");
break;

case EmpType.VP:

Console.WriteLine ("VERY GOOD, Sir!");

break;

default: break;

}

}

Dept. of ISE,S]BIT Page 79

C# and .NET Programming 0615761

This method can be invoked as so:
static void Main(string[] args)
{

// Make a contractor type.
EmpType fred;

fred = EmpType.Contractor;
AskForBonus (fred) ;

}

The System.Enum Base Class

The interesting thing about .NET enumerations is that they implicitly derive from
System.Enum. This base class defines a number of methods that allow you to interrogate
and transform a given enumeration. Table 3-9 documents some items of interest, all of
which are static.

Table 3-9. Select Static Members of System.Enum

Member Meaning in Life

Format () Converts a value of a specified enumerated type to its
equivalent string

representation according to the specified format

GetName () Retrieves a name (or an array containing all names) for the
constant in

GetNames () the specified enumeration that has the specified value
GetUnderlyingType () Returns the underlying data type used to hold the values for
a given

enumeration

GetValues () Retrieves an array of the values of the constants in a specified
enumeration

IsDefined () Returns an indication of whether a constant with a specified
value

exists in a specified enumeration

Parse () Converts the string representation of the name or numeric

value of one
or more enumerated constants to an equivalent enumerated object

You can make use of the static Enum.Format () method and the same exact string
formatting flags examined earlier in the chapter during our examination of
System.Console. For example, you may extract the string name (by specifying G), the
hexadecimal value (X), or numeric value (D, F, etc.) of a given enum. System.Enumalso
defines a static method named GetValues (). This method returns an instance of
System.Array(examined later in this chapter), with each item in the array corresponding
to name/value npairs of the specified enumeration. To illustrate these points, ponder the
following:

static void Main(string[] args)

Dept. of ISE,S]BIT Page 80

C# and .NET Programming 061S761

{

// Print information for the EmpType enumeration.
Array obj = Enum.GetValues (typeof (EmpType));
Console.WritelLine ("This enum has {0} members.", obj.Length);

foreach (EmpType e in obj)

{

Console.Write ("String name: {0},", e.ToString());

Console.Write(" int: ({0}),", Enum.Format (typeof (EmpType), e, "D"));
Console.Write (" hex: ({0})\n", Enum.Format(typeof (EmpType), e, "X"));
}

}
As you can guess, this code block prints out the name/value pairs (in decimal and

hexadecimal)

Next, let’s explore the IsDefined () method. This property allows you to determine if a
given string name is a member of the current enumeration. For example, assume you
wish to know if the value SalesPersonis part of the EmpType enumeration. To do so, you
must send it the type information of the enumeration (which can be done via the C#
typeof operator) and the string name of the value you wish to query (type information
will be examined in much greater detail in Chapter 12):

static void Main(string[] args)

{

// Does EmpType have a SalesPerson value?

if (Enum.IsDefined (typeof (EmpType), "SalesPerson"))
Console.WriteLine ("Yep, we have sales people.");
else

Console.WriteLine ("No, we have no profits...");

}

It is also possible to generate an enumeration set to the correct value from a string
literal via

the static Enum.Parse () method. Given that Parse () returns a generic System.Object,
you will need to cast the return value into the correct enum type:

// Prints: "Sally is a Manager"

EmpType sally = (EmpType)Enum.Parse (typeof (EmpType), "Manager");
Console.WriteLine("Sally is a {0}", sally.ToString());

Last but not least, it is worth pointing out that C# enumerations support the use of
various operators, which test against the assigned values, for example:

static void Main(string[] args)

{

// Which of these two EmpType variables has the greatest numerical value?
EmpType Joe = EmpType.VP;

EmpType Fran = EmpType.Grunt;

if (Joe < Fran)

Dept. of ISE,S]BIT Page 81

C# and .NET Programming 061S761

Console.WriteLine ("Joe's value is less than Fran's value.");
else
Console.WriteLine ("Fran's value is less than Joe's value.");

}

3.19 Defining Structures in C#

The numerical types of .NET support MaxValue and MinValue properties that provide
information regarding the range a given type can store. Assume you have created
some variables of type

System.UIntl6 (an unsigned short) and exercised it as follows:

static void Main(string[] args)

{

System.UIntl6 myUIntl6 = 30000,

Console.WriteLine("Max for an UIntl6 is: {0} ", UIntl6.MaxValue);
Console.WriteLine ("Min for an UIntlé6 is: {0} ", UIntl6.MinValue);
Console.WriteLine ("Value is: {0} ", myUIntlo);

Console.WriteLine ("I am a: {0} ", myUIntl6.GetType()):;

// Now in System.UIntl6 shorthand (e.g., a ushort).

ushort myOtherUIntlée = 12000;

Console.WriteLine ("Max for an UIntl6 is: {0} ", ushort.MaxValue);
Console.WriteLine ("Min for an UIntlé6 is: {0} ", ushort.MinValue);
Console.WriteLine ("Value is: {0} ", myOtherUIntl6);

Console.WriteLine ("I am a: {0} ", myOtherUIntl6.GetType());
Console.ReadlLine();

}

In addition to the MinValue/MaxValue properties, a given system type may define
further useful members. For example, the System.Double type allows you to obtain the
values for Epsilon and infinity values:

Console.WriteLine ("-> double.Epsilon: {0}", double.Epsilon);
Console.WritelLine ("-> double.PositiveInfinity: {0}", double.PositivelInfinity);
Console.WritelLine ("-> double.NegativeInfinity: {0}", double.NegativelInfinity);
Console.WriteLine ("-> double.MaxValue: {0}", double.MaxValue);
Console.WriteLine ("-> double.MinValue: {0}",double.MinValue);

Next, consider the System.Boolean data type. Unlike C(++), the only valid assignment a
C# bool can take is from the set {true | false}. You cannot assign makeshift values
(e.g.,—1,0, 1) to a C# bool, which (to most programmers) is a welcome change.
Given this point, it should be clear that System.Booleandoes not support
aMinValue/MaxValueproperty set, but rather TrueString/FalseString:

// No more ad hoc Boolean types in C#!

bool b = 0; // Illegal!

bool b2 = -1; // Also illegal!

bool b3 = true; // No problem.

bool b4 = false; // No problem.

Console.WritelLine ("-> bool.FalseString: {0}", bool.FalseString);

Dept. of ISE,S]BIT Page 82

C# and .NET Programming 061S761

Console.WriteLine ("-> bool.TrueString: {0}", bool.TrueString);

C# textual data is represented by the intrinsic C# string and char data types. All .NET-
aware languages map textual data to the same underlying types (System.String and
System.Char), both of which are Unicode under the hood.

The System.Char type provides you with a great deal of functionality beyond the ability
to hold a single point of character data (which must be placed between single quotes).
Using the static methods of System.Char, you are able to determine if a given character
is numerical, alphabetical, a point of punctuation, or whatnot. To illustrate, check out
the following:

static void Main(string[] args)

{

// Test the truth of the following statements...

Console.WriteLine ("-> char.IsDigit('K'): {0}", char.IsDigit('K"));
Console.WriteLine ("-> char.IsDigit('9'): {0}", char.IsDigit('9"));
Console.WriteLine ("-> char.IsLetter('10', 1): {0}", char.IsLetter("10", 1));
Console.WriteLine ("-> char.IsLetter('p'): {0}", char.IsLetter('p"));
Console.WriteLine ("-> char.IsWhiteSpace('Hello There', 5): {0}",

(

char.IsWhiteSpace ("Hello There", 5));
Console.WritelLine
char.IsWhiteSpace

"-> char.IsWhiteSpace('Hello There', 6): {0}",

(
("Hello There", 6));

Console.WriteLine ("-> char.IsLetterOrDigit('?"'): {0}",
char.IsLetterOrDigit('?"));

Console.WriteLine ("-> char.IsPunctuation('!'): {0}",
char.IsPunctuation('!"'));

Console.WriteLine ("-> char.IsPunctuation('>"): {0}",
char.IsPunctuation('>"));

Console.WriteLine ("-> char.IsPunctuation(',"'): {0}",
char.IsPunctuation(',"'));

}

As you can see, each of these static members of System.Char has two calling conventions:
a single character or a string with a numerical index that specified the position of the
character to test.

3.20 Defining Custom Namespaces

Up to this point, you have been building small test programs leveraging existing
namespaces in the .NET universe (Systemin particular). When you build your own
custom = applications, it can be very helpful to group your related types into custom
namespaces. In C#, this is accomplished using the namespace keyword.

Assume you are developing a collection of geometric classes named Square,Circle, and
Hexagon. Given their similarities, you would like to group them all together into a
common custom namespace. You have two basic approaches. First, you may choose to
define each class within a single file (shapes-1ib.cs) as follows:

Dept. of ISE,S]BIT Page 83

C# and .NET Programming 061S761

// shapeslib.cs
using System;

namespace MyShapes

{

// Circle class.

class Circle{ /* Interesting methods... */ }

// Hexagon class.

class Hexagon{ /* More interesting methods... */ }

// Square class.

class Square{ /* Even more interesting methods... */ }

Notice how the MyShapes namespace acts as the conceptual “container” of these types.
Alternatively, you can split a single namespace into multiple C# files. To do so, simply
wrap the given class definitions in the same namespace:

// circle.cs

using System;

namespace MyShapes
{

// Circle class.
class Circle{ }

}

// hexagon.cs
using System;

namespace MyShapes
{

// Hexagon class.
class Hexagon{ }

}

// square.cs
using System;

namespace MyShapes

{

// Square class.

class Square{ }

}

As you already know, when another namespace wishes to use objects within a distinct
namespace, the using keyword can be used as follows:

// Make use of types defined the MyShape namespace.

using System;

using MyShapes;

Dept. of ISE,S]BIT Page 84

C# and .NET Programming 0615761

namespace MyApp

{

class ShapeTester

{

static void Main(string[] args)
{

Hexagon h = new Hexagon();
Circle ¢ = new Circle();
Square s = new Square();

}

}

}

Dept. of ISE,S]BIT Page 85

C# and .NET Programming 0615761

Recommended questions
1. What are the key features C#?
2. What are the basic building blocks of .NET framework Visual Studio and
explain.
3. Explain the csingle file and concept of .NET binaries.Differentiate between
single file and multifile assemblies.
4. What is the role of NET Type Metadata and Assembly Manifest
. What are the CTS class characteristics

)}

Dept. of ISE,S]BIT Page 86

C# and .NET Programming 061S761

UNIT -4
OOP with C#

4.1 Defining of the C# Class,

4.2 Definition the “Default Public Interface” of a Type

4.3 Recapping the Pillars of OOP,

4.4 The First Pillars: C#’s Encapsulation Services, Pseudo-
Encapsulation:Creating Read-Only Fields

4.5The Second Pillar:C#’s Inheritance Supports

4.8keeping Family Secrets: The “ Protected” Keyword, Nested Type Definitions,
4.9The Third Pillar: C #’s Polymorphic Support,

4.8 Casting Between.

Dept. of ISE,S]BIT Page 87

C# and .NET Programming 0615761

4.1 Defition of the C# Class

If you have been “doing objects” in another programming language, you are no doubt
aware of the role of class definitions. Formally, a class is nothing more than a custom
user-defined type (UDT) that is composed of field data (sometimes termed member
variables) and functions (often called methods in OO speak) that act on this data. The
set of field data collectively represents the “state” of a class instance.

The power of object-oriented languages is that by grouping data and functionality in a
single UDT, you are able to model your software types after real-world entities. For
example, assume you are interested in modeling a generic employee for a payroll
system. At minimum, you may wish to build a class that maintains the name, current
pay, and= employee ID for each worker. In addition, the Employee class defines one
method, named GiveBonus (), which increases an individual’s current pay by some
amount, and another, = named DisplayStats (), which prints out the state data for this
individual.

// The initial Employee class definition.

namespace Employees

{

public class Employee

{

// Field data.

private string fullName;

private int empID;

private float currPay;

// Constructors.

public Employee(){ }

public Employee(string fullName, int empID, float currPay)
{

this.fullName = fullName;

this.empID = empID;

this.currPay = currPay;

}

// Bump the pay for this employee.
public void GiveBonus (float amount)
{ currPay += amount; }

// Show current state of this object.
public void DisplayStats()

{

Console.WriteLine ("Name: {0} ", fullName);
Console.WriteLine ("Pay: {0} ", currPay);
Console.WriteLine ("ID: {0} ", empID);

}

Dept. of ISE,S]BIT Page 88

C# and .NET Programming 061S761

}
}
public class Employee

{
public Employee(){ }

}
Like C++ and Java, if you choose to define custom constructors in a class definition,

the default constructor is silently removed. Therefore, if you wish to allow the object
user to create an instance of your class as follows:
static void Main(string[] args)

{
// Calls the default constructor.

Employee e = new Employee();

}

you must explicitly redefine the default constructor for your class (as we have done
here). If you do not, you will receive a compiler error when creating an instance of your
class type = using the default constructor. In any case, the following Main () method
creates a few = Employee objects using our cus-

tom three-argument constructor:

// Make some Employee objects.

static void Main(string[] args)

{

Employee e = new Employee ("Joe", 80, 30000);

Employee e2;

e2 = new Employee ("Beth", 81, 50000);

Console.ReadLine();

}
4.2 Defining the Public Interface of a Class

Once you have established a class’s internal state data and constructor set, your next
step is to flesh out the details of the public interface to the class. The term refers to the
set of member that are directly accessible from an object variable via the dot operator.
From the class builder’s point of view, the public interface is any item declared in a
class using the public keyword. Beyond field data and constructors, the public
interface of a class may be pop-ulated by numerous members, including the following:
* Methods: Named units of work that model some behavior of a class

* Properties: Traditional accessor and mutator functions in disguise

* Constants/Read-only fields: Field data that cannot be changed after assignment
Given that our Employee currently defines two public methods (GiveBonus () and
DisplayStats()),

we are able to interact with the public interface as follows:

// Interact with the public interface of the Employee class type.

static void Main(string[] args)

Dept. of ISE,S]BIT Page 89

C# and .NET Programming 061S761

{

Console.WriteLine ("***** The Employee Type at Work *****\n"),;
Employee e = new Employee ("Joe", 80, 30000);
e.GiveBonus (200) ;

e.DisplayStats();

Employee e2;

e2 = new Employee ("Beth", 81, 50000);
e2.GiveBonus (1000);
e2.DisplayStats();
Console.ReadLine () ;

}
4.3 Recapping the Pillars of OOP

All object-oriented languages contend with three core principles of object-oriented
programming, often called the famed “pillars of OOP.”

* Encapsulation: How does this language hide an object’s internal implementation?

» Inheritance: How does this language promote code reuse?

