Sixth Semester B.E. Degree Examination, December 2010

Compiler Design

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions.

2. Any missing data may be suitably assumed.

Explain the different phases of a compiler, with a neat diagram. 1

(08 Marks)

b. Explain the token generators and token recognizers, with a simple example.

(04 Marks)

Write a Lex program to recognize the string aⁿb.

(08 Marks)

- 2 Define the following, with examples:
 - i) Ambiguous grammar
 - ii) Derivation tree.

(06 Marks)

- b. Show that the following grammar is ambiguous
 - $S \rightarrow i C t S | i C t S c S | a$

 $C \rightarrow b$

Write the unambiguous grammar for the same.

(08 Marks)

c. Explain with an example, the recursive descent parser with backtracking.

(06 Marks)

- 3 Bring out the differences between top-down and bottom-up parsing methods. (03 Marks)
 - b. Compute FIRST () and FOLLOW () symbols for the following grammar and find if the grammar is LL(1)

 $E \rightarrow TE'$

 $E' \rightarrow + TE' \mid \in$

 $T \rightarrow FT'$

 $T' \rightarrow *FT' \mid \in$

 $F \rightarrow (E)/id$.

(08 Marks)

Given the following precedence relation table, parse the string id + id * id

	id	+	*	\$
id		•>	·>	•>
+	Ý	·>	<	·>
*	. <·	·>	·>_	·>
\$	<·	<.	<.	

(09 Marks)

Explain with an example, the stack implementation of a shift reduce parser.

(10 Marks)

- Define the following, with examples. i) Synthesized attribute
- ii) Inherited attribute
- iii) Annotated parse tree
- iv) Dependency graph.

(10 Marks)

- 5 a. What is an activation record? Explain the purpose of different fields in an activation record.
 (10 Marks)
 - b. Explain the following storage allocation strategies.
 - i) Static allocation
 - ii) Heap allocation.

(10 Marks)

6 a. Define 3-address statement and list the types of 3-address statement.

(08 Marks)

b. Define the terms quadruples, triples and indirect triples. Give their representation for the assignment statement A = B * (C + D) by generating an appropriate 3-address code.

(12 Marks)

7 a. Explain the issues in the deisgn of a code generator.

(12 Marks)

b. Generate the code for the following three address statement, using the code generation algorithm

$$t = a - b$$

$$u = a - c$$

$$v = t + u$$

$$d = v + u$$

with d live at the end.

(08 Marks)

8 a. Optimize the following code

$$Product = 0$$

$$i = 1$$

do

$$product = product + A[i] *B[i]$$

$$i = i + 1$$

while (
$$i < = 20$$
).

(12 Marks)

b. Write an algorithm to construct a DAG from a basic block.

(08 Marks)