COMPILER DESIGN

Subject Code: 10CS63 LA. Marks : 25

Hours/Week : 04 Exam Hours: 03

Total Hours : 52 Exam Marks: 100
PART - A

UNIT -1 8

Hours

Introduction, Lexical analysis: Language processors; The structure of a Compiler; The
evolution pf programming languages; The science of building a Compiler; Applications
of compiler technology; Programming language basics.

Lexical analysis: The Role of Lexical Analyzer; Input Buffering; Specifications of
Tokens; Recognition of Tokens.

UNIT -2 6
Hours

Syntax Analysis — 1: Introduction; Context-free Grammars; Writing a Grammar. Top-
down Parsing; Bottom-up Parsing.

UNIT -3 6
Hours
Syntax Analysis — 2: Top-down Parsing; Bottom-up Parsing.

UNIT -4 6
Hours

Syntax Analysis — 3: Introduction to LR Parsing: Simple LR; More powerful LR parsers
(excluding Efficient construction and compaction of parsing tables) ; Using ambiguous
grammars; Parser Generators.

PART - B
UNIT -5 7
Hours
Syntax-Directed Translation: Syntax-directed definitions; Evaluation orders for SDDs;
Applications of syntax-directed translation; Syntax-directed translation schemes.
UNIT -6 6
Hours
Intermediate Code Generation: Variants of syntax trees; Three-address code;
Translation of expressions; Control flow; Back patching; Switch statements; Procedure
calls.
UNIT -7 6
Hours
Run-Time Environments: Storage Organization; Stack allocation of space; Access to
non-local data on the stack; Heap management; Introduction to garbage collection.
UNIT - 8 7
Hours
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Code Generation: Issues in the design of Code Generator; The Target Language;
Addresses in the target code; Basic blocks and Flow graphs; Optimization of basic
blocks; A Simple Code Generator

Text Books:

1. Alfred V Aho, Monica S.Lam, Ravi Sethi, Jeffrey D Ullman: Compilers- Principles,
Techniques and Tools, ond Edition, Pearson Education, 2007.

(Chapters 1, 3.1 to 3.4, 4 excluding 4.7.5 and 4.7.6, 5.1 to 5.4, 6.1, 6.2, 6.4, 6.6, 6.7 to
6.9, 7.1t0 7.5, 8.11t0 8.6.)

Reference Books:

1. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson
Education, 1991.

2. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University
Press, 1997.

3. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning,
1997.
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COMPILER DESIGN
SUBJECT CODE: 10CS63

Preliminaries Required

Basic knowledge of programming languages.
Basic knowledge of DFA and NFA( FAFL concepts).

Knowledge of a high programming language for the programming assignments.
Textbook:

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Monica,
“Compilers: Principles, Techniques, and Tools”

Addison-Wesley, 2nd Edition.

Course Outline

Introduction to Compiling
Lexical Analysis
Syntax Analysis
— Context Free Grammars
— Top-Down Parsing, LL Parsing
— Bottom-Up Parsing, LR Parsing
Syntax-Directed Translation
— Attribute Definitions
— Evaluation of Attribute Definitions
Semantic Analysis, Type Checking
Run-Time Organization
Intermediate Code Generation
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UNIT I: INTRODUCTION, LEXICAL ANALYSIS

SYLLABUS:

Lexical analysis: Language processors;

The structure of a Compiler;

The evolution of programming languages;

The science of building a Compiler;
Applications of compiler technology;
Programming language basics.

Lexical analysis: The Role of Lexical Analyzer;
Input Buffering;

Specifications of Tokens;

Recognition of Tokens.
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LANGUAGE PROCESSORS?
e [s a Software which process a program given in a certain source language

e Types:- compilers, Interpreters, Preprocessors, assembler ..etc
COMPILER
Pictorial representation of compiler is given below

Source program — ] COMPILER | —, target program

If target program is executable machine language then

—>

Input > target program output

INTERPRETER
Pictorial representation of an Interpreter is given below
Source program j: Interpreter — Output
Input

HYBRID COMPILER
Source program — | Translator

!

Intermediate pgm

i/p —— pirtual machine] ——5  o/p

»
»

COMPILERS
* A compiler is a program takes a program written in a source language and
translates it into an equivalent program in a target language.

source program  — | COMPILER —»  target program

l

€1ror messages

Other Applications
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* In addition to the development of a compiler, the techniques used in compiler
design can be applicable to many problems in computer science.

Techniques used in a lexical analyzer can be used in text editors,
information retrieval system, and pattern recognition programs.
Techniques used in a parser can be used in a query processing system such
as SQL.
Many software having a complex front-end may need techniques used in
compiler design.

* A symbolic equation solver which takes an equation as input. That

program should parse the given input equation.

Most of the techniques used in compiler design can be used in Natural
Language Processing (NLP) systems.

Major Parts of Compilers

Source
Program

Target

Analysis Synthesis —®| Program

* There are two major parts of a compiler: Analysis and Synthesis
* In analysis phase, an intermediate representation is created from the given source

program.

Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the parts of
this phase.

» In synthesis phase, the equivalent target program is created from this intermediate

representation.