» Polymorphism: How does this language let you treat related objects in a similar way?
Before digging into the syntactic details of each pillar, it is important you understand
the = basic role of each. Therefore, here is a brisk, high-level rundown, just to clear off
any = cobwebs you may have acquired between project deadlines.

Encapsulation

The first pillar of OOP is called encapsulation. This trait boils down to the language’s
ability to hide unnecessary implementation details from the object user. For example,
assume you are using a class named DatabaseReader that has two methods named
Open () and Close ():

// DatabaseReader encapsulates the details of database manipulation.
DatabaseReader dbObj = new DatabaseReader () ;

dbObj.0pen (@"C:\Employees.mdf") ;

// Do something with database...

dbObj.Close();

The fictitious DatabaseReader class has encapsulated the inner details of locating,
loading, manipulating, and closing the data file. Object users love encapsulation, as
this pillar of OOP keeps programming tasks simpler. There is no need to worry about
the numerous lines of code that are working behind the scenes to carry out the work of
the DatabaseReaderclass. All you do is create an instance and send the appropriate
messages (e.g., “open the file named Employees.mdf located on my C drive”).
Another aspect of encapsulation is the notion of data protection. Ideally, an object’s
state data should be defined as private rather than public (as was the case in previous
chapters). In this way, the outside world must “ask politely” in order to change or obtain
the underlying value.

Inheritance

Dept. of ISE,S]BIT Page 90

C# and .NET Programming 0615761

The next pillar of OOP, inheritance, boils down to the language’s ability to allow you
to build new class definitions based on existing class definitions. In essence,
inheritance allows you to extend the behavior of a base (or parent) class by enabling a
subclass to inherit core functionality (also called a derived class or child class).

For example, if you are modeling an automobile, you might wish to express the idea
that

a car “has-a” radio. It would be illogical to attempt to derive the Car class from aRadio,
or vice versa.

(A Car “is-a” Radio? I think not!) Rather, you have two independent classes working
together, where the containing class creates and exposes the contained class’s
functionality:

public class Radio

{

public void Power (bool turnOn)

{ Console.WriteLine ("Radio on: {0}", turnOn);}

}

public class Car

{
// Car "has-a" Radio.

private Radio myRadio = new Radio();

public void TurnOnRadio (bool onOff)

{

// Delegate to inner object.

myRadio.Power (onOff);

}

}

Here, the containing type (Car) is responsible for creating the contained object (Radio).
If the Car wishes to make the Radio’s behavior accessible from aCar instance, it must
extend its own public interface with some set of functions that operate on the
contained type. Notice that the object user has no clue that the Car class is making use
of an inner Radio object:

static void Main(string[] args)

{

// Call is forward to Radio internally.

Car viper = new Car();

viper.TurnOnRadio (true);

}

Polymorphism

The final pillar of OOP is polymorphism. This trait captures a language’s ability to treat
related objects the same way. This tenent of an object-oriented language allows a base
class to define a set of members (formally termed the polymorphic interface) to all
descendents. A class type’s polymorphic interface is constructed using any number of
virtual or abstract members. In a nutshell, a virtual member may be changed (or
more formally speaking, overridden) by a derived class, whereas an abstract method

Dept. of ISE,S]BIT Page 91

C# and .NET Programming 0615761

must be overriden by a derived type. When derived types override the members
defined by a base class, they are essentially redefining how they respond to the same
request.

4.4 The First Pillar: C#s Encapsulation Services

The concept of encapsulation revolves around the notion that an object’s field data
should not be directly accessible from the public interface. Rather, if an object user
wishes to alter the state of an object, it does so indirectly using accessor (get) and
mutator (set) methods. In C#, encapsulation is enforced at the syntactic level using the
public,private,protected, and protected internal keywords, as described in Chapter
3. To illustrate the need for encapsulation, assume you have created the following
class definition:

// A class with a single public field.

public class Book

{

public int numberOfPages;

}

The problem with public field data is that the items have no ability to “understand”
whether

the current value to which they are assigned is valid with regard to the current business
rules of the system. As you know, the upper range of a C# int is quite large
(2,147,483,647). Therefore, the compiler allows the following assignment:

// Humm. . .

static void Main(string[] args)

{

Book miniNovel = new Book();

miniNovel.numberOfPages = 30000000;

}

Although you do not overflow the boundaries of an integer data type, it should be
clear that a mini-novel with a page count of 30,000,000 pages is a bit unreasonable in
the real world. As you can see, public fields do not provide a way to enforce data
validation rules. If your system has a business rule that states a mini-novel must be
between 1 and 200 pages, you are at a loss to enforce this programmatically. Because
of this, public fields typically have no place in a production-level class definition
(public read-only fields being the exception). Encapsulation provides a way to
preserve the integrity of state data. Rather than defining public fields (which can
easily foster data corruption), you should get in the habit of defining private data
fields, which are indirectly manipulated by the caller using one of two main
techniques:

* Define a pair of traditional accessor and mutator methods.

* Define a named property.

Whichever technique you choose, the point is that a well-encapsulated class should
hide its

raw data and the details of how it operates from the prying eyes of the outside world.
This is often termed black box programming. The beauty of this approach is that a
class author is free to change how a given method is implemented under the hood,

Dept. of ISE,S]BIT Page 92

C# and .NET Programming 0615761

without breaking any existing code making use of it (provided that the signature of
the method remains constant).

Enforcing Encapsulation Using Traditional Accessors and Mutators

Let’s return to the existing Employee class. If you want the outside world to interact with
your private fullName data field, tradition dictates defining an accessor (get method)
and mutator (set method). For example:

// Traditional accessor and mutator for a point of private data.

public class Employee

{

private string fullName;

// Accessor.
public string GetFullName () { return fullName; }

// Mutator.

public void SetFullName (string n)

{

// Remove any illegal characters (!, @, #, $, %),

// check maximum length (or case rules) before making assignment.

fullName = n;

}

}

Understand, of course, that the compiler could not care less what you call your accessor
and

mutator methods. Given the fact that GetFullName () and SetFullName () encapsulate a
private string named fullName, this choice of method names seems to fit the bill. The
calling logic is as follows:

// Accessor/mutator usage.

static void Main(string[] args)

{

Employee p = new Employee();

p.SetFullName ("Fred Flintstone");

Console.WriteLine ("Employee is named: {0}", p.GetFullName ());
Console.ReadLine ();

}

Another Form of Encapsulation: Class Properties

In contrast to traditional accessor and mutator methods, .NET languages prefer to
enforce encapsulation using properties, which simulate publicly accessible points of
data. Rather than requiring the user to call two different methods to get and set the
state data, the user is able to call what appears to be a public field. To illustrate,
assume you have provided a property named ID that wraps the internal

empID member variable of the Employee type. The calling syntax would look like this:
// Setting / getting a person's ID through property syntax.

static void Main(string[] args)

Dept. of ISE,S]BIT Page 93

C# and .NET Programming 061S761

{
Employee p = new Employee();

// Set the value.
p.ID = 81;

// Get the value.

Console.WriteLine ("Person ID is: {0} ", p.ID);

Console.ReadLine () ;

}

Type properties always map to “real” accessor and mutator methods under the hood.
Therefore, as a class designer you are able to perform any internal logic necessary
before making the value assignment (e.g., uppercase the value, scrub the value for
illegal characters, check the bounds of a numerical value, and so on). Here is the C#
syntax behind the ID property, another property (Pay) that encapsulates the

currPay field, and a final property (Name) to encapsulate the fullName data point.

// Encapsulation with properties.

public class Employee

{

private int empID;
private float currPay;
private string fullName;

// Property for empID.

public int ID

{

get { return emplD;}

set

{

// You are still free to investigate (and possibly transform)
// the incoming value before making an assignment.
empID = value;

}

}

// Property for fullName.
public string Name

{
get {return fullName;}

set {fullName = value;}

}

// Property for currPay.
public float Pay
{

get {return currPay;}

Dept. of ISE,S]BIT Page 94

C# and .NET Programming 061S761

set {currPay = value;}
}

}
A C# property is composed using a get block (accessor) and set block (mutator). The

C# “value” token represents the right-hand side of the assignment. The underlying
data type of the value token depends on which sort of data it represents. In this
example, the ID property is operating on aint data type, which, as you recall, maps to
aSystem.Int32:

// 81 is a System.Int32, so "value" is a System.Int32.

Employee e = new Employee();

e.ID = 81;

To prove the point, assume you have updated the ID property’s set logic as follows:
// Property for the empID.

public int ID

{

get { return emplID;}

set

{

Console.Writeline ("value is an instance of: {0} ", value.GetType());
Console.WriteLine ("value's value: {0} ", value);

empID = value;
}
}

Read-Only and Write-Only Properties

When creating class types, you may wish to configure a read-only property. To do so,
simply build a property without a corresponding set block. Likewise, if you wish to have
a write-only property, omit the get block. We have no need to do so for this example;
however, here is how the SocialSecurityNumber property could be retrofitted as read-
only:

public class Employee

{

// Now as a read-only property.

public string SocialSecurityNumber { get { return empSSN; } }

}

Given this adjustment, the only manner in which an employee’s US Social Security
number can be set is through a constructor argument.

4.5 The Second Pillar: C#'s Inheritance Support

Now that you have seen various techniques that allow you to create a single well-
encapsulated class, it is time to turn your attention to building a family of related
classes. As mentioned, inheri- tance is the aspect of OOP that facilitates code reuse.
Inheritance comes in two flavors: classical inheritance (the “is-a” relationship) and the

Dept. of ISE,S]BIT Page 95

C# and .NET Programming 0615761

containment/delegation model (the “has-a” relationship). Let’s begin by examining the
classical “is-a” model.

When you establish “is-a” relationships between classes, you are building a
dependency

between types. The basic idea behind classical inheritance is that new classes may
leverage (and possibily extend) the functionality of other classes. To illustrate, assume
that you wish to leverage the functionality of the Employee class to create two new
classes.

For our example, we will assume that the Manager class extends Employee by recording the
number of stock options, while the SalesPerson class maintains the number of sales. In
C#, extending a class is accomplished using the colon operator (:) on the class
definition. This being said, here are the derived class types:

// Add two new subclasses to the Employees namespace.

namespace Employees

{

public class Manager : Employee

{

// Managers need to know their number of stock options.

private ulong numberOfOptions;

public ulong NumbOpts

{

get { return numberOfOptions;}

set { numberOfOptions = value; }

}

}

public class SalesPerson : Employee

{

// Salespeople need to know their number of sales.

private int numberOfSales;

public int NumbSales

{

get { return numberOfSales;}

set { numberOfSales = value; }

}

}

}

Now that you have established an “is-a” relationship, SalesPersonand Manager have
automatically inherited all public (and protected) members of the Employee base class.
To illustrate:

// Create a subclass and access base class functionality.

static void Main(string[] args)

{

// Make a salesperson.

SalesPerson stan = new SalesPerson();

Dept. of ISE,S]BIT Page 96

C# and .NET Programming 0615761

// These members are inherited from the Employee base class.
stan.ID = 100;
stan.Name = "Stan";

// This is defined by the SalesPerson class.

stan.NumbSales = 42;

Console.ReadLine () ;

}

Do be aware that inheritance preserves encapsulation. Therefore, a derived class
cannot

directly access the private members defined by its base class.

Controlling Base Class Creation with base

Currently, SalesPerson and Manager can only be created using a default constructor.
With this in mind, assume you have added a new six-argument constructor to the
Manager type, which is invoked as follows:

static void Main(string[] args)

{

// Assume we now have the following constructor.

// (name, age, ID, pay, SSN, number of stock options).

Manager chucky = new Manager ("Chucky", 35, 92, 100000, "333-23-2322", 9000);
}

If you look at the argument list, you can clearly see that most of these parameters
should be

stored in the member variables defined by the Employee base class. To do so, you could
= implement this new constructor as follows:

// 1If you do not say otherwise, a subclass constructor automatically calls the
// default constructor of its base class.

public Manager (string fullName, int age, int empID,

float currPay, string ssn, ulong numbOfOpts)

{

// This point of data belongs with us!

numberOfOptions = numbOfOpts;

// Leverage the various members inherited from Employee
// to assign the state data.

ID = emplID;

Age = age;

Name = fullName;

SocialSecurityNumber = ssn;

Pay = currPay;

}

4.6 Keeping Family Secrets: The protected Keyword
As you already know, public items are directly accessible from anywhere, while private
items cannot be accessed from any object beyond the class that has defined it. C#

Dept. of ISE,S]BIT Page 97

C# and .NET Programming 0615761

takes the lead of many other modern object languages and provides an additional level
of accessibility: protected. When a base class defines protected data or protected
members, it is able to create a set of items that can be accessed directly by any
descendent. If you wish to allow the SalesPerson and Manager child classes to directly
access the data sector defined by Employee, you can update the original Employee class
definition as follows:

// Protected state data.

public class Employee

{

// Child classes can directly access this information. Object users cannot.
protected string fullName;

protected int empID;

protected float currPay;

protected string empSSN;

protected int empAge;

}

The benefit of defining protected members in a base class is that derived types no
longer have to access the data using public methods or properties. The possible
downfall, of course, is that when a derived type has direct access to its parent’s
internal data, it is very possible to accidentally bypass existing business rules found
within public properties (such as the mini-novel that exceeds the page count). When
you define protected members, you are creating a level of trust between the parent and
child class, as the compiler will not catch any violation of your type’s business
rules.Finally, understand that as far as the object user is concerned, protected data is
regarded as private (as the user is “outside” of the family). Therefore, the following is
illegal:

static void Main(string[] args)

{

// Error! Can't access protected data from object instance.

Employee emp = new Employee();

emp.empSSN = "111-11-1111";

}

4.7 The Third Pillar: C#s Polymorphic Support

Let’s now examine the final pillar of OOP: polymorphism. Recall that the Employee base
class

defined a method named GiveBonus (), which was implemented as follows:

// Give bonus to employees.

public class Employee

{

public void GiveBonus (float amount)
{ currPay += amount; }

}

Dept. of ISE,S]BIT Page 98

C# and .NET Programming 0615761

Because this method has been defined as public, you can now give bonuses to
salespeople and managers (as well as part-time salespeople):

static void Main(string[] args)

{

// Give each employee a bonus.

Manager chucky = new Manager ("Chucky", 50, 92, 100000, "333-23-2322", 9000);
chucky.GiveBonus (300) ;

chucky.DisplayStats();

SalesPerson fran = new SalesPerson("Fran", 43, 93, 3000, "932-32-3232", 31);
fran.GiveBonus (200) ;

fran.DisplayStats();

Console.ReadLine();

}

The problem with the current design is that the inherited GiveBonus () method
operates identically for all subclasses. Ideally, the bonus of a salesperson or part-time
salesperson should take into account the number of sales. Perhaps managers should
gain additional stock options in conjunction with a monetary bump in salary. Given
this, you are suddenly faced with an interesting question: “How can related objects
respond differently to the same request?”

4.8 Casting Between.

Next up, you need to learn the laws of C# casting operations. Recall the

Employees hierarchy and the fact that the topmost class in the system is System.Object.
Therefore, everything “is-a” object and can be treated as such. Given this fact, it is
legal to store an instance of any type within a object variable:

// A Manager "is-a" System.Object.

object frank = new Manager ("Frank Zappa", 9, 40000, "111-11-1111", 5);

In the Employees system, Managers, SalesPerson, and PTSalesPerson types all extend
Employee, so we can store any of these objects in a valid base class reference. Therefore,
the following statements are also legal:

// A Manager "is-a" Employee too.

Employee moonUnit = new Manager ("MoonUnit Zappa", 2, 20000, "101-11-1321", 1);

// A PTSalesPerson "is-a" SalesPerson.

SalesPerson jill = new PTSalesPerson("Jill", 834, 100000, "111-12-1119", 90);
The first law of casting between class types is that when two classes are related by an
“is-a”

relationship, it is always safe to store a derived type within a base class reference.
Formally, this is called an implicit cast, as “it just works” given the laws of inheritance.
This leads to some powerful programming constructs. For example, if you have a class
named TheMachine that supports the following static method:

public class TheMachine

{

public static void FireThisPerson (Employee e)

{
// Remove from database...

Dept. of ISE,S]BIT Page 99

C# and .NET Programming 0615761

// Get key and pencil sharpener from fired employee...

}

}

you can effectively pass any descendent from the Employee class into this method
directly, given the “is-a” relationship:

// Streamline the staff.

TheMachine.FireThisPerson (moonUnit); // "moonUnit" was declared as an
Employee.
TheMachine.FireThisPerson (jill); // "3111" was declared as a SalesPerson.

The following code compiles given the implicit cast from the base class type (Employee)
to the derived type. However, what if you also wanted to fire Frank Zappa (currently
stored in a generic System.Object reference)? If you pass the frank object directly into
TheMachine.FireThisPerson () as follows:

// A Manager "is-a" object, but...

object frank = new Manager ("Frank Zappa", 9, 40000, "111-11-1111", 5);

TheMachine.FireThisPerson (frank) ; // Error!

you are issued a compiler error. The reason is you cannot automatically treat a
System.Object as a derived Employee directly, given that Object “is-not-a” Employee. As
you can see, however, the object reference is pointing to an Employee-compatible
object. You can satisfy the compiler by performing an explicit cast.

In C#, explicit casts are denoted by placing parentheses around the type you wish to
cast to, followed by the object you are attempting to cast from. For example:

// Cast from the generic System.Object into a strongly

// typed Manager.

Manager mgr = (Manager)frank;

Console.WriteLine ("Frank's options: {0}", mgr.NumbOpts);

If you would rather not declare a specific variable of “type to cast to,” you are able to
condense the previous code as follows:

// An "inline" explicit cast.

Console.WriteLine ("Frank's options: {0}", ((Manager)frank) .NumbOpts);

As far as passing the System.Object reference into the FireThisPerson () method, the
problem can be rectified as follows:

// Explicitly cast System.Object into an Employee.

TheMachine.FireThisPerson ((Employee) frank) ;

Dept. of ISE,S]BIT Page 100

C# and .NET Programming 0615761

Recommended Questions:
1. What are Three Pillars of Object Oriented Programming?
2. Explain Encapsulation in c#?
3. List and Explain the various types of Inheritence.

Dept. of ISE,S]BIT Page 101

C# and .NET Programming 0615761

UNIT -5
Exceptions and Object Lifetime

5.10de to Errors, Bugs, and Exceptions,

5.2 The Role of .NET Exception Handing,

5.3 The System. Exception Base Class,

5.4 Throwing a Generic Exception,

5.5 Catching Exception,

5.6 CLR System — Level Exception (System. System Exception),

5.7 Custom Application-Level Exception (System. System Exception),
5.8 Handling Multiple Exception

5.9 The Fanily Block, the Last Chance Exception Dynamically
Identifying Application — and System Level Exception Debugging System
5.10 Exception Using VS. NET,

5.11 Understanding Object Lifetime,

5.12 The CIT of “new’,

5.13 The Basics of Garbage Collection,

5.14 Finalization a Type, The Finalization Process,

5.15 Building an Ad Hoc Destruction Method,

5.16 Garbage Collection Optimizations,

5.17 The System. GC Type.

Dept. of ISE,S]BIT Page 102

C# and .NET Programming 061S761

5.1 Ode to Errors, Bugs, and Exceptions

Three commonly used anomaly-centric terms:

* Bugs: This is, simply put, an error on the part of the programmer. For example,
assume you are programming with unmanaged C++. If you make calls on aNULL pointer
or fail to delete allocated memory (resulting in a memory leak), you have a bug.

* User errors: Unlike bugs, user errors are typically caused by the individual running
your application, rather than by those who created it. For example, an end user who
enters a malformed string into a text box could very well generate an error if you fail to
handle this faulty input in your code base.

» Exceptions: Exceptions are typically regarded as runtime anomalies that are difficult,
if not impossible, to account for while programming your application. Possible
exceptions include attempting to connect to a database that no longer exists, opening
a corrupted file, or contacting a machine that is currently offline. In each of these
cases, the programmer (and end user) has little control over these “exceptional”
circumstances. Given the previous definitions, it should be clear that .NET structured
exception handling is a technique well suited to deal with runtime exceptions.
However, as for the bugs and user errors that have escaped your view, the CLR will
often generate a corresponding exception that identi- fies the problem at hand. The
.NET base class libraries define numerous exceptions such as FormatException,
IndexOutOfRangeException, FileNotFoundException, ArgumentOutOfRangeException,
and so forth.

5.2 The Role of .NET Exception Handling

Prior to .NET, error handling under the Windows operating system was a confused
mishmash of techniques. Many programmers rolled their own error handling logic
within the context of a given application. For example, a development team may
define a set of numerical constants that represent known error conditions, and make
use of them as method return values. By way of an example, ponder the following
partial C code:

/* A very C-style error trapping mechanism. */

#define E FILENOTFOUND 1000

int SomeFunction()

{

// Assume something happens in this f (x)
// that causes the following return value.
return E FILENOTFOUND;

}

void main ()

{

int retVal = SomeFunction();
if (retval == E_FILENOTFOUND)
printf ("Cannot find file...");

Dept. of ISE,S]BIT Page 103

C# and .NET Programming 061S761

}

This approach is less than ideal, given the fact that the constant E_ FILENOTFOUND is
little more than a numerical value, and is far from being a helpful agent regarding
how to deal with the problem. Ideally, you would like to wrap the name, message,
and other helpful information regarding this error condition into a single, well-
defined package (which is exactly what happens under structured exception
handling). In addition to a developer’s ad hoc techniques, the Windows API defines
hundreds of error codes that come by way of #defines, HRESULTs, and far too many
variations on the simple Boolean (bool, BOOL, VARIANT BOOL, and so on). Also, many
C++ COM developers (and indirectly, many VB6 COM developers) have made use of
a small set of standard COM interfaces (e.g., ISupportErrorInfo,

IErrorInfo, ICreateErrorInfo) to return meaningful error information to a COM
client. The obvious problem with these previous techniques is the tremendous lack of
symmetry. Each approach is more or less tailored to a given technology, a given
language, and perhaps even a given project. In order to put an end to this madness, the
.NET platform provides a standard technique to send and trap runtime errors:
structured exception handling (SEH).

The Atoms of .NET Exception Handling

Programming with structured exception handling involves the use of four interrelated
entities:

* A class type that represents the details of the exception that occurred

* A member that throws an instance of the exception class to the caller

* A block of code on the caller’s side that invokes the exception-prone member

* A block of code on the caller’s side that will process (or catch) the exception should it
occur

The C# programming language offers four keywords (try, catch, throw, and
finally) that allow you to throw and handle exceptions. The type that represents the
problem at hand is a class derived from System.Exception (or a descendent thereof).
Given this fact, let’s check out the role of this exception-centric base class.

5.3 The System.Exception Base Class

All user- and system-defined exceptions ultimately derive from the
System.Exception base class (which in turn derives from System.Object). Note that
some of these members are virtual and may thus be overridden by derived types:
public class Exception : ISerializable, Exception

{

public virtual IDictionary Data { get; }

protected Exception(SerializationInfo info, StreamingContext context);
public Exception(string message, Exception innerException);

public Exception(string message);

public Exception();

public virtual Exception GetBaseException();

public virtual void GetObjectData (SerializationInfo info,
StreamingContext context);

public System.Type GetType();

protected int HResult { get; set; }

Dept. of ISE,S]BIT Page 104

C# and .NET Programming 061S761

public virtual string HelpLink { get; set; }

public System.Exception InnerException { get; }

public virtual string Message { get; }

public virtual string Source { get; set; }

public virtual string StackTrace { get; }

public MethodBase TargetSite { get; }

public override string ToString();

}

The Simplest Possible Example

To illustrate the usefulness of structured exception handling, we need to create a type
that may throw an exception under the correct circumstances. Assume we have
created a new console application project (named SimpleException) that defines two
class types (Car and Radio) associated using the “has-a” relationship. The Radio type
defines a single method that turns the radio’s power on or off:

public class Radio

{

public void TurnOn (bool on)

{

if (on)

Console.WriteLine ("Jamming...");

else

Console.WriteLine ("Quiet time...");

}

}

5.4 Throwing a Generic Exception

Now that we have a functional Car type, I’ll illustrate the simplest way to throw an
exception. The current implementation of Accelerate () displays an error message if
the caller attempts to speed up the Car beyond its upper limit. To retrofit this method
to throw an exception if the user attempts to speed up the automobile after it has met
its maker, you want to create and configure a new instance of the System.Exception
class, setting the value of the read-only Message property via the class constructor.
When you wish to send the error object back to the caller, make use of the C#

throw keyword. Here is the relevant code update to the Accelerate () method:

// This time, throw an exception if the user speeds up beyond maxSpeed.
public void Accelerate(int delta)

{

if (carIsDead)

Console.WriteLine("{0} is out of order...", petName);

else

{

currSpeed += delta;

if (currSpeed >= maxSpeed)

{

carIsDead = true;

currSpeed = 0;

// Use "throw" keyword to raise an exception.

Dept. of ISE,S]BIT Page 105

C# and .NET Programming 061S761

throw new Exception(string.Format ("{0} has overheated!", petName));
}

else

Console.WritelLine ("=> CurrSpeed = {0}", currSpeed);

}

}

Before examining how a caller would catch this exception, a few points of interest. First
of all, when you are throwing an exception, it is always up to you to decide exactly what
constitutes the error in question, and when it should be thrown. Here, you are making
the assumption that if the program attempts to increase the speed of a car that has
expired, aSystem.Exceptiontype should be thrown to indicate the Accelerate () method
cannot continue (which may or may not be a valid assumption). Alternatively, you
could implement Accelerate () to recover automatically without needing to throw an
exception in the first place. By and large, exceptions should be thrown only when a
more terminal condition has been met (for example, not finding a necessary file,
failing to connect to

a database, and whatnot). Deciding exactly what constitutes throwing an exception is a
design issue you must always contend with. For our current purposes, assume that
asking a doomed automobile to increase its speed justifies a cause to throw an
exception.

5.5 Catching Exceptions

Because the Accelerate () method now throws an exception, the caller needs to be
ready to handle the exception should it occur. When you are invoking a method that
may throw an exception, you make use of atry/catchblock. Once you have caught the
exception type, you are able to invoke the members of the System.Exception type to
extract the details of the problem. What you do with this data is largely up to you. You
may wish to log this information to a report file, write the data to the Windows event
log, e-mail a system administrator, or display the problem to the end user. Here, you
will simply dump the contents to the console window:

// Handle the thrown exception.

static void Main(string[] args)

{

Console.WriteLine ("***** Creating a car and stepping on it *x#**xx").

Car myCar = new Car ("Zippy", 20);

myCar.CrankTunes (true);

// Speed up past the car's max speed to
// trigger the exception.

try

{

for(int i = 0; 1 < 10; i++)

myCar. Accelerate(10);

}

catch (Exception e)

{

Dept. of ISE,S]BIT Page 106

C# and .NET Programming 061S761

Console.WriteLine ("\n*** Error! **x");
Console.WritelLine ("Method: {0}", e.TargetSite);
Console.WritelLine ("Message: {0}", e.Message);
Console.WriteLine ("Source: {0}", e.Source) ;

}

// The error has been handled, processing continues with the next statement.
Console.WriteLine ("\n***** Qut of exception logic *****"),

Console.ReadLine () ;

}

5.6 CLR System-Level Exceptions (System.SystemException)

The .NET base class libraries define many classes derived from System.Exception. For
example, the Systemnamespace defines core error objects such as
ArgumentOutOfRangeException, IndexOutOfRangeException, StackOverflowException, and
so forth. Other namespaces define exceptions that reflect the behavior of that
namespace (e.g., System.Drawing.Printing defines printing exceptions, System. IO
defines 1O-based exceptions, System.Data defines database-centric exceptions, and so
forth). Exceptions that are thrown by the CLR are (appropriately) called system
exceptions. These exceptions are regarded as nonrecoverable, fatal errors. System
exceptions derive directly from a base class named System.SystemException, which in
turn derives from System.Exception (which derives from System.Object):

public class SystemException : Exception

{

// Various constructors.

}

Given that the System. SystemExceptiontype does not add any additional functionality
beyond a set of constructors, you might wonder why SystemExceptionexists in the first
place. Simply put, when an exception type derives from System.SystemException, you are
able to determine that the .NET runtime is the entity that has thrown the exception,
rather than the code base of the executing application.

5.7 Custom Application-Level Exceptions (System.ApplicationException)
Given that all .NET exceptions are class types, you are free to create your own
application-specific exceptions. However, due to the fact that the
System.SystemException base class represents exceptions thrown from the CLR, you
may naturally assume that you should derive your custom exceptions from the
System.Exceptiontype. While you could do so, best practice dictates that you instead
derive from the System.ApplicationException type:

public class ApplicationException : Exception

{

// Various constructors.

}

Building Custom Exceptions, Take One

While you can always throw instances of System.Exception to signal a runtime error (as
shown in our first example), it is sometimes advantageous to build a strongly typed

Dept. of ISE,S]BIT Page 107

C# and .NET Programming 0615761

exception that represents the unique details of your current problem. For example,
assume you wish to build a custom exception (named CarIsDeadException) to
represent the error of speeding up a doomed automobile. The first step is to derive a
new class from System.ApplicationException (by convention, all exception classes end
with the “Exception” suffix).