Intermediate Code Generator, Code Generator, and Code Optimizer are
the parts of this phase.
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Source

Phases of A Compiler

Front end

Lexical | |
Analyzer

Program

Syntax

Symbol table Back end
/
| |Semanti ntermediate | |Code Code |\ Target
Optimizer; |Generator Program

Analyz;Analy? (Code Generator |
\\ I 2\

Error handler

* Each phase transforms the source program from one representation
into another representation.

* They communicate with error handlers.

* They communicate with the symbol table.

Compiler v/s interpreter

Source program ——

Input

Compiler

target program

Target program

output

Source program ___,
_—

Interpreter

output

Input

Assignments:

1. What is the difference between a compiler and an interpreter?
2. what are advantages of (i) a compiler over an interpreter (ii) an interpreter over a

compiler?
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Translation of an assignment
+ Pisition = initial + rate * 60

|

- Code Optimizer
] Lexical Analyzer \ ’ FI
L2
<id,1> <=>*<id,2><+> <id,3> <*>< 60> t1=1id3 *60.0
| SyntaxAnalyzer | a1 =idz
] |
Code Generator
<id,T> s | l
<id,2> AN
! <id3> 60
] Semantic Analyzer \ LDF R2, ID3
!
= MULF R2, R2, #60.0
[dis 3 LDF R1, ID2
<id2>  * ADDF R1,R1, R2
<id,3> inttofloat STF ID1,R1
| 60

] Intermediate Code Generator \
1

1 = inttofloat(60)
t2=id3*t1
t3=id3 +t2
id1=1t3

Lexical Analyzer

Lexical Analyzer reads the source program character by character and returns the
tokens of the source program.

» Lexical Analyzer also called as Scanner.
It reads the stream of characters making up the source program and groups the
characters into meaningful sequences called Lexemes.
For each lexeme, it produces as output a token of the form
* <token_name, attribute value>
* token_name is an abstract symbol that is used during syntax analysis, and
the second component attribute value points to an entry in the symbol
table for this token.
A token describes a pattern of characters having same meaning in the source
program. (such as identifiers, operators, keywords, numbers, delimeters and so
on)

Ex: newval :=oldval + 12 => tokens: newval identifier

= assignment operator
oldval identifier

+ add operator

12 a number

Puts information about identifiers into the symbol table not all attributes.
Regular expressions are used to describe tokens (lexical constructs).
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* A (Deterministic) Finite State Automaton(DFA) can be used in the
implementation of a lexical analyzer.
* Blank spaces removed

Syntax Analyzer
» A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the
given program.
» A syntax analyzer is also called as a parser.
» A parse tree describes a syntactic structure.

newval +

oldval 12

» Ina parse tree, all terminals are at leaves.
* All inner nodes are non-terminals in a context free grammar
* The syntax of a language is specified by a context free grammar (CFG).
* The rules in a CFG are mostly recursive.
* A syntax analyzer checks whether a given program satisfies the rules implied by a
CFG or not.
1. If it satisfies, the syntax analyzer creates a parse tree for the given
program.
* Ex: We use BNF (Backus Naur Form) to specify a CFG

1. E ->Identifier
2. E->Number
3. E2E+E

4. E2>E*E

5. E=>(E)

*  Where E is an expression
Syntax Analyzer list out the followings
By rule 1, newval is an expresiion
By rule 1, oldval is an expression
By rule 2, 12 is an expression
By rule 3, we get oldval+12 is an expression
Syntax Analyzer versus Lexical Analyzer
*  Which constructs of a program should be recognized by the lexical analyzer, and
which ones by the syntax analyzer?
— Both of them do similar things; But the lexical analyzer deals with simple
non-recursive constructs of the language.
— The syntax analyzer deals with recursive constructs of the language.
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— The lexical analyzer simplifies the job of the syntax analyzer.

— The lexical analyzer recognizes the smallest meaningful units (tokens) in a
source program.

— The syntax analyzer works on the smallest meaningful units (tokens) in a
source program to recognize meaningful structures in our programming
language.

Parsing Techniques
* Depending on how the parse tree is created, there are different parsing techniques.
* These parsing techniques are categorized into two groups:
— Top-Down Parsing, Bottom-Up Parsing
*  Top-Down Parsing:
— Construction of the parse tree starts at the root, and proceeds towards the
leaves.
— Efficient top-down parsers can be easily constructed by hand.
— Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL
Parsing).
* Bottom-Up Parsing:
— Construction of the parse tree starts at the leaves, and proceeds towards
the root.
— Normally efficient bottom-up parsers are created with the help of some
software tools.
— Bottom-up parsing is also known as shift-reduce parsing.
— Operator-Precedence Parsing — simple, restrictive, easy to implement
— LR Parsing — much general form of shift-reduce parsing, LR, SLR, LALR
Semantic Analyzer
* A semantic analyzer checks the source program for semantic errors and collects
the type information for the code generation.
* Determines meaning of source string.
— Matching of parenthesis
— Matching if else stmt.
— Checking scope of operation
» Type-checking is an important part of semantic analyzer.
* Normally semantic information cannot be represented by a context-free language
used in syntax analyzers.
* Context-free grammars used in the syntax analysis are integrated with attributes
(semantic rules)
— the result is a syntax-directed translation,
— Attribute grammars
« Ex:
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newval = oldval + 12