// This custom exception describes the details of the car-is-dead condition.
public class CarIsDeadException : ApplicationException

{}

Like any class, you are free to include any number of custom members that can be
called within the catchblock of the calling logic. You are also free to override any virtual
members defined by your parent classes. For example, we could implement
CarIsDeadException by overriding the virtual Message property:

public class CarIsDeadException : ApplicationException

{

private string messageDetails;

public CarIsDeadException(){ }

public CarIsDeadException(string message)
{

messageDetails = message;

}

// Override the Exception.Message property.

public override string Message

{

get

{

return string.Format ("Car Error Message: {0}", messageDetails);

}

}

}

Here, the CarIsDeadException type maintains a private data member
(messageDetails) that represents data regarding the current exception, which can be
set using a custom constructor. Throwing this error from the Accelerate() is
straightforward. Simply allocate, configure, and throw a CarIsDeadException type
rather than a generic System.Exception:

// Throw the custom CarIsDeadException.

public void Accelerate(int delta)

{

CarIsDeadException ex = new CarIsDeadException(string.Format ("{0} has
overheated!", petName));

ex.HelpLink = "http://www.CarsRUs.com";

ex.Data.Add ("TimeStamp", string.Format ("The car exploded at {0}",
DateTime.Now)) ;

ex.Data.Add ("Cause", "You have a lead foot.");

Dept. of ISE,S]BIT Page 108

C# and .NET Programming 061S761

throw ex;

}

To catch this incoming exception explicitly, your catchscope can now be updated to
catch

a specific CarIsDeadException type (however, given that CarIsDeadException “is-a”
System.Exception, it is still permissible to catch a generic System.Exception as well):
static void Main(string[] args)

{

catch (CarIsDeadException e)
{
// Process incoming exception.

}

}

So, now that you understand the basic process of building a custom exception, you may
wonder when you are required to do so. Typically, you only need to create custom
exceptions when the error is tightly bound to the class issuing the error (for example, a
custom File class that throws a number of file-related errors, aCar class that throws a
number of car-related errors, and so forth). In doing so, you provide the caller with the
ability to handle numerous exceptions on an error-by-error basis.

5.8 Handling Multiple Exceptions

In its simplest form, a try block has a single catch block. In reality, you often run
into a situation where the statements within a try block could trigger numerous
possible exceptions. For example, assume the car’s Accelerate () method also
throws a base-class-library predefined ArgumentOutOfRangeException if you pass an
invalid parameter (which we will assume is any value less than zero):

// Test for invalid argument before proceeding.

public void Accelerate(int delta)

{
if (delta < 0)
throw new ArgumentOutOfRangeException ("Speed must be greater than zero!");

}
The catchlogic could now specifically respond to each type of exception:
static void Main(string[] args)

{

// Here, we are on the lookout for multiple exceptions.
try

{

for(int i = 0; 1 < 10; i++)

myCar.Accelerate (10);

}

Dept. of ISE,S]BIT Page 109

C# and .NET Programming 061S761

catch(CarIsDeadException e)

{

// Process CarIsDeadException.

}
catch(ArgumentOutOfRangeException e)

{
// Process ArgumentOutOfRangeException.

}

}

When you are authoring multiple catch blocks, you must be aware that when an
exception is

thrown, it will be processed by the “first available” catch. To illustrate exactly what the
“first available” catch means, assume you retrofitted the previous logic with an addition
catchscope that attempts to handle all exceptions beyond CarIsDeadException and
ArgumentOutOfRangeException by catching a generic System.Exception as follows:

// This code will not compile!

static void Main(string[] args)

{

try

{

for(int i = 0; 1 < 10; i++)

myCar.Accelerate (10);

}

catch (Exception e)

{
// Process all other exceptions?

}

catch (CarIsDeadException e)

{

// Process CarIsDeadException.

}
catch (ArgumentOutOfRangeException e)

{
// Process ArgumentOutOfRangeException.

}

Thus, if you wish to define acatchstatement that will handle any errors beyond
CarIsDeadException and ArgumentOutOfRangeException, you would write the following:
// This code compiles just fine.

static void Main(string[] args)

{

try

Dept. of ISE,S]BIT Page 110

C# and .NET Programming 061S761

{
for(int i = 0; 1 < 10; i++)
myCar.Accelerate (10);

}

catch (CarIsDeadException e)

{

// Process CarIsDeadException.

}
catch (ArgumentOutOfRangeException e)

{

// Process ArgumentOutOfRangeException.
}

catch (Exception e)

{
// This will now handle all other possible exceptions

// thrown from statements within the try scope.

}
}

Generic catch Statements

C# also supports a “generic” catchscope that does not explicitly receive the exception
object thrown by a given member:

// A generic catch.

static void Main(string[] args)

{

try

{

for(int 1 = 0; 1 < 10; i++)

myCar.Accelerate (10);

}

catch

{
Console.WriteLine ("Something bad happened...");

}

}

Obviously, this is not the most informative way to handle exceptions, given that you
have no way to obtain meaningful data about the error that occurred (such as the
method name, call stack, or custom message). Nevertheless, C# does allow for such a
construct.

Rethrowing Exceptions
Be aware that it is permissible for logic in a tryblock to rethrow an exception up the
call stack to the previous caller. To do so, simply make use of the throwkeyword within

Dept. of ISE,S]BIT Page 111

C# and .NET Programming 0615761

a catchblock. This passes the exception up the chain of calling logic, which can be
helpful if your catchblock is only able to partially handle the error at hand:

// Passing the buck.

static void Main(string[] args)

{

try

{

// Speed up car logic...
}

catch(CarIsDeadException e)

{

// Do any partial processing of this error and pass the buck.

// Here, we are rethrowing the incoming CarIsDeadException object.

// However, you are also free to throw a different exception if need be.
throw e;

}

5.9 The Finally Block

Atry/catchscope may also define an optional finallyblock. The motivation behind
afinallyblock is to ensure that a set of code statements will always execute, exception
(of any type) or not. To illustrate, assume you wish to always power down the car’s
radio before exiting Main (), regardless of any handled exception:

static void Main(string[] args)

{

Car myCar = new Car ("Zippy", 20);
myCar.CrankTunes (true);

try

{
// Speed up car logic.

}

catch (CarIsDeadException e)

{

// Process CarIsDeadException.

}
catch (ArgumentOutOfRangeException e)

{
// Process ArgumentOutOfRangeException.

}

catch (Exception e)

{
// Process any other Exception.

Dept. of ISE,S]BIT Page 112

C# and .NET Programming 061S761

}
finally

{

// This will always occur. Exception or not.
myCar.CrankTunes (false);

}
}

5.10 Exceptions Using Visual Studio 2005

To wrap things up, do be aware that Visual Studio 2005 provides a number of tools that
help you debug unhandled custom exceptions. Again, assume you have increased the
speed of aCar object beyond the maximum. If you were to start a debugging session
(using the Debug Start menu selection), Visual Studio automatically breaks at the
time the uncaught exception is thrown. Better yet, you are presented with a window.
5.11 Understanding Object Lifetime

When you are building your C# applications, you are correct to assume that the
managed heap will take care of itself without your direct intervention. In fact, the
golden rule of NET memory management is simple:

* Rule: Allocate an object onto the managed heap using the new keyword and forget
about it. Once “new-ed,” the garbage collector will destroy the object when it is no longer
needed. The next obvious question, of course, is, “How does the garbage collector
determine when an object is no longer needed”? The short (i.e., incomplete) answer is
that the garbage collector removes an object from the heap when it is unreachable by
any part of your code base. Assume you have a method that allocates a local Car object:
public static void MakeACar ()

{

// 1f myCar is the only reference to the Car object,

// it may be destroyed when the method returns.

Car myCar = new Car();

}
5.12The CIL of new

When the C# compiler encounters the newkeyword, it will emit a CIL newobj instruction
into the method implementation. If you were to compile the current example code and
investigate the resulting assembly using ildasm.exe, you would find the following CIL
statements within the MakeACar () method:

.method public hidebysig static void MakeACar () cil managed

{

// Code size 7 (0x7)

.maxstack 1

.locals init ([0] class SimpleFinalize.Car c)

IL 0000: newobj instance void SimpleFinalize.Car::.ctor()

IL 0005: stloc.0

IL 0006: ret

} // end of method Program: :MakeACar

Dept. of ISE,S]BIT Page 113

C# and .NET Programming 0615761

Before we examine the exact rules that determine when an object is removed from the
managed heap, let’s check out the role of the CIL newobj instruction in a bit more detail.
First, understand that the managed heap is more than just a random chunk of
memory accessed by the CLR. The .NET garbage collector is quite a tidy housekeeper
of the heap, given that it will compact empty blocks of memory (when necessary) for
purposes of optimization. To aid in this endeavor, the managed heap maintains a
pointer (commonly referred to as the next object pointer or new object pointer) that
identifies exactly where the next object will be located. These things being said, the
newob7j instruction informs the CLR to perform the following core tasks:

» Calculate the total amount of memory required for the object to be allocated
(including the necessary memory required by the type’s member variables and the
type’s base classes).

* Examine the managed heap to ensure that there is indeed enough room to host the
object to be allocated. If this is the case, the type’s constructor is called, and the caller is
ultimately returned a reference to the new object in memory, whose address just
happens to be identical to the last position of the next object pointer.

* Finally, before returning the reference to the caller, advance the next object pointer
to point to the next available slot on the managed heap.

As you are busy allocating objects in your application, the space on the managed heap
may eventually become full. When processing the newobj instruction, if the CLR
determines that the managed heap does not have sufficient memory to allocate the
requested type, it will perform a garbage collection in an attempt to free up memory.
Thus, the next rule of garbage collection is also quite simple.

* Rule: If the managed heap does not have sufficient memory to allocate a requested
object, a garbage collection will occur. When a collection does take place, the garbage
collector temporarily suspends all active threads within the current process to ensure
that the application does not access the heap during the collection process. However,
for the time being, simply regard a thread as a path of execution within a running
executable. Once the garbage collection cycle has completed, the suspended threads
are permitted to carry on their work. Thankfully, the .NET garbage collector is highly
optimized; you will seldom (if ever) notice this brief interruption in your application.

5.13 The basics of Garbage collection

When the CLR is attempting to locate unreachable objects, is does not literally
examine each and every object placed on the managed heap. Obviously, doing so
would involve considerable time, especially in larger (i.e., real-world) applications.
To help optimize the process, each object on the heap is assigned to a specific
“generation.” The idea behind generations is simple: The longer an object has existed on
the heap, the more likely it is to stay there. For example, the object implementing
Main () will be in memory until the program terminates. Conversely, objects that have
been recently placed on the heap are likely to be unreachable rather quickly (such as an
object created within a method scope). Given these assumptions, each object on the
heap belongs to one of the following generations:

* Generation 0: Identifies a newly allocated object that has never been marked for
collection

Dept. of ISE,S]BIT Page 114

C# and .NET Programming 0615761

* Generation I: Identifies an object that has survived a garbage collection (i.e., it was
marked for collection, but was not removed due to the fact that the sufficient heap
space was acquired)

* Generation 2: Identifies an object that has survived more than one sweep of the
garbage collector The garbage collector will investigate all generation 0 objects first. If
marking and sweeping these objects results in the required amount of free memory, any
surviving objects are promoted to generation 1. To illustrate how an object’s generation
affects the collection process.

5.14 The Finalization a Type, The Finalization Process

Not to beat a dead horse, but always remember that the role of the Finalize () method
is to ensure that a .NET object can clean up unmanaged resources when garbage
collected. Thus, if you are building a type that does not make use of unmanaged entities
(by far the most common case), finalization is of little use. In fact, if at all possible, you
should design your types to avoid supporting aFinalize () method for the very simple
reason that finalization takes time. When you allocate an object onto the managed
heap, the runtime automatically determines whether your object supports a custom
Finalize () method. If so, the object is marked as finalizable, and a pointer to this object
is stored on an internal queue named the finalization queue. The finalization queue is a
table maintained by the garbage collector that points to each and every object that
must be finalized before it is removed from the heap. When the garbage collector
determines it is time to free an object from memory, it examines each entry on the
finalization queue, and copies the object off the heap to yet another managed
structure termed the finalization reachable table (often abbreviated as freachable, and
pronounced “eff-reachable”). At this point, a separate thread is spawned to invoke the
Finalize () method for each object on the freachable table at the next garbage
collection. Given this, it will take at very least rwo garbage collections to truly finalize
an object. The bottom line is that while finalization of an object does ensure an
object can clean up unmanaged resources, it is still nondeterministic in nature, and
due to the extra behind-the- curtains processing, considerably slower.

5.15 Building Ad Hoc DestructionMethod

The supreme base class of .NET, System.Object, defines a virtual method named
Finalize (). The default implementation of this method does nothing whatsoever:
// System.Object

public class Object

{

protected virtual void Finalize() {}

}

When you override Finalize () for your custom classes, you establish a specific
location to perform any necessary cleanup logic for your type. Given that this member
is defined as protected, it is not possible to directly call an object’s Finalize () method.
Rather, the garbage collector will call an object’s Finalize () method (if supported)
before removing the object from memory. Of course, a call to Finalize () will

Dept. of ISE,S]BIT Page 115

C# and .NET Programming 0615761

(eventually) occur during a “natural” garbage collection or when you programmatically
force a collection via GC.Collect (). In addition, a type’s finalizer method will
automatically be called when the application domain hosting your application is
unloaded from memory. Based on your current background in .NET, you may know that
application domains (or simply AppDomains) are used to host an executable assembly
and any necessary external code libraries.

5.16 Detailing the Finalization Process

Not to beat a dead horse, but always remember that the role of the Finalize () method
is to ensure that a .NET object can clean up unmanaged resources when garbage
collected. Thus, if you are building a type that does not make use of unmanaged entities
(by far the most common case), finalization is of little use. In fact, if at all possible, you
should design your types to avoid supporting aFinalize () method for the very simple
reason that finalization takes time. When you allocate an object onto the managed
heap, the runtime automatically determines whether your object supports a custom
Finalize () method. If so, the object is marked as finalizable, and a pointer to this object
is stored on an internal queue named the finalization queue. The finalizetion queue is a
table maintained by the garbage collector that points to each and every object that
must be finalized before it is removed from the heap. When the garbage collector
determines it is time to free an object from memory, it examines each entry on the
finalization queue, and copies the object off the heap to yet another managed
structure termed the finalization reachable table (often abbreviated as freachable, and
pronounced “eff-reachable”). At this point, a separate thread is spawned to invoke the
Finalize () method for each object on the freachable table at the next garbage
collection. Given this, it will take at very least two garbage collections to truly finalize
an object. The bottom line is that while finalization of an object does ensure an
object can clean up unmanaged resources, it is still nondeterministic in nature, and
due to the extra behind-the- curtains processing, considerably slower.

5.17 The System.GC Type

The base class libraries provide a class type named System.GC that allows you to
programmatically interact with the garbage collector using a set of static members.
Now, do be very aware that you will seldom (if ever) need to make use of this type
directly in your code. Typically speaking, the only time you will make use of the
members of System.GC is when you are creating types that make use of unmanaged
resources. Table 5-1 provides a rundown of some of the more interesting members
(consult the .NET Framework 2.0 SDK Documentation for complete details).

Table 5-1. Select Members of the System.GC Type

System.GC Member Meaning in Life

AddMemoryPressure () Allow you to specify a numerical value
that represents the calling object’s
“urgency level” regarding the garbage
collection process. Be aware that these
methods should alter pressure in tandem

Dept. of ISE,S]BIT Page 116

C# and .NET Programming 0615761

and thus added.

Collect() Forces the GC to perform a garbage
collection.
CollectionCount () Returns a numerical value representing

how many times a given generation has
been swept.

GetGeneration() Returns the generation to which an
object currently belongs.
GetTotalMemory () Returns the estimated amount of memory

(in bytes) currently allocated on the
managed heap. The Boolean parameter
specifies whether the call should wait for
garbage collection to occur before

returning.

MaxGeneration system. Under Microsoft’s .NET 2.0,
there are three possible generations (0, 1,
and 2).

SuppressFinalize () Sets a flag indicating that the specified

object should not have its

Finalize () method called.
WaitForPendingFinalizers() Suspends the current thread until all

finalizable objects have been finalized.

This method is typically called directly

after invoking

Ponder the following Main () method, which illustrates select members of System.GC:
static void Main(string[] args)

{

// Print out estimated number of bytes on heap.

Console.WriteLine ("Estimated bytes on heap: {0}",
GC.GetTotalMemory(false));

// MaxGeneration is zero based, so add 1 for display purposes.
Console.WriteLine ("This OS has {0} object generations.\n",
(GC.MaxGeneration + 1));

Car refToMyCar = new Car ("Zippy", 100);
Console.WritelLine (refToMyCar.ToString());

// Print out generation of refToMyCar object.
Console.WriteLine ("Generation of refToMyCar is: {0}",
GC.GetGeneration (refToMyCar));

Console.ReadLine();

}

Dept. of ISE,S]BIT Page 117

C# and .NET Programming 0615761

Recommended Questions:

1.
2.

Explain the process of finalize object in .net environment

Write a program in c# to throw and handle following exceptions in banking application
minimum balance exception argument out of range exception

List and explain with code core members of system. Exception type

Define a method that would and sort an array of integer

List and explain core members of the system exception type.ow would you build custom
exception?

Write c# application to illustrate handling multiple exceptions.

What is meant by object life time? Describe the role of .Net garbase collection,
finalization process and Ad Hoc destruction method, with examples.

Dept. of ISE,S]BIT Page 118

C# and .NET Programming 0615761

UNIT -6
Interfaces and Collections

6.1 Defining Interfaces Using C#

6.2 Invoking Interface Members at the object Level,

6.3 Exercising the Shapes Hierarchy

6.4 Understanding Explicit Interface Implementation,

6.5 Interfaces As Polymorphic Agents,

6.6 Building Interface Hierarchies Implementation,

6.7 Interfaces Using VS .NET,understanding the IConvertible Interface,
6.8 Building a Custom Enumerator (IEnumerable and Enumerator),
6.9 Building Clone able objects (ICloneable),

6.10 Building Comparable Objects I Comparable

6.11 Exploring the system. Collections Namespace

6.12 Building a Custom Container (Retrofitting the Cars Type).

Dept. of ISE,S]BIT Page 119

C# and .NET Programming 061S761

6.1 Defining Interfaces in C#

To begin this chapter, allow me to provide a formal definition of the “interface™ type.
An interface is nothing more than a named collection of semantically related abstract
members. The specific members defined by an interface depend on the exact behavior
it is modeling. Yes, it’s true. An interface expresses a behavior that a given class or
structure may choose to support. At a syntactic level, an interface is defined using the
C# interface keyword. Unlike other .NET types, interfaces never specify a base class
(not even System.Object) and contain members that do not take an access modifier (as
all interface members are implicitly public). To get the ball rolling, here is a custom
interface defined in C#:

// This interface defines the behavior of "having points."

public interface IPointy

{
// Implicitly public and abstract.

byte GetNumberOfPoints();

}

As you can see, the ITPointy interface defines a single method. However, .NET
interface types are also able to define any number of properties. For example, you could
create the IPointy interface to use a read-only property rather than a traditional
accessor method:

// The pointy behavior as a read-only property.

public interface IPointy

{

byte Points{get;}

}

Do understand that interface types are quite useless on their own, as they are
nothing more than a named collection of abstract members. Given this, you cannot
allocate interface types as you would a class or structure:

// Ack! Illegal to "new" interface types.

static void Main(string[] args)

{

IPointy p = new IPointy(); // Compiler error!

}

Interfaces do not bring much to the table until they are implemented by a class or
structure. Here, IPointyis an interface that expresses the behavior of “having points.”
As you can tell, this behavior might be useful in the shapes hierarchy developed in
Chapter 4. The idea is simple: Some classes in the Shapes hierarchy have points (such
as the Hexagon), while others (such as the Circle) do not. If you configure Hexagon and
Triangle to implement the IPointy interface, you can safely assume that each class
now supports a common behavior, and therefore a common set of members.

6.2 Invoking Interface Members at object level in C#

When a class (or structure) chooses to extend its functionality by supporting interface
types, it does so using a comma-delimited list in the type definition. Be aware that the
direct base class must be the first item listed after the colon operator. When your class

Dept. of ISE,S]BIT Page 120

C# and .NET Programming 0615761

type derives directly from System.Object, you are free to simply list the interface(s)
supported by the class, as the C# compiler will extend your types from System.Object if
you do not say otherwise. On a related note, given that structures always derive from
System.ValueType (see Chapter 3), simply list each interface directly after the
structure definition. Ponder the following examples:

// This class derives from System.Object and

// implements a single interface.

public class SomeClass : ISomelnterface

{...}

// This class also derives from System.Object
// and implements a single interface.
public class MyClass : object, ISomeInterface

{...}

// This class derives from a custom base class
// and implements a single interface.
public class AnotherClass : MyBaseClass, ISomeInterface

{...}

// This struct derives from System.ValueType and

// implements two interfaces.

public struct SomeStruct : ISomelInterface, IPointy

{...}

Understand that implementing an interface is an all-or-nothing proposition. The
supporting type is not able to selectively choose which members it will implement.
Given that the IPointy interface defines a single property, this is not too much of a
burden. However, if you are implementing an interface that defines ten members, the
type is now responsible for fleshing out the details of the ten abstract entities. In any
case, here is the implementation of the updated shapes hierarchy (note the new
Triangle class type):

// Hexagon now implements IPointy.

public class Hexagon : Shape, IPointy

{

public Hexagon(){ }

public Hexagon (string name) : base(name){ }

public override void Draw ()

{ Console.WriteLine("Drawing {0} the Hexagon", PetName); }

// IPointy Implementation.
public byte Points

{

get { return 6; }

}

}

// New Shape derived class named Triangle.

Dept. of ISE,S]BIT Page 121

C# and .NET Programming 0615761

public class Triangle : Shape, IPointy

{

public Triangle() { }

public Triangle(string name) : base(name) { }

public override void Draw ()

{ Console.WriteLine ("Drawing {0} the Triangle", PetName); }

// IPointy Implementation.
public byte Points

{
get { return 3; }

}
}

6.3 Excercising Shape Hierarchy

IPointy ¥ :’ Shape 3 \i
Inkerface i Class H
i .'

?Ipointy ?Ipointy
Triangle £3 Hexagon Circle ¥
Class Class Class

€<

6.4Understanding Explicit Interface Implementation

In our current definition of IDraw3D, we were forced to name its sole method

Draw3D () in order to avoid clashing with the abstract Draw () method defined in the
Shape base class. While there is nothing horribly wrong with this interface definition, a
more natural method name would simply be Draw () :

// Refactor method name from "Draw3D" to "Draw".

public interface IDraw3D

{

void Draw () ;

}

If we were to make such a change, this would require us to also update our
implementation of DrawIn3D().

public static void DrawIn3D(IDraw3D itf3d)

{

Console.WriteLine ("-> Drawing IDraw3D compatible type");

itf3d.Draw();

}

Now, assume you have defined a new class named Line that derives from the abstract
Shape

class and implements IDraw3D (both of which now define an identically named abstract
Draw () method):

Dept. of ISE,S]BIT Page 122

C# and .NET Programming 0615761

// Problems? It depends...

public class Line : Shape, IDraw3D

{

public override void Draw ()

{

Console.WriteLine ("Drawing a line...");
}

}

6.5 Interface as Polymorphic Agent

Explicit interface implementation can also be very helpful whenever you are
implementing a number of interfaces that happen to contain identical members. For
example, assume you wish to create a class that implements all the following new
interface types:

// Three interfaces each define identically named methods.

public interface IDraw

{

void Draw();

}

public interface IDrawToPrinter

{

void Draw();

}

If you wish to build a class named SuperImage that supports basic rendering (IDraw), 3D
rendering (IDraw3D), as well as printing services (IDrawToPrinter), the only way to
provide unique implementations for each method is to use explicit interface
implementation:

// Not deriving from Shape, but still injecting a name clash.

public class SuperImage : IDraw, IDrawToPrinter, IDraw3D

{

void IDraw.Draw()
{ /* Basic drawing logic. */ }

void IDrawToPrinter.Draw ()
{ /* Printer logic. */ }

void IDraw3D.Draw()
{ /* 3D rendering logic. */ }
}

6.6 Building Interface Hierarchies

To continue our investigation of creating custom interfaces, let’s examine the topic
of interface hierarchies. Just as a class can serve as a base class to other classes (which
can in turn function as base classes to yet another class), it is possible to build
inheritance relationships among interfaces. As you might expect, the topmost

Dept. of ISE,S]BIT Page 123

C# and .NET Programming 0615761

interface defines a general behavior, while the most derived interface defines more
specific behaviors. To illustrate, ponder the following interface hierarchy:

// The base interface.

public interface IDrawable

{ void Draw();}

public interface IPrintable : IDrawable
{ void Print(); }

public interface IMetaFileRender : IPrintable

{ void Render(); }

Now, if a class wished to support each behavior expressed in this interface hierarchy, it
would derive from the nth-most interface (IMetaFileRender in this case). Any methods
defined by the base interface(s) are automatically carried into the definition. For
example:

// This class supports IDrawable, IPrintable, and IMetaFileRender.

public class SuperImage : IMetaFileRender

{

public void Draw ()

{ Console.WritelLine("Basic drawing logic."); }

public void Print ()
{ Console.WriteLine ("Draw to printer."); }

public void Render ()

{ Console.WriteLine ("Render to metafile."); }

}

Here is some sample usage of exercising each interface from aSuperImage instance:
// Exercise the interfaces.

static void Main(string[] args)

{

SuperImage si = new SuperImage();

// Get IDrawable.
IDrawable itfDraw = (IDrawable)si;
itfDraw.Draw () ;

// Now get ImetaFileRender, which exposes all methods up
// the chain of inheritance.

if (itfDraw is IMetaFileRender)

{

IMetaFileRender itfMF = (IMetaFileRender)itfDraw;
itfMF.Render () ;

1tfMF.Print () ;

}

Console.ReadLine();

}

Dept. of ISE,S]BIT Page 124

C# and .NET Programming 0615761

6.7 Interfaces Using VS.NET,Understanding the IConvertable Interface
Although interface-based programming is a very powerful programming technique,
implementing interfaces may entail a healthy amount of typing. Given that interfaces
are a named set of abstract members, you will be required to type in the stub code
(and implementation) for each interface method on each class that supports the
behavior.

As you would hope, Visual Studio 2005 does support various tools that make the task of
implementing interfaces less burdensome. Assume you wish to implement the

ICar interface on a new class named MiniVan. You will notice when you complete
typing the interface’s name (or when you position the mouse cursor on the interface
name in the code window), the first letter is underlined Once you select options, you
will see that Visual Studio 2005 has built generated stub code (within a named code
region) for you to update (note that the default implementation throws a
System.Exception).

namespace IFaceHierarchy

{

public class MiniVan : ICar

{

public MiniVan()

{

}

#region ICar Members
public void Drive()

{

new Exception ("The method or operation is not implemented.");

}

#endregion

}

}

Now that you have drilled into the specifics of building and implementing custom
interfaces, the remainder of the chapter examines a number of predefined interfaces
contained within the .NET base class libraries.

6.8Building Enumerable Types (IEnumerable and

IEnumerator)

To illustrate the process of implementing existing .NET interfaces, let’s first examine
the role of IEnumerable and TEnumerator. Assume you have developed a class named
Garage that contains a set of individual Car types (see Chapter 6) stored within
aSystem.Array:

// Garage contains a set of Car objects.

public class Garage

{

private Car[] carArray;

// Fill with some Car objects upon startup.

Dept. of ISE,S]BIT Page 125

C# and .NET Programming 061S761

public Garage()
{

carArray = new Car([4];

carArray[0] = new Car ("Rusty", 30);
carArray[l] = new Car("Clunker", 55);
carArray[2] = new Car("Zippy", 30);
carArray[3] = new Car ("Fred", 30);

}

}

Ideally, it would be convenient to iterate over the Garage object’s subitems using the C#
foreach construct:

// This seems reasonable...

public class Program

{

static void Main(string[] args)

{

Garage carlLot = new Garage();

// Hand over each car in the collection?

foreach (Car c¢ in carLot)

{

Console.WritelLine("{0} is going {1} MPH",

c.PetName, c.CurrSpeed);

}

}

}

Sadly, the compiler informs you that the Garage class does not implement a method
named GetEnumerator () . This method is formalized by the IEnumerable interface,
which is found lurking within the System.Collections namespace. Objects that
support this behavior advertise that they are able to expose contained subitems to the
caller:

// This interface informs the caller

// that the object's subitems can be enumerated.

public interface IEnumerable

{

IEnumerator GetEnumerator();

}

As you can see, the GetEnumerator () method returns a reference to yet another interface
named System.Collections.IEnumerator. This interface provides the infrastructure to
allow the caller to traverse the internal objects contained by the IEnumerable-
compatible container:

// This interface allows the caller to

// obtain a container's subitems.

public interface IEnumerator

{

bool MoveNext (); // Advance the internal position of the cursor.