* The type of the identifier newval must match with type of the
expression (oldval+12)
Intermediate Code Generation
* A compiler may produce an explicit intermediate codes representing the source
program.
* Is akind of code.
* FEasy to generate
» Easily converted to target code
» It can be in three address code or quadruples, triples etc

« Ex:
newval = oldval + 1
v
id1 =lid2 +1
Intermediates Codes (Quadraples) 3- address code
tl =id2 + 1 tl =12
idl=tl t2=id2 + 1

idl =2
Code Optimizer (for Intermediate Code Generator)

» The code optimizer optimizes the code produced by the intermediate code

generator in the terms of time and space.
» TIl=id2*id3
> Id1=tl+l1

Code Generator

» Produces the target language in a specific architecture.

» The target program is normally is a relocatable object file containing the machine
codes.

» If target code is machine code then registers (memory locations) are selected for
each variable in pgm. Then intermediate instructions are translated to sequences
of machine instruction which perform same task.

» Ex: (assume that we have an architecture with instructions whose at least one of
its operands is a machine register)

MOVEIid2,R1
MULT id3,R1
ADD #I,R1
MOVERI,idl
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Symbol Table Management
» This record variable name used in the source program
» This stores attributes of each name

o Eg: name, its type, its scope

o Method of passing each argument(by value or by reference)

o Return type

Implementation of symbol table can be done is either linear list or hash table. There will
be n entries e enquires to fetch information from this table.
If n and e are more than linear list method is poor in performance. But hash table is better
than list method
Grouping of phases into passes

* In an implementation, activities from several phases may be grouped together

into a pass that reads an input file and writes an output file.

* For example,

o front-end phases of lexical analysis, syntax analysis, semantic analysis and
from back end intermediate code generation might be grouped together
into one pass.

o Code optimization might be an optional pass.

o The there could be a back-end pass consisting of code generation for a
particular target machine.

CLASSIFICATION OF LANGUAGES

1.Based on generation:

a)First generation language-machine languages.

b)second generation languages-assembly languages.

¢)Third generation languages-higher level languages.

d)Fourth generation languages-designed for specific applications like sql for database

applications.
e)Fifth generation languages-applied to logic and constraint based languages like prolog
and ops5.
Imperative languages:
languages in which a program specifies how a computation is to be done.
eg: ¢, ct++.
Declarative languages:
languages in which a program specifies what computation is to be done.
eg: prolog.
The science of building a compiler
+  Compiler design deals with complicated real world problems.
First the problem is taken.
* A mathematical abstraction is formulated.

*  Solve using mathematical techniques.
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Modeling in compiler design and implementation
% Right mathematical model and right algorithm.
% Fundamental models — finite state machine, regular expression, context free
grammar.
The science of code optimization
Optimization : It is an attempt made by compiler to produce code that is more efficient
than the obvious one.
Compiler optimizations-Design objectives
» Must improve performance of many programs.
» Optimization must be correct.
» Compilation time must be kept reasonable.

» Engineering effort required must be manageable.

APPLICATIONS OF COMPILER TECHNOLOGY

IMPLEMENTATION OF HIGH LEVEL PROGRAMING LANGUAGES.

*  The programmer expresses an alg using the Lang, and the compiler must translate
that prog to the target language.

* Generally HLP langs are easier to program in, but are less efficient, i.e., the target
prog runs more slowly.

*  Programmers using LLPL have more control over a computation and can produce
more efficient code.

*  Unfortunately, LLP are harder to write and still worse less portable, more prone to
errors and harder to maintain.

*  Optimizing compilers include techniques to improve the performance of general
code, thus offsetting the inefficiency introduced by HL abstractions.

OPTIMIZATIONS FOR COMPUTER ARCHITECTURES

*  The rapid evolution of comp architecture has also led to an insatiable demand for
a new complier technology.

*  Almost all high performance systems take advantage of the same basic 2
techniques: parallelism and memory hierarchies.

+ Parallelism can be found at several levels : at the instruction level, where multiple
operations are executed simultaneously and at the processor level, where different
threads of same application are run on different processors.

*  Memory hierarchies are a response to the basic limitation that we can built very

fast storage or very large storage, but not storage that is both fast and large.
PARALLELISM
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All modern microprocessors exploit instruction-level parallelism. this can be
hidden from the programmer.

The hardware scheduler dynamically checks for dependencies in the sequential
instruction stream and issues them in parallel when possible.

Whether the hardware reorders the instruction or not, compilers can rearrange the
instruction to make instr-level parallelism more effective.

MEMORY HIERARCHIES.

a memory hierarchy consists of several levels of storage with different speeds and
sizes.

a processor usually has a small number of registers consisting of hundred of bytes,
several levels of caches containing kilobytes to megabytes, and finally secondary
storage that contains gigabytes and beyond.

Correspondingly, the speed of accesses between adjacent levels of the hierarchy
can differ by two or three orders of magnitude.

The performance of a system is often limited not by the speed of the processor but
by the performance of the memory subsystem.

While compliers traditionally focus on optimizing the processor execution, more
emphasis is now placed on making the memory hierarchy more effective.