Dept. of ISE,S]BIT Page 126

C# and .NET Programming 061S761

object Current { get;} // Get the current item (read-only property) .
void Reset (); // Reset the cursor before the first member.

}

If you wish to update the Garage type to support these interfaces, you could take the
long road and implement each method manually. While you are certainly free to
provide customized versions of GetEnumerator (),MoveNext (),Current, and Reset (),
there is a simpler way. As the System.Array type (as well as many other types) already
implements TEnumerable and IEnumerator, you can simply delegate the request to the
System.Array as follows:

using System.Collections;

public class Garage : IEnumerable

{
// System.Array already implements IEnumerator!

private Car[] carArray;

public Garage()
{

carArray = new Car[4];

carArray[0] = new Car ("FeeFee", 200, 0);
carArray[l] = new Car("Clunker", 90, 0);
carArray[2] = new Car ("Zippy", 30, 0);
carArray[3] = new Car("Fred", 30, 0);

}

public IEnumerator GetEnumerator ()

{

// Return the array object's IEnumerator.

return carArray.GetEnumerator();

}

}

Once you have updated your Garage type, you can now safely use the type within the C#
foreach construct. Furthermore, given that the GetEnumerator () method has been
defined publicly, the object user could also interact with the IEnumerator type:

// Manually work with IEnumerator.

IEnumerator i = carLot.GetEnumerator();

i.MoveNext ();

Car myCar = (Car)i.Current;

Console.WriteLine ("{0} is going {1} MPH", myCar.PetName, myCar.CurrSpeed);
If you would prefer to hide the functionality of IEnumerable from the object level,
simply make use of explicit interface implementation:

public IEnumerator IEnumerable.GetEnumerator ()

{

// Return the array object's IEnumerator.
return carArray.GetEnumerator();

}

Dept. of ISE,S]BIT Page 127

C# and .NET Programming 0615761

6.9Building Cloneable Objects (ICloneable)

As you recall from Chapter 3, System.Objectdefines a member named
MemberwiseClone (). This method is used to obtain a shallow copy of the current object.
Object users do not call this method directly (as it is protected); however, a given object
may call this method itself during the cloning process. To illustrate, assume you have a
class named Point:

// A class named Point.

public class Point

{

// Public for easy access.

public int x, y;

public Point (int x, int y) { this.x = x; this.y = y;}

public Point(){}

// Override Object.ToString().

public override string ToString()

{ return string.Format ("X = {0}; Y = {1}", %, v); }

}

Given what you already know about reference types and value types (Chapter 3), you
are aware

that if you assign one reference variable to another, you have two references

pointing to the same object in memory. Thus, the following assignment operation
results in two references to the same Point object on the heap; modifications using
either reference affect the same object on the heap:

static void Main(string[] args)

{

// Two references to same object!

Point pl = new Point (50, 50);

Point p2 = pl;

p2.x = 0;

Console.WriteLine (pl);

Console.WriteLine (p2);

}

When you wish to equip your custom types to support the ability to return an identical
copy of

itself to the caller, you may implement the standard ICloneable interface. This type
defines a single method named Clone ():

public interface ICloneable

{

object Clone();

}

Obviously, the implementation of the Clone () method varies between objects. However,
the basic functionality tends to be the same: Copy the values of your member variables
into a new object instance, and return it to the user. To illustrate, ponder the following
update to the Point class:

// The Point now supports "clone-ability."

Dept. of ISE,S]BIT Page 128

C# and .NET Programming 0615761

public class Point : ICloneable

{

public int x, y;

public Point () { }

public Point (int x, int y) { this.x = x; this.y = y;}

// Return a copy of the current object.
public object Clone()
{ return new Point(this.x, this.y); }

public override string ToString()

{ return string.Format ("X = {0}; Y = {1}", x, v); }

}

In this way, you can create exact stand-alone copies of the Point type, as illustrated
by the following code:

static void Main(string[] args)

{

// Notice Clone() returns a generic object type.

// You must perform an explicit cast to obtain the derived type.
Point p3 = new Point (100, 100);

Point p4 = (Point)p3.Clone();

// Change p4.x (which will not change p3.x).
pd.x = 0;

// Print each object.

Console.WriteLine (p3);

Console.WriteLine (p4);

}

While the current implementation of Point fits the bill, you can streamline things just a
bit.

Because the Point type does not contain reference type variables, you could simplify
the implementation of the Clone () method as follows:

public object Clone()

{
// Copy each field of the Point member by member.

return this.MemberwiseClone();

}

Be aware, however, that if the Point did contain any reference type member variables,
Member-

wiseClone () will copy the references to those objects (aka a shallow copy). If you wish
to support

a true deep copy, you will need to create a new instance of any reference type variables
during thecloning process.

6.10 Building Comparable Objects (IComparable)

Dept. of ISE,S]BIT Page 129

C# and .NET Programming 0615761

The System.IComparable interface specifies a behavior that allows an object to be
sorted based on

some specified key. Here is the formal definition:

// This interface allows an object to specify its

// relationship between other like objects.

public interface IComparable(

int CompareTo (object 0);

}

Let’s assume you have updated the Car class to maintain an internal ID number
(represented by a simple integer named carID) that can be set via a constructor
parameter and manipulated

using a new property named ID. Here are the relevant updates to the Car type:
public class Car

{

private int carID;

public int ID

{

get { return carID; }

set { carID = value; }

}

public Car(string name, int currSp, int id)
{

currSpeed = currSp;

petName = name;

carID = id;

}

}

Object users might create an array of Car types as follows:
static void Main(string[] args)

{

// Make an array of Car types.

Car[] myAutos = new Car[5];

myAutos[0] = new Car ("Rusty", 80, 1);
myAutos[1l] = new Car("Mary", 40, 234);
myAutos[2] = new Car ("Viper", 40, 34);
myAutos[3] = new Car("Mel", 40, 4);

myAutos[4] = new Car ("Chucky", 40, 5);

}

As you recall, the System.Array class defines a static method named Sort (). When you
invoke

this method on an array of intrinsic types (int, short, string, etc.), you are able to
sort the items in the array in numerical/alphabetic order as these intrinsic data

types implement IComparable. However, what if you were to send an array of

Car types into the Sort () method as follows?

Dept. of ISE,S]BIT Page 130

C# and .NET Programming 0615761

// Sort my cars?

Array.Sort (myAutos) ;

If you run this test, you would find that an ArgumentExceptionexception is thrown by the
runtime,

with the following message: “At least one object must implement IComparable.” When
you build custom types, you can implement IComparableto allow arrays of your types to
be sorted. When you flesh out the details of CompareTo (), it will be up to you to decide
what the baseline of the ordering operation will be. For the Car type, the internal
carIDseems to be the most logical candidate:

// The iteration of the Car can be ordered

// based on the CarID.

public class Car : IComparable

{

// IComparable implementation.

int IComparable.CompareTo (object obj) {
Car temp = (Car)obij;

if (this.carID > temp.carID)

return 1;

if (this.carID < temp.carID)

return -1;

else

return 0;

}
}

6.11 Exploring The Interfaces of the System.Collections Namespace

The most primitive container construct would have to be our good friend System.Array.
As you have already seen in Chapter 3, this class provides a number of services (e.g.,
reversing, sorting, clearing, and enumerating). However, the simple Arrayclass has a
number of limitations, most notably it does not dynamically resize itself as you add
or clear items. When you need to contain types in a more flexible container, you may
wish to leverage the types defined within the System.Collections namespace (or as
discussed in Chapter 10, the System.Collections.Generic namespace). The
System.Collections namespace defines a number of interfaces (some of which you
have already implemented during the course of this chapter). As you can guess, a
majority of the collection classes implement these interfaces to provide access to their
contents. Table 7-2 gives a breakdown of the core collection-centric interfaces.

Table 7-2. Interfaces of System.Collections

System.Collections Interface Meaning in Life

ICollection Defines generic characteristics (e.g.,
count and thread safety) for a collection
type.

Dept. of ISE,S]BIT Page 131

C# and .NET Programming 061S761

IEqualityComparer Defines methods to support the
comparison of objects for equality.

IDictionary Allows an object to represent its
contents using name/value pairs.

IDictionaryEnumerator Enumerates the contents of a type
supporting IDictionary.

IEnumerable Returns the IEnumerator interface for a
given object.

IEnumerator Generally supports foreach-style
iteration of subtypes.

IHashCodeProvider Returns the hash code for the

implementing type using a customized
hash algorithm.

IKeyComparer (This interface is new to .NET 2.0.)
Combines the functionality of
IComparer and IHashCodeProvider to
allow objects to be compared in a
“hash-code-compatible manner” (e.g.,
if the objects are indeed equal, they
must also return the same hash code
value).

IList Provides behavior to add, remove, and
index items in a list of objects. Also,
this interface defines members to
determine whether the implementing
collection type is read-only and/or a
fixed-size container.

6.11 Building a Custom container Retrofitting the Car Type with
Delegates

Clearly, the previous SimpleDelegate example was intended to be purely illustrative
in nature, given that there would be no reason to build a delegate simply to add two
numbers. Hopefully, however, this example demystifies the process of working with
delegate types. To provide a more realistic use of delegate types, let’s retrofit our

Car type to send the Explodedand AboutToBlow notifications using .NET delegates
rather than a custom callback interface. Beyond no longer implementing
IEngineEvents, here are the steps we will need to take:

* Define the AboutToBlow and Exploded delegates.

* Declare member variables of each delegate type in the Car class.

* Create helper functions on the Car that allow the caller to specify the methods
maintained by the delegate member variables.

» Update the Accelerate () method to invoke the delegate’s invocation list under the
correct circumstances. Ponder the following updated Car class, which addresses the
first three points:

Dept. of ISE,S]BIT Page 132

C# and .NET Programming 061S761

public class Car

{

// Define the delegate types.

public delegate void AboutToBlow (string msg);
public delegate void Exploded (string msg);

// Define member variables of each delegate type.
private AboutToBlow almostDeadList;
private Exploded explodedList;

// Add members to the invocation lists using helper methods.
public void OnAboutToBlow (AboutToBlow clientMethod)

{ almostDeadList = clientMethod; }

public void OnExploded(Exploded clientMethod)

{ explodedList = clientMethod; }

}

Dept. of ISE,S]BIT Page 133

C# and .NET Programming 0615761

Recommended questions :

1.
2.
3.

What is an interface? why they are used in c# ?.
Write a c# program is contain interface.
What is a delegate? Differentiate between synchronous and asynchronous delegate, with
examples.10 m
Write a complete c¢# program to calculate and display simple interest by writing appropriate
methods which could be called through delegate method of programmining.
Which is the alternate approach to support multiple inheritance? List its major features.
Briefly explain, with an example,explicit interface implementation
Write a program in C# to accept two strings and perform the following operations?
i) copy string? to string 3
i) check string 1 ends with ’ENGG” or not. If it is true, search character ‘a’ in string 3.
ii1) insert “VTU” in sting 2 at position 6 and display it. SYSTEM

Dept. of ISE,S]BIT Page 134

C# and .NET Programming 061S761

UNIT 7
Callback Interfaces, Delegates, and Events

7.1Understanding Callback Interfaces,

7.2Understanding the .NET Delegate Type,

7.3 Members of System. Multicast Delegate, The Simplest Possible
Delegate Example, Building More a Elaborate Delegate Example

7.4 Understanding Asynchronous Delegates,

7.5 Understanding (and Using) Events

7.6 The Advances Keywords of C#, A Catalog of C# Keywords

7.7 Building a Custom Indexer, A Variation of the Cars Indexer Internal
Representation of Type Indexer

7.8 Using C# Indexer from VB .NET. Overloading operators, The Internal
Representation of Overloading Operators, The Internal Representations
of Customs Conversion Routines

Dept. of ISE,S]BIT Page 135

C# and .NET Programming 0615761

7.1 Understanding Callback Interfaces

As you have seen in the previous chapter, interfaces define a behavior that may be
supported by various types in your system. Beyond using interfaces to establish
polymorphism, interfaces may also be used as a callback mechanism. This
technique enables objects to engage in a two-way conversation using a common
set of members. To illustrate the use of callback interfaces, let’s update the now
familiar Car type in such a way that it is able to inform the caller when it is about to
explode (the current speed is 10 miles below the maximum speed) and has
exploded (the current speed is at or above the maximum speed). The ability to send
and receive these events will be facilitated with a custom interface named
IEngineEvents:

// The callback interface.

public interface IEngineEvents

{

void AboutToBlow (string msg);

void Exploded(string msg);

}

Event interfaces are not typically implemented directly by the object directly
interested in receiving the events, but rather by a helper object called a sink object.
The sender of the events (the Cartype in this case) will make calls on the sink under
the appropriate circumstances. Assume the sink class is called CarEventSink, which
simply prints out the incoming messages to the console. Beyond this point, our sink
will also maintain a string that identifies its friendly name:

// Car event sink.

public class CarEventSink : IEngineEvents

{

private string name;

public CarEventSink () {}

public CarEventSink(string sinkName)

{ name = sinkName; }

public void AboutToBlow (string msg)

{ Console.WriteLine("{0} reporting: {1}", name, msqg); }
public void Exploded(string msq)
{ Console.WriteLine("{0} reporting: {1}", name, msqg); }

}

Now that you have a sink object that implements the event interface, your next task
is to pass a reference to this sink into the Car type. The Car holds onto the reference
and makes calls back on the sink when appropriate. In order to allow the Car to
obtain a reference to the sink, we will need to add a public helper member to the

Car type that we will call Advise (). Likewise, if the caller wishes to detach from the
event source, it may call another helper method on the Car type named Unadvise ().
Finally, in order to allow the caller to register multiple event sinks (for the purposes

Dept. of ISE,S]BIT Page 136

C# and .NET Programming 0615761

of multicasting), the Car now maintains an ArrayList to represent each outstanding
connection:

// This Car and caller can now communicate

// using the IEngineEvents interface.

public class Car

{

// The set of connected sinks.
Arraylist clientSinks = new ArraylList();

// Attach or disconnect from the source of events.
public void Advise (IEngineEvents sink)
{ clientSinks.Add(sink); }

public void Unadvise (IEngineEvents sink)
{ clientSinks.Remove (sink); }

}

To actually send the events, let’s update the Car.Accelerate () method to iterate over the
list of connections maintained by the ArrayListand fire the correct notification when
appropriate (note the Car class now maintains aBoolean member variable named
carIsDeadto represent the engine’s state):

// Interface-based event protocol!

class Car

{

// Is the car alive or dead?
bool carIsDead;

public void Accelerate (int delta)

{

// 1f the car is 'dead', send Exploded event to each sink.
if (carIsDead)

{

foreach (IEngineEvents e in clientSinks)

e.Exploded("Sorry, this car is dead...");

}

else

{
currSpeed += delta;

// Send AboutToBlow event.

if (10 == maxSpeed - currSpeed)

{

foreach (IEngineEvents e in clientSinks)
e.AboutToBlow ("Careful buddy! Gonna blow!");
}

Dept. of ISE,S]BIT Page 137

C# and .NET Programming 061S761

if (currSpeed >= maxSpeed)

carIsDead = true;

else

Console.WriteLine ("\tCurrSpeed = {0} ", currSpeed);

}

}

Here is some client-side code, now making use of a callback interface to listen to the
Car events:

// Make a car and listen to the events.

public class CarApp

{

static void Main(string[] args)

{

Console.WriteLine ("***** Interfaces as event enablers ***x**");
Car cl = new Car("SlugBug", 100, 10);

// Make sink object.
CarEventSink sink = new CarEventSink();

// Pass the Car a reference to the sink.
cl.Advise(sink);

// Speed up (this will trigger the events).
for(int 1 = 0; 1 < 10; i++)
cl.Accelerate(20);

// Detach from event source.
cl.Unadvise (sink);
Console.ReadLine();

}

}

7.2 Understanding the .NET Delegate Type

Before formally defining .NET delegates, let’s gain a bit of perspective. Historically
speaking, the Windows API makes frequent use of C-style function pointers to create
entities termed callback functions or simply callbacks. Using callbacks, programmers
were able to configure one function to report back to (call back) another function in
the application. The problem with standard C-style callback functions is that they
represent little more than a raw address in memory. Ideally, callbacks could be
configured to include additional type-safe information such as the number of (and types
of) parameters and the return value (if any) of the method pointed to. Sadly, this is not
the case in traditional callback functions, and, as you may suspect, can therefore be a
frequent source of bugs, hard crashes, and other runtime disasters. Nevertheless,
callbacks are useful entities. In the .NET Framework, callbacks are still possible, and
their functionality is accomplished in a much safer and more object oriented

Dept. of ISE,S]BIT Page 138

C# and .NET Programming 0615761

manner using delegates. In essence, a delegate is a type-safe object that points to
another method (or possibly multiple methods) in the application, which can be
invoked at a later time. Specifically speaking, a delegate type maintains three
important pieces of information:

* The name of the method on which it makes calls

* The arguments (if any) of this method

* The return value (if any) of this method

Defining a Delegate in C#

When you want to create a delegate in C#, you make use of the delegate

keyword. The name of your delegate can be whatever you desire. However, you must
define the delegate to match the signature of the method it will point to. For example,
assume you wish to build a delegate named BinaryOp that can point to any method that
returns an integer and takes two integers as input parameters:

// This delegate can point to any method,

// taking two integers and returning an

// integer.

public delegate int BinaryOp(int x, int y);

When the C# compiler processes delegate types, it automatically generates a sealed
class deriving from System.MulticastDelegate. This class (in conjunction with its base
class, System.Delegate) provides the necessary infrastructure for the delegate to hold
onto the list of methods to be invoked at a later time. For example, if you examine the
BinaryOp delegate using ildasm.exe

7.3 The System.MulticastDelegate and System.Delegate Base Classes
So, when you build a type using the C# delegate keyword, you indirectly declare a
class type that derives from System.MulticastDelegate . This class provides
descendents with access to a list that contains the addresses of the methods
maintained by the delegate type, as well as several additional methods (and a few
overloaded operators) to interact with the invocation list. Here are some select
members of System.MulticastDelegate:

[Serializable]

public abstract class MulticastDelegate : Delegate

{
// Methods

public sealed override Delegate[] GetInvocationList();

// Overloaded operators
public static bool operator ==(MulticastDelegate dl, MulticastDelegate d2);
public static bool operator !=(MulticastDelegate dl, MulticastDelegate d2);

// Fields
private IntPtr invocationCount;
private object invocationList;

}

Dept. of ISE,S]BIT Page 139

C# and .NET Programming 0615761

System.MulticastDelegate obtains additional functionality from its parent class,
System.

Delegate. Here is a partial snapshot of the class definition:

[Serializable, ClassInterface(ClassInterfaceType.AutoDual)]

public abstract class Delegate : ICloneable, ISerializable

{

// Methods

public static Delegate Combine (params Delegate[] delegates);
public static Delegate Combine (Delegate a, Delegate b);

public virtual Delegate[] GetInvocationList();

public static Delegate Remove (Delegate source, Delegate value);
public static Delegate RemoveAll (Delegate source, Delegate value);

// Overloaded operators
public static bool operator ==(Delegate dl, Delegate d2);
public static bool operator !=(Delegate dl, Delegate d2);

// Properties

public MethodInfo Method { get; }

public object Target { get; }

}

Now, remember that you will never directly derive from these base classes and can
typically concern yourself only with the members documented in Table 8-1.

Table 8-1. Select Members of System.MultcastDelegate/System.Delegate

Inherited Member Meaning in Life

Method This property returns
a System.Reflection.MethodInfo type
that represents details of a static
method that is maintained by the
delegate.

Target If the method to be called is defined at
the object level (rather than a static
method), Targetreturns an object that
represents the method maintained by
the delegate. If the value returned from
Target equals null, the method to be
called is a static member.

Combine () In C#, you trigger this method using
the overloaded += operator as a
shorthand notation.

GetInvocationList () This method returns an array of
System.Delegate types, each
representing a particular method that
may be invoked.

Dept. of ISE,S]BIT Page 140

C# and .NET Programming 061S761

Remove () These static methods removes a
method (or all methods) from the
RemoveAll () invocation list.
In C#, the Remove () method can be
called indirectly using the overloaded
-= operator.

The Simplest Possible Delegate Example

Delegates can tend to cause a great deal of confusion when encountered for the first
time. Thus, to get the ball rolling, let’s take a look at a very simple example that leverages
our BinaryOpdelegate type. Here is the complete code, with analysis to follow:
namespace SimpleDelegate

{

// This delegate can point to any method,

// taking two integers and returning an

// integer.

public delegate int BinaryOp(int x, int y);

// This class contains methods BinaryOp will
// point to.

public class SimpleMath

{

public static int Add(int x, int y)

{ return x + y; }

public static int Subtract (int x, int y)

{ return x - y; }

}

class Program
{
static void Main(string[] args)

{

Console.WriteLine ("***** Simple Delegate Example ****x*\n");

// Create a BinaryOp object that

// "points to" SimpleMath.Add() .

BinaryOp b = new BinaryOp (SimpleMath.Add);

// Invoke Add() method using delegate.

Console.WriteLine ("10 + 10 is {0}", b (10, 10));

Console.ReadLine ();

}

}

}

Again notice the format of the BinaryOp delegate, which can point to any method taking
two integers and returning an integer. Given this, we have created a class named
SimpleMath, which defines two static methods that (surprise, surprise) match the pattern

Dept. of ISE,S]BIT Page 141

C# and .NET Programming 061S761

defined by the BinaryOpdelegate. When you want to insert the target method to a given
delegate, simply pass in the name of the method to the delegate’s constructor. At this
point, you are able to invoke the member pointed to using a syntax that looks like a
direct function invocation:

// Invoke() is really called here!

Console.WriteLine ("10 + 10 is {0}", b (10, 10));

Under the hood, the runtime actually calls the compiler-generated Invoke () method.
You can verify this fact for yourself if you open your assembly in ildasm.exeand
investigate the CIL code within the Main () method:

.method private hidebysig static void Main(string[] args) cil managed

{

.locals init ([0] class SimpleDelegate.BinaryOp D)
ldftn int32 SimpleDelegate.SimpleMath::Add(int32, int32)

newobj instance void SimpleDelegate.BinaryOp::.ctor(object, native int)stloc.0
ldstr "10 + 10 is {O}"

ldloc.0

ldc.id.s 10

ldc.id.s 10

callvirt instance int32 SimpleDelegate.BinaryOp::Invoke (int32, int32)

}

Recall that .NET delegates (unlike C-style function pointers) are type safe. Therefore, if
you attempt to pass a delegate a method that does not “match the pattern,” you receive
a compile-time error. To illustrate, assume the SimpleMathclass defines an additional
method named SquareNumber () :

public class SimpleMath

{

public static int SquareNumber (int a)

{ return a * a; }

}

Given that the BinaryOp delegate can only point to methods that take two integers and

return an integer, the following code is illegal and will not compile:
// Error! Method does not match delegate pattern!
BinaryOp b = new BinaryOp (SimpleMath.SquareNumber) ;

A More Elaborate Delegate Example

To illustrate a more advanced use of delegates, let’s begin by updating the Car class to
include two new Boolean member variables. The first is used to determine whether
your automobile is due for a wash (isDirty); the other represents whether the car in
question is in need of a tire rotation (shouldRotate). To enable the object user to
interact with this new state data, Car also defines some additional properties and an
updated constructor. Here is the story so far:

Dept. of ISE,S]BIT Page 142

C# and .NET Programming 0615761

// Are we in need of a wash? Need to rotate tires?
private bool isDirty;
private bool shouldRotate;

// Extra params to set bools.
public Car(string name, int max, int curr,
bool washCar, bool rotateTires)

{

isDirty = washCar;

shouldRotate = rotateTires;

}

public bool Dirty

{

get{ return isDirty; }

set{ isDirty = value; }

}

public bool Rotate

{

get{ return shouldRotate; }

set{ shouldRotate = value; }

}

}

Now, also assume the Car type nests a new delegate, CarDelegate:
// Car defines yet another delegate.
public class Car

{

// Can call any method taking a Car as
// a parameter and returning nothing.
public delegate void CarDelegate (Car c);

}

Here, you have created a delegate named CarDelegate. The CarDelegate type
represents “some function” taking aCar as a parameter and returning void.

7.5 Understanding C# Events

Delegates are fairly interesting constructs in that they enable two objects in memory to
engage in a two-way conversation. As you may agree, however, working with delegates
in the raw does entail a good amount of boilerplate code (defining the delegate,
declaring necessary member variables, and creating custom
registration/unregistration methods). Because the ability for one object to call back to
another object is such a helpful construct, C# provides the event keyword to lessen the
burden of using delegates in the raw. When the compiler processes the

event keyword, you are automatically provided with registration and unregistration
methods as well as any necessary member variable for your delegate types. In this
light, the event keyword is little more than syntactic sugar, which can be used to save
you some typing time. Defining an event is a two-step process. First, you need to

Dept. of ISE,S]BIT Page 143

C# and .NET Programming 061S761

define a delegate that contains the methods to be called when the event is fired. Next,

you declare the events (using the C# event keyword) in terms of the related delegate. In
a nutshell, defining a type that can send events entails the following pattern (shown in
pseudo-code):

public class SenderOfEvents

{
public delegate retval AssociatedDelegate (args);
public event AssociatedDelegate NameOfEvent;

}

The events of the Car type will take the same name as the previous delegates
(AboutToBlow and Exploded). The new delegate to which the events are associated will
be called CarEventHandler. Here are the initial updates to the Car type:

public class Car

{

// This delegate works in conjunction with the
// Car's events.
public delegate void CarEventHandler (string msg);

// This car can send these events.
public event CarEventHandler Exploded;
public event CarEventHandler AboutToBlow;

}

Sending an event to the caller is as simple as specifying the event by name as well as
any required parameters as defined by the associated delegate. To ensure that the
caller has indeed registered with event, you will want to check the event against a null
value before invoking the delegate’s method set. These things being said, here is the
new iteration of the Car’s Accelerate () method: public void Accelerate (int delta)

{
// If the car is dead, fire Exploded event.

if (carIsDead)

{

if (Exploded != null)

Exploded ("Sorry, this car is dead...");
}

else

{

currSpeed += delta;

// Almost dead?
if (10 == maxSpeed - currSpeed
&& AboutToBlow != null)

{
AboutToBlow ("Careful buddy! Gonna blow!");

}

Dept. of ISE,S]BIT Page 144

C# and .NET Programming 0615761

// Still OK!

if (currSpeed >= maxSpeed)

carIsDead = true;

else

Console.WriteLine ("->CurrSpeed = {0}", currSpeed);
}

}
With this, you have configured the car to send two custom events without the need to

define custom registration functions. You will see the usage of this new automobile in
just a moment, but first, let’s check the event architecture in a bit more detail.

7.6 The Advanced Keywords of C#,A Catalog of C# keywords

To close this chapter, you’ll examine some of the more esoteric C# keywords:

* checked/unchecked

* unsafe/stackalloc/fixed/sizeof

To start, let’s check out how C# provides automatic detection of arithmetic overflow and
underflow conditions using the checked and unchecked keywords.

The checked Keyword

As you are no doubt well aware, each numerical data type has a fixed upper and lower
limit (which may be obtained programmatically using the MaxValue and

MinValue properties). Now, when you are performing arithmetic operations on a specific
type, it is very possible that you may accidentally over- flow the maximum storage of the
type (i.e., assign a value that is greater than the maximum value) or underflow the
minimum storage of the type (i.e., assign a value that is less than the minimum value).
To keep in step with the CLR, I will refer to both of these possibilities collectively as
“overflow.” (As you will see, checked overflow and underflow conditions result in
System.OverflowExceptiontype. There is no System.UnderflowExceptiontype in the base
class libraries.) To illustrate the issue, assume you have created two System.Bytetypes (a
C# byte), each of which has been assigned a value that is safely below the maximum
(255). If you were to add the values of these types (casting the resulting integer as a
byte), you would assume that the result would be the exact sum of each member:
namespace CheckedUnchecked

{

class Program

{

static void Main(string[] args)

{

// Overflow the max value of a System.Byte.

Console.WriteLine ("Max value of byte is {0}.", byte.MaxValue);
Console.WriteLine ("Min value of byte is {0}.", byte.MinValue);

byte bl = 100;

byte b2 = 250;

byte sum = (byte) (bl + b2);

Dept. of ISE,S]BIT Page 145

C# and .NET Programming 0615761

// sum should hold the value 350, however...
Console.WriteLine("sum = {0}", sum);
Console.ReadLine () ;

}

}

}

If you were to view the output of this application, you might be surprised to find that
sum contains the value 94 (rather than the expected 350). The reason is simple. Given
that a System.Byte can hold a value only between 0 and 255 (inclusive, for a grand total
of 256 slots), sumnow contains the overflow value (350 — 256 = 94). As you have just
seen, if you take no corrective course of action, overflow occurs without exception. At
times, this hidden overflow may cause no harm whatsoever in your project. Other
times, this loss of data is completely unacceptable. To handle overflow or underflow
conditions in your application, you have two options. Your first choice is to leverage
your wits and programming skills to handle all overflow conditions manually. Assuming
you were indeed able to find each overflow condition in your program, you could
resolve the previous overflow error as follows:

// Store sum in an integer to prevent overflow.

byte bl = 100;

byte b2 = 250;

int sum = bl + b2;

Of course, the problem with this technique is the simple fact that you are human, and
even your best attempts may result in errors that have escaped your eyes. Given this,
C# provides the checked keyword. When you wrap a statement (or a block of
statements) within the scope of the checked key- word, the C# compiler emits specific
CIL instructions that test for overflow conditions that may result when adding,
multiplying, subtracting, or dividing two numerical data types. If an overflow has
occurred, the runtime will throw a System.OverflowException type. Observe the
following update:

class Program

{

static void Main(string[] args)

{

// Overflow the max value of a System.Byte.