DESIGN OF NEW COMPUTER ARCHITECTURES.

In modern computer arch development, compilers are developed in the processor-
design stage, and compiled code running on simulators, is used to evaluate the
proposed architectural design.

One of the best known ex of how compilers influenced the design of computer
arch was the invention of RISC (reduced inst-set comp) arch.

Over the last 3 decades, many architectural concepts have been proposed. they
include data flow machines, vector machines, VLIW(very long inst word)
machines, multiprocessors with shared memory, and with distributed memory.
The development of each of these architectural concepts was accompanied by the
research and development of corresponding compiler technology.

Compiler technology is not only needed to support programming of these arch,
but also to evaluate the proposed architectural designs.

PROGRAM TRANSLATIONS

Normally we think of compiling as a translation of a high level Lang to machine level
Lang, the same technology can be applied to translate between diff kinds of
languages.

The following are some of the imp applications of program translation techniques:
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BINARY TRANSLATION

Compiler technology can be used to translate the binary code for one machine to
that of another, allowing a machine to run programs originally compiled for
another instr set.

This tech has been used by various computer companies to increase the
availability of software to their machines.

HARDWARE SYNTHESIS
Not only is most software written in high level languages, even hardware designs
are mostly described in high level hardware description languages like verilog and
VHDL(very high speed integrated circuit hardware description languages).
Hardware designs are typically described at the register transfer level (RTL).

Hardware synthesis tools translate RTL descriptions automatically into gates
which are then mapped to transistors and eventually to a physical layout. This
process takes long hours to optimize the circuits unlike compilers for
programming langs.

DATABASE QUERY INTERPRETERS
Query languages like SQL are used to search databases.
These database queries consist of relational and Boolean operators.

They can be compiled into commands to search a database for records satisfying
the needs.

SOFTWARE PRODUCTIVITY TOOLS
Several ways in which program analysis, building techniques originally developed to
optimize code in compilers, have improved software productivity.
TYPE CHECKING
BOUNDS CHECKING
MEMORY MANAGEMENT TOOLS.
Programming Language Basics
Static/Dynamic Distinction
» The language uses a policy that allows the compiler to decide an issue then that
language uses staticor issue decided at compile time.
» The decision is made during execution of a program is said to be dynamic or
decision at run time.
» Scope of declarations.
» Eg:public static int x;
Environments and States
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Programming language changes occuring as the program runs affect the values of
data elements.eg:x=y+1;
Names locations values.

Eg: ...
Int i;
Void f{(....)
{
int I;
1=3;
H
x=1+1;

Static Scope and Block Structure
Most of the languages,including C and its family uses static scope.The scope rules for
C are based on prgm struc,the scope of declaration is determined implicitly where the
declaration appears in the prgm...for java,ct++ provide explicit control over scopes by
using the keywords like PUBLIC,PRIVATE,and PROTECTED
Static_scope rules for a language with blocks-grouping of declarations and
statements.. e.g.: C uses braces
Main()
{
int a=1;
int b=1;
{
int b=2;
{
int a=3;
Cout<< a< <b;
b
{
int b=4;
Cout << a<<b;
}

Cout << a<< b;

}

Cout << a<<b

¥
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Lexical Analyzer

THE ROLL OF THE LEXICAL ANALYZER

» Lexical Analyzer reads the source program character by character to

produce tokens.

* Normally a lexical analyzer doesn’t return a list of tokens at one shot,
it returns a token when the parser asks a token from it.

source Lexical
program

Analyzer |* get next token

Parser

Symbol
Table

Some Other Issues in Lexical Analyzer

—» To semantic analysis

+ Skipping comments (stripping out comments & white space)
— Normally L.A. don’t return a comment as a token.

— It skips a comment, and return the next token (which is not a comment) to

the parser.

— So, the comments are only processed by the lexical analyzer, and the don’t

complicate the syntax of the language.

* Correlating error messages

- It can associate a line number with each error message..

- In some compilers it makes a copy of the source pgm. with the error messages

inserted at the appropriate positions.

- If the source pgm. Using macro-processor, the expansion of macros may be

performed by the la
* Symbol table interface

— symbol table holds information about tokens (at least lexeme of

identifiers)

— how to implement the symbol table, and what kind of operations.

* hash table — open addressing, chaining

* putting into the hash table, finding the position of a token from

its lexeme.

Token: It describes the class or category of input string. For example, identifier,
keywords, constants are called tokens

Patters: set of rule that describes the tokens

Lexeme: sequence of character in the source pgm that are matched with the pattern of the

token. Eg: int, I, num, ans etc
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Implementing Lexical Analyzers

» Different approaches:

Using a scanner generator, e.g., lex or flex. This automatically
generates a lexical analyzer from a high-level description of the tokens.

(easiest to implement; least efficient)

*  Programming it in a language such as C, using the I/O facilities of the

language. (intermediate in ease, efficiency)
* Writing it in assembly language and explicitly managing the input.

(hardest to implement, but most efficient)

List out lexeme and token in the following example

1.
int Max(int a, int b)
{ if(a>b)
return a;
else
return b;

Lexeme Token

int Keyword
Max Identifier
( Operator
a Identifier
, Operator

2. Examples of tokens

Token Informal description Sample Lexemes

if Characters i, f if

else Characters e, I, s, e else

Comparis | <or>or <=or>=or==or = <=, I=

on

id Letter followed by letters and P1i, score, D2
digits

Number Any numeric constant 3.14, 0.6, 20

Literal Anything but surrounded by “ “total= %d\n” , “core
7S dumped”

In FORTRAN,

DO5I1=125 ——

DOs5I1I=1,25 ___ do- statement

DOS51 is a lexem

Disadvantage of
Lexical Analyzer
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Another disadvantage of LA is
Instead of if(a==b) statement if we mistype it as fi(a==b) then lexical analyzer will
not rectify this mistake.
Advantages of Lexical Analyzer
Lexical analysis v/s Parsing
» Simplicity of design is the most important consideration.
* Compiler efficiency is improved.
- can apply specialized techniques that serve only the lexical task
- Specialized buffering techniques for reading input characters can speed up the
compiler.
* Compiler portability is enhanced.
- Input-device-specific peculiarities can be restricted to the lexical analyzer.
Lexical analysis v/s Parsing
» Simplicity of design is the most important consideration.
*  Compiler efficiency is improved.
- can apply specialized techniques that serve only the lexical task
- Specialized buffering techniques for reading input characters can speed up the
compiler.
» Compiler portability is enhanced.
- Input-device-specific peculiarities can be restricted to the lexical analyzer.

Input Buffering
To recognize tokens reading data/ source program from hard disk is done. Accessing
hard disk each time is time consuming so special buffer technique have been
developed to reduce the amount of overhead required.
- One such technique is two-buffer scheme each of which is alternately
loaded.
- Size of each buffer is N(size of disk block) Ex:4096 bytes
— One read command is used to read N characters.
— If fewer than N characters remain in the input file , then special character,
represented by eof, marks the end of source file.
.Sentinel is a special character that cannot be a part of source program. eof is used as
sentinel
* Two pointers to the input are maintained
— Pointer lexemeBegin, marks the beginning of the current lexeme, whose
extent we are attempting to determine.
— Pointer forward scans ahead until a pattern match if found.
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Buffer Pairs

B - MIf[c *[*12 eof]
T
forvward

Lexeme begin

Algorithm for i/p buffer (or)

Lookahead code with sentinels

Switch(*forward++)

{

case eof:
if (forward is at end of first buffer)
{ reload second buffer;
forward = beginning of second buffer;

}

else if (forward is at end of second buffer)
{ reload first buffer;
forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input terminate lexical analysis*/
break;
case for the other characters

Terminology of Languages
* Alphabet : a finite set of symbols (ASCII characters)
e String :
— Finite sequence of symbols on an alphabet
— Sentence and word are also used in terms of string
— ¢ is the empty string
— |s| is the length of string s.
« Language: sets of strings over some fixed alphabet
— I the empty set is a language.

{€} the set containing empty string is a language
The set of well-wormed C programs is a language

— The set of all possible identifiers is a language.
* Operators on Strings:
— Concatenation: Xy represents the concatenation of strings x andy. s =s
€S=S

— s"_sss.s(ntimes) s’ —g
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Operations on Languages

* (Concatenation:

= Lilz={s5:] 51 Ly and s; = Ly}
= Union
- Liwl;={s|sel; or s L,}

* Exponentiation:
- °={g} LU=l L2=LL

* Kleene Closure
- L"=
* Positive Closure

- Lt

Example
« L,={ab,c,d} L,={1,2}
< L,L, ={al,a2,bl,b2,cl,c2,d1,d2}
« L,uL,={ab,c,d,1,2}
« L,3 =all strings with length three (using a,b,c,d}
» L," =all strings using letters a,b,c,d and empty string

* L,*=doesn’t include the empty string

Regular Expressions
*  We use regular expressions to describe tokens of a programming language.
* A regular expression is built up of simpler regular expressions (using defining
rules)
* Each regular expression denotes a language.
* A language denoted by a regular expression is called as a regular set.
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Regular Expressions (Rules)

Regular expressions over alphabet X

Reg. Expr Language it denotes
€ {e}

ac X {a}

(1) | (rp) L(r) v L(r,)

(1) (rp) L(r)) L(ry)

)" (L)

(r) L(r)

O =00
cM?=(]e

Regular Expressions (cont.)

» We may remove parentheses by using precedence rules.

- % highest
— concatenation next
— lowest

« ab’lc means (a(b))|(c)

* Ex:
- £={0,1}
- 0]1=>{0,1}
(0]1)(0[1) => {00,01,10,11}
- 0" => {¢,0,00,000,0000,....}
(0]1)* => all strings with 0 and 1, including the empty string
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Regular Definitions

» To write regular expression for some languages can be difficult, because
their regular expressions can be quite complex. In those cases, we may
use regular definitions.

* We can give names to regular expressions, and we can use these names
as symbols to define other regular expressions.