Console.WriteLine ("Max value of byte is {0}.", byte.MaxValue);

byte bl = 100;

byte b2 = 250;

try

{

byte sum = checked ((byte) (b1l + b2));
Console.WriteLine("sum = {0}", sum);
}

catch (OverflowException e)

{ Console.WriteLine (e.Message); }

}

Dept. of ISE,S]BIT Page 146

C# and .NET Programming 061S761

}

Here, you wrap the addition of bl and b2 within the scope of the checked keyword. If
you wish to force overflow checking to occur over a block of code, you can interact
with the checked keyword as follows:

try

{

checked

{

byte sum = (byte) (bl + b2);

Console.WriteLine ("sum = {0}", sum);

}

}

catch (OverflowException e)

{

Console.WriteLine (e.Message);

}

In either case, the code in question will be evaluated for possible overflow conditions
automatically, which will trigger an overflow exception if encountered.

Setting Projectwide Overflow Checking

Now, if you are creating an application that should never allow silent overflow to
occur, you may find yourself in the annoying position of wrapping numerous lines of
code within the scope of the checked keyword. As an alternative, the C# compiler
supports the /checked flag. When enabled, a/l

of your arithmetic will be evaluated for overflow without the need to make use of the
C# checked keyword. If overflow has been discovered, you will still receive a runtime
OverflowException. To enable this flag using Visual Studio 2005, open your project’s
property page and click the Advanced button on the Build tab. From the resulting
dialog box, select the “Check for arithmetic overflow/underflow” check box.

7.7 Building a Custom Indexer

As programmers, we are very familiar with the process of accessing discrete items
contained within a standard array using the index operator, for example:

// Declare an array of integers.

int[] myInts = { 10, 9, 100, 432, 9874};

// Use the [] operator to access each element.

for(int j =0; j < mylInts.Length; j++)

Console.WriteLine ("Index {0} = {1} ", J, myInts[]]);

The previous code is by no means a major newsflash. However, the C# language
provides the capability to build custom classes and structures that may be indexed just
like a standard array. It should be no big surprise that the method that provides the
capability to access items in this manner is termed an indexer.

Before exploring how to create such a construct, let’s begin by seeing one in action.
Assume you have added support for an indexer method to the custom collection

(Garage) developed in

Dept. of ISE,S]BIT Page 147

C# and .NET Programming 0615761

// Indexers allow you to access items in an arraylike fashion.
public class Program

{

static void Main(string[] args)

{

Console.WriteLine ("***** Fun with Indexers *****\n");

// Assume the Garage type has an indexer method.
Garage carLot = new Garage();

// Add some cars to the garage using indexer.

carLot[0] = new Car ("FeeFee", 200);
carLot[1l] = new Car ("Clunker", 90);
carLot[2] = new Car("Zippy", 30);

// Now obtain and display each item using indexer.

for (int 1 = 0; 1 < 3; 1i++4)

{

Console.WriteLine ("Car number: {0}", 1i);
Console.WriteLine ("Name: {0}", carLot[i].PetName);
Console.WriteLine ("Max speed: {0}", carLot[i].CurrSpeed);
Console.WriteLine();

}

Console.ReadLine();

}
}
As you can see, indexers behave much like a custom collection supporting the

IEnumerator and IEnumerable interfaces. The only major difference is that rather than
accessing the contents using interface types, you are able to manipulate the internal
collection of automobiles just like a standard array. Now for the big question: How do
you configure the Garage class (or any class/structure) to sup- port this functionality?
An indexer is represented as a slightly mangled C# property. In its simplest form, an
indexer is created using the this[] syntax. Here is the relevant update to the

Garage type:

// Add the indexer to the existing class definition.

public class Garage : IEnumerable // foreach iteration

{

// Use ArrayList to contain the Car types.
private ArraylList carArray = new ArrayList();

// The indexer returns a Car based on a numerical index.
public Car this[int pos]

{

// Note ArrayList has an indexer as well!

get { return (Car)carArray[pos]; }

Dept. of ISE,S]BIT Page 148

C# and .NET Programming 061S761

set { carArray[pos] = value }

}

}

Beyond the use of the this keyword, the indexer looks just like any other C# property
declaration. Do be aware that indexers do not provide any array-like functionality
beyond the use of the subscript operator. In other words, the object user cannot write
code such as the following:

// Use ArrayList.Count property? Nope!

Console.WriteLine ("Cars in stock: {0} ", carLot.Count);

To support this functionality, you would need to add your own Count property to the
Garage type, and delegate accordingly:
public class Garage: IEnumerable

{

// Containment/delegation in action once again.

public int Count { get { return carArray.Count; } }

}

As you can gather, indexers are yet another form of syntactic sugar, given that this
functionality can also be achieved using “normal” public methods. For example, if the
Garage type did not support an indexer, you would be able to allow the outside world
to interact with the internal array list using a named property or traditional
accessor/mutator methods. Nevertheless, when you support indexers on your custom
collection types, they integrate well into the fabric of the .NET base class libraries.

Dept. of ISE,S]BIT Page 149

C# and .NET Programming 0615761

Recommended questions

1.

What are delegates? Explain the members of system.MulticastDelegates. Write a program
in c# to implement operator over loading of + and — for adding subtracting two square
matrices.

Explain the two conceptual views of .Net assembly with a neat diagram. What are the
core benefits of this?

With an example,Discuss advanced keywords of C #:checked, unchecked, un safe,
stackalloc, volatile and size of.

Write a program in C# to sort and reverse an array of five elements using sort() and
reverse() methods.

What do you understand by events and delegates in C #?.Give examples

Dept. of ISE,S]BIT Page 150

C# and .NET Programming 061S761

UNIT -8
Understanding the Format of a .NET Assembly

8.1 Problems with Classic COM Binaries,

8.2 An Overview of .NET Assembly,

8.3 Building a Simple File Test Assembly

8.4 A C# Client Application,

8.5A Visual Basic .NET Client Application, Exploring the Car Library’s
Manifest

8.6 Exploring the Car Library’s Types

Dept. of ISE,S]BIT Page 151

C# and .NET Programming 0615761

8.1 Problems with Classic COM Binaries

.NET applications are constructed by piecing together any number of assemblies.
Simply put, an assembly is a versioned, self-describing binary file hosted by the CLR.
Now, despite the fact that .NET assemblies have exactly the same file extensions
(*.exeor *.d11) as previous Win32 binaries (including legacy COM servers), they have
very little in common under the hood. Thus, to set the stage for the information to
come, let’s ponder some of the benefits provided by the assembly format.

Assemblies Promote Code Reuse

As you have been building your console applications over the previous chapters,it may
have seemed that all of the applications’ functionality was contained within the
executable assembly you were constructing. In reality, your applications were
leveraging numerous types contained within the always accessible .NET code library,
mscorlib.dll (recall that the C# compiler references mscorlib.dll automatically), as
well as System.Windows.Forms.dl1l. As you may know, a code library (also termed a
class library) is a *.d11 that contains types intended to be used by external
applications. When you are creating executable assemblies, you will no doubt be
leveraging numerous system-supplied and custom code libraries as you create the
application at hand. Do be aware, however, that a code library need not take

a*.dll file extension. It is perfectly possible for an executable assembly to make use
of types defined within an external executable file. In this light, a referenced *.exe can
also be considered a “code library.”

8.2 Understanding the Format of a .NET Assembly

Now that you’ve learned about several benefits provided by the .NET assembly, let’s
shift gears and get a better idea of how an assembly is composed under the hood.
Structurally speaking, a .NET assembly (*.dl1lor *.exe) consists of the following
elements:

* A Win32 file header

* A CLR file header

* CIL code

* Type metadata

* An assembly manifest

e Optional embedded resources

While the first two elements (the Win32 and CLR headers) are blocks of data that you can
typically ignore, they do deserve some brief consideration. This being said, an overview
of each element follows.

The Win32 File Header

The Win32 file header establishes the fact that the assembly can be loaded and
manipulated by the Windows family of operating systems. This header data also
identifies the kind of application (console-based, GUI-based, or *.d11 code library) to
be hosted by the Windows operating system.

Dept. of ISE,S]BIT Page 152

C# and .NET Programming 0615761

8.3Building and Consuming a Single-File Assembly

To begin the process of comprehending the world of .NET assemblies, you’ll first create a
single-file *.d11 assembly (named CarLibrary) that contains a small set of public types.
To build a code library using Visual Studio 2005, simply select the Class Library project
workspace The design of your automobile library begins with an abstract base class
named Car that defines a number of protected data members exposed through custom
properties. This class has a single abstract method named TurboBoost (), which makes
use of a custom enumeration (EngineState) representing the current condition of the
car’s engine:

using System;

namespace CarLibrary

{

// Represents the state of the engine.
public enum EngineState

{ engineAlive, engineDead }

// The abstract base class in the hierarchy.

public abstract class Car

{

protected string petName;

protected short currSpeed;

protected short maxSpeed;

protected EngineState egnState = EngineState.engineAlive;

public abstract void TurboBoost();

public Car () {}

public Car(string name, short max, short curr)

{

petName = name; maxSpeed = max; currSpeed = curr;

}

public string PetName

{

get { return petName; }

set { petName = value; }

}

public short CurrSpeed

{

get { return currSpeed; }

set { currSpeed = value; }

}

public short MaxSpeed

{ get { return maxSpeed; } }
public EngineState EngineState
{ get { return egnState; } }

Dept. of ISE,S]BIT Page 153

C# and .NET Programming 061S761

}

}

Now assume that you have two direct descendents of the Car type named Minivanand
SportsCar. Each overrides the abstract TurboBoost () method in an appropriate
manner.

using System;

using System.Windows.Forms;

namespace CarLibrary

{

public class SportsCar : Car

{

public SportsCar(){ }

public SportsCar(string name, short max, short curr):base (name, max, curr){ }

public override void TurboBoost ()

{

MessageBox.Show ("Ramming speed!", "Faster is better...");
}

}

public class MiniVan : Car

{

public MiniVan() { }

public MiniVan (string name, short max, short curr):base (name, max, curr){ }
public override void TurboBoost ()

{

// Minivans have poor turbo capabilities!

egnState = EngineState.engineDead;

MessageBox.Show ("Time to call AAA", "Your car is dead");
}

}

}

8.4 A C# Client Application

At this point you can build your client application to make use of the external types.
Update your initial C# file as so:

using System;

// Don't forget to 'use' the CarLibrary namespace!
using CarLibrary;

namespace CSharpCarClient

{

public class CarClient

{

static void Main(string[] args)

{

// Make a sports car.

Dept. of ISE,S]BIT Page 154

C# and .NET Programming 061S761

SportsCar viper = new SportsCar ("Viper", 240, 40);
viper.TurboBoost ();

// Make a minivan.

MiniVan mv = new MiniVan () ;

mv.TurboBoost () ;

Console.ReadLine () ;

}

}

}

This code looks just like the other applications developed thus far. The only point of
interest is that the C# client application is now making use of types defined within a
separate custom assembly. Go ahead and run your program. As you would expect, the
execution of this program results in the display of various message boxes.

8.5 Building a Visual Basic .NET Client Application

To illustrate the language-agnostic attitude of the .NET platform, let’s create another
console application (VbNetCarClient), this time using Visual Basic .NET (see Figure 11-
10). Once you have created the project, set a reference to CarLibrary.dll using the Add
Reference dialog box. Imports CarLibrary

Module Modulel

Sub Main ()
End Sub

End Module

Notice that the Main () method is defined within a Visual Basic .NET Module type
(which has nothing to do with a *.netmodule file for a multifile assembly). Modules are
simply a Visual Basic .NET shorthand notation for defining a sealed class that can
contain only static methods. To drive

this point home, here would be the same construct in C#:

// A VB .NET 'Module' is simply a sealed class

// containing static methods.

public sealed class Modulel

{

public static void Main()

{

}

}

In any case, to exercise the Minivan and SportsCar types using the syntax of Visual Basic
.NET, update your Main () method as so:

Sub Main ()

Console.WriteLine ("***** Fun with Visual Basic .NET ***x*x%*m)

Dim myMiniVan As New MiniVan ()

myMiniVan.TurboBoost ()

Dept. of ISE,S]BIT Page 155

C# and .NET Programming 0615761

Dim mySportsCar As New SportsCar ()

mySportsCar.TurboBoost ()

Console.ReadLine ()

End Sub

When you compile and run your application, you will once again find a series of
message boxes displayed.

8.6 Exploring the CarLibrary’s Types

Recall that when you generate a strong name for an assembly, the entire public key is
recorded in the assembly manifest. On a related note, when a client references a
strongly named assembly, its manifest records a condensed hash value of the full
public key, denoted by the .publickeytoken tag. If you were to open the manifest of
SharedCarLibClient.exe using ildasm.exe, you would find the following:

.assembly extern CarLibrary

{

.publickeytoken = (21 9E F3 80 C9 34 8A 38)

.ver 1:0:0:0

}

If you compare the value of the public key token recorded in the client manifest with
the public key token value shown in the GAC, you will find a dead-on match. Recall that
a public key represents one aspect of the strongly named assembly’s identity. Given
this, the CLR will only load version 1.0.0.0 of an assembly named CarLibrary that has a
public key that can be hashed down to the value 219EF380C9348A38. If the CLR does
not find an assembly meeting this description in the GAC (and cannot find a private
assembly named CarLibrary in the client’s directory), aFileNotFound exception is
thrown.

Dept. of ISE,S]BIT Page 156

C# and .NET Programming 0615761

Recommended question:

1. Write short notes on the following: i) classic COM binaries versus .Net assemblies ii)
Cross language inheritance.

2. Write short notes on: i)Interface of system collection ii) Indexers iii) Shared assemblies
iv)Mutual and immutable strings.

3. [lllustrate with an example, difference between synchronous and asynchronous
delegates.

Dept. of ISE,S]BIT Page 157