* A regular definition is a sequence of the definitions of the form:

d, =1 where d; is a distinct name and
d >, 1; is a regular expression over symbols in
>uid,,d,,....d; }
d, >,
basic symbols previously defined names

Regular Definitions
+ Ex: Identifiers in Pascal
letter > A|B|...|Z|a|b|..|z
digit—> 0| 1]...|9
id — letter (letter | digit ) "

— If we try to write the regular expression representing identifiers without
using regular definitions, that regular expression will be complex.
(Al...1ZJa]...|z) ((Al...|Z[a]...|]2) | (0]..]9) )

* Ex: Unsigned numbers in Pascal
digit—> 0| 1]...|9
digits — digit *
opt-fraction — ( . digits ) ?
opt-exponent — ( E (+]-)? digits ) ?
unsigned-num — digits opt-fraction opt-exponent
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Recognition of Tokens

+ Consider the following grammar for branching statern ent

Sng-—=if expr then s
| if expr then simf el Fng
| €

expr —farm relop ferm
| farmm

farm —id
| nurehe ¥

The terroinals of the grarmar ave * if, then, else, relop, id and roraber © which are the names
of tokens for the lexical analyzer.

Recognition of Tokens
Our current goal is to perform the lexical analysis needed for the following grammar.

stmt — if expr then stmt
| if expr then stmt else stmt
| e
expr — term relop term // relop is relational operator =, >, etc
| term
term — id
| number

Recall that the terminals are the tokens, the nonterminals produce terminals.
A regular definition for the terminals is

digit — [0-9]

digits — digits"

number — digits (. digits)? (E[+-]? digits)?
letter — [A-Za-7]

id — letter ( letter | digit )

if — if

then — then

else — else

relop —» <|>|<=|>=|=|<>
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Lexeme Token Attribute
Whitespace ws —

if if —
then then —
else else —
An identifier id Pointer to table entry
A number number Pointer to table entry
< relop LT
<= relop LE
= relop EQ
< relop NE
> relop GT
>= relop GE

On the board show how this can be done with just REs.
We also want the lexer to remove whitespace so we define a new token

ws — ( blank | tab | newline ) +

where blank, tab, and newline are symbols used to represent the corresponding ascii
characters.

Recall that the lexer will be called by the parser when the latter needs a new token. If the
lexer then recognizes the token ws, it does not return it to the parser but instead goes on
to recognize the next token, which is then returned. Note that you can't have two
consecutive ws tokens in the input because, for a given token, the lexer will match the
longest lexeme starting at the current position that yields this token. The table on the
right summarizes the situation.

For the parser, all the relational ops are to be treated the same so they are all the same
token, relop. Naturally, other parts of the compiler, for example the code generator, will
need to distinguish between the various relational ops so that appropriate code is
generated. Hence, they have distinct attribute values.

Specification of Token

To specify tokens Regular Expressions are used.
Recognition of Token

To recognize tokens there are 2 steps
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1. Design of Transition Diagram
2. Implementation of Transition Diagram

Transition Diagrams

A transition diagram is similar to a flowchart for (a part of) the lexer. We draw one for
each possible token. It shows the decisions that must be made based on the input seen.
The two main components are circles representing states (think of them as decision
points of the lexer) and arrows representing edges (think of them as the decisions made).

The transition diagram (3.13) for relop is shown on the right.

1. The double circles represent accepting or final states at which point a lexeme has
been found. There is often an action to be done (e.g., returning the token), which
is written to the right of the double circle.

2. If we have moved one (or more) characters too far in finding the token, one (or
more) stars are drawn.

3. An imaginary start state exists and has an arrow coming from it to indicate where
to begin the process.

It is fairly clear how to write code corresponding to this diagram. You look at the first
character, if it is <, you look at the next character. If that character is =, you return
(relop,LE) to the parser. If instead that character is >, you return (relop,NE). If it is
another character, return (relop,LT) and adjust the input buffer so that you will read this
character again since you have not used it for the current lexeme. If the first character
was =, you return (relop,EQ).
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Transition Diagrams

+ Transition diagrams have a collection of nodes or circles, called States.

» Each state represents a condition that could occur during the process of
scanning the input looking for a lexeme that matches one of several
patterns.

+ Edges are directed from one state of the transition diagram to another.

<
w — @O

To design transition diagram following conventions are used
e Convention about Transition diagrams

1. Acceptingstate or final state- indicate that a lexeme has been found.
action to be taken ---return a token & attribute value to the parser

2. A *is placed at the final state, to retract the forward pointer one
position.

3. Start state or initial state indicated by an edge labeled “start”,
entering from nowhere.

Recognition of Reserved Words and Identifiers
The next transition diagram corresponds to the regular definition given previously.

Note again the star affixed to the final state.

Two questions remain.
1. How do we distinguish between identifiers and keywords such as then, which also

match the pattern in the transition diagram?
2. What is (gettoken(), installID())?

We will continue to assume that the keywords are reserved, i.e., may not be used as
identifiers. (What if this is not the case—as in P1/I, which had no reserved words? Then
the lexer does not distinguish between keywords and identifiers and the parser must.)

We will use the method mentioned last chapter and have the keywords installed into the
identifier table prior to any invocation of the lexer. The table entry will indicate that the

entry is a keyword.
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installID() checks if the lexeme is already in the table. If it is not present, the lexeme is
installed as an id token. In either case a pointer to the entry is returned.

gettoken() examines the lexeme and returns the token name, either id or a name
corresponding to a reserved keyword.

The text also gives another method to distinguish between identifiers and keywords.
Completion of the Running Example

So far we have transition diagrams for identifiers (this diagram also handles keywords)
and the relational operators. What remains are whitespace, and numbers, which are
respectively the simplest and most complicated diagrams seen so far.

Recognizing Whitespace

The diagram itself is quite simple reflecting the simplicity of the corresponding regular
expression.

e The delim in the diagram represents any of the whitespace characters, say space,
tab, and newline.

o The final star is there because we needed to find a non-whitespace character in
order to know when the whitespace ends and this character begins the next token.

e There is no action performed at the accepting state. Indeed the lexer does not
return to the parser, but starts again from its beginning as it still must find the next
token.

Recognizing Numbers

This certainly looks formidable, but it is not that bad; it follows from the regular
expression.

In class go over the regular expression and show the corresponding parts in the diagram.

When an accepting states is reached, action is required but is not shown on the diagram.
Just as identifiers are stored in a identifier table and a pointer is returned, there is a
corresponding number table in which numbers are stored. These numbers are needed
when code is generated. Depending on the source language, we may wish to indicate in
the table whether this is a real or integer. A similar, but more complicated, transition
diagram could be produced if the language permitted complex numbers as well.
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Architecture of a Transition-Diagram-Based Lexical Analyzer

The idea is that we write a piece of code for each decision diagram. I will show the one
for relational operations below. This piece of code contains a case for each state, which
typically reads a character and then goes to the next case depending on the character read.
The numbers in the circles are the names of the cases.

Accepting states often need to take some action and return to the parser. Many of these
accepting states (the ones with stars) need to restore one character of input. This is called
retract() in the code.

What should the code for a particular diagram do if at one state the character read is not
one of those for which a next state has been defined? That is, what if the character read is
not the label of any of the outgoing arcs? This means that we have failed to find the token
corresponding to this diagram.

The code calls fail(). This is not an error case. It simply means that the current input does
not match this particular token. So we need to go to the code section for another diagram
after restoring the input pointer so that we start the next diagram at the point where this
failing diagram started. If we have tried all the diagram, then we have a real failure and
need to print an error message and perhaps try to repair the input.

Note that the order the diagrams are tried is important. If the input matches more than one
token, the first one tried will be chosen.

TOKEN getRelop() // TOKEN has two components
TOKEN retToken = new(RELOP); // First component set here
while (true)

switch(state)

case 0: ¢ = nextChar();
if c=='<") state=1;

else if (c =="'=") state = 5;
else if (c ==">") state = 6;
else fail();
break;

case 1: ...

case 8: retract(); // an accepting state with a star
retToken.attribute = GT; // second component
return(retToken);
Alternate Methods
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The book gives two other methods for combining the multiple transition-diagrams (in
addition to the one above).

1. Unlike the method above, which tries the diagrams one at a time, the first new
method tries them in parallel. That is, each character read is passed to each
diagram (that hasn't already failed). Care is needed when one diagram has
accepted the input, but others still haven't failed and may accept a longer prefix of
the input.

2. The final possibility discussed, which appears to be promising, is to combine all
the diagrams into one. That is easy for the example we have been considering because
all the diagrams begin with different characters being matched. Hence we just have
one large start with multiple outgoing edges. It is more difficult when there is a
character that can begin more than one diagram.
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UNIT II: SYNTAX ANALYSIS -1
SYLLABUS

Syntax Analysis — 1: Introduction;
Context-free Grammars;

Writing a Grammar.

Top-down Parsing;

Bottom-up Parsing

SYNTAX ANALYSIS-1
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Introduction
» Syntax Analyzer creates the syntactic structure of the given source program.

» This syntactic structure is mostly a parse tree.
* Syntax Analyzer is also known as parser.
* The syntax of a programming is described by a context-free grammar (CFG). We
will use BNF (Backus-Naur Form) notation in the description of CFGs.
» The syntax analyzer (parser) checks whether a given source program satisfies the
rules implied by a context-free grammar or not.
— If it satisfies, the parser creates the parse tree of that program.
— Otherwise the parser gives the error messages.
* A context-free grammar
— gives a precise syntactic specification of a programming language.
— the design of the grammar is an initial phase of the design of a compiler.
— agrammar can be directly converted into a parser by some tools.
» Parser works on a stream of tokens.
*  The smallest item is a token.
Fig :Position Of Parser in Compiler model

source Lexical token parse tree
. 14 .
prograni > P Parser Intermediate
" Analvzer | setnextfoken representation
X

SYMBOL TABLE
*  We categorize the parsers into two groups:

1. Top-Down Parser

2. the parse tree is created top to bottom, starting from the root.
1. Bottom-Up Parser

— the parse is created bottom to top; starting from the leaves

* Both top-down and bottom-up parsers scan the input from left to right (one
symbol at a time).
» Efficient top-down and bottom-up parsers can be implemented only for sub-
classes of context-free grammars.
— LL for top-down parsing
— LR for bottom-up parsing

Syntax Error Handling
* Common Programming errors can occur at many different levels.

1. Lexical errors: include misspelling of identifiers, keywords, or operators.
2. Syntactic errors : include misplaced semicolons or extra or missing braces.
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3. Semantic errors: include type mismatches between operators and operands.
4. Logical errors: can be anything from incorrect reasoning on the part of the
programmer.

Goals of the Parser
» Report the presence of errors clearly and accurately

* Recover from each error quickly enough to detect subsequent errors.
* Add minimal overhead to the processing of correct programs.

Error-Recovery Strategies
* Panic-Mode Recovery

* Phrase-Level Recovery
e Error Productions
* Global Correction

Panic-Mode Recovery
* On discovering an error, the parser discards input symbols one at a time until one

of a designated set of Synchronizing tokens is found.
* Synchronizing tokens are usually delimiters.

Ex: semicolon or } whose role in the source program is clear and unambiguous.
» It often skips a considerable amount of input without checking it for additional
errors.
Advantage:
Simplicity
Is guaranteed not to go into an infinite loop
Phrase-Level Recovery
* A parser may perform local correction on the remaining input. i.e

it may replace a prefix of the remaining input by some string that allows the parser to
continue.
Ex: replace a comma by a semicolon, insert a missing semicolon
* Local correction is left to the compiler designer.

» Itis used in several error-repairing compliers, as it can correct any input string.
» Difficulty in coping with the situations in which the actual error has occurred
before the point of detection.

Error Productions
*  We can augment the grammar for the language at hand with productions that

generate the erroneous constructs.

* Then we can use the grammar augmented by these error productions to
Construct a parser.

« If an error production is used by the parser, we can generate appropriate error
diagnostics to indicate the erroneous construct that has been recognized in the
input.

Global Correction

*  We use algorithms that perform minimal sequence of changes to obtain a globally

least cost correction.
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* Given an incorrect input string x and grammar G, these algorithms will find a
parse tree for a related string y.

* Such that the number of insertions, deletions and changes of tokens required to
transform x into y is as small as possible.

» It is too costly to implement in terms of time space, so these techniques only of
theoretical interest.

Context-Free Grammars
* Inherently recursive structures of a programming language are defined by a

context-free grammar.
* In a context-free grammar, we have:
— A finite set of terminals (in our case, this will be the set of tokens)
— A finite set of non-terminals (syntactic-variables)
— A finite set of productions rules in the following form
s A->a where A is a non-terminal and
a is a string of terminals and non-terminals (including the empty

string)
— A start symbol (one of the non-terminal symbol)

NOTATIONAL CONVENTIONS
1. Symbols used for terminals are :

» Lower case letters early in the alphabet (such as a, b, c, .. .)

Operator symbols (such as +, *, .. .)

Punctuation symbols (such as parenthesis, comma and so on)

The digits(0...9)

Boldface strings and keywords (such as id or if) each of which represents

YV VYV

a single terminal symbol
2. Symbols used for non terminals are:
» Uppercase letters early in the alphabet (such as A, B, C, ...)
» The letter S, which when it appears is usually the start symbol.
» Lowercase, italic names (such as expr or stmt).
3. Lower case greek letters, a, B, v for example represent (possibly empty)
strings of grammar symbols.
Example: using above notations list out terminals, non terminals and start symbol in
the following example
E->E+T | E-T| T
T—>T*F | T/F |F
F—> (E)| id

Here terminal are +-,%/,(),1d
Non terminals are E,T,F
Start symbol is E
Derivations
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E = E+E
* E+E derives from E

— we can replace E by E+E
— to able to do this, we have to have a production rule E—E+E in our
grammar.
E = E+E = id+E = id+id
* A sequence of replacements of non-terminal symbols is called a derivation of
id+id from E.
* In general a derivation step is
oAB = ay if there is a production rule A—y in our grammar
where o and B are arbitrary strings of terminal and non-
terminal symbols
U= 0=..=>0, (o, derivesfroma; or ayderives o)

= : derives in one step
= : derives in zero or more steps
= : derives in one or more steps

CFG — Terminology
* L(G) is the language of G (the language generated by G) which is a set of

sentences.
» A sentence of L(G) 1is a string of terminal symbols of G.
» If Sis the start symbol of G then
o is a sentence of L(G) iff S= ® where o is a string of terminals of G.
* If G is a context-free grammar, L(G) is a context-free language.
* Two grammars are equivalent if they produce the same language.
* S = a - If a contains non-terminals, it is called as a sentential form of G.

- If o does not contain non-terminals, it is called as a sentence of
G.
Derivation Example
E = -E = -(E) = -(E+E) = -(id+E) = -(id+id)
OR
E = -E = -(E) = -(E+E) = -(E+id) = -(id+id)
» At each derivation step, we can choose any of the non-terminal in the sentential
form of G for the replacement.
« If we always choose the left-most non-terminal in each derivation step, this
derivation is called as left-most derivation.
« If we always choose the right-most non-terminal in each derivation step, this
derivation is called as right-most derivation.
Left-Most and Right-Most Derivations
Left-Most Derivation
E = -E = -(E) = -(E+E) = -(id+E) = -(id+id)

lm lm lm I I
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Right-Most Derivation
E = -E = -(E) = -(E+E) = -(E+id) = -(id+id)
m m m m m
*  We will see that the top-down parsers try to find the left-most derivation of the
given source program.
*  We will see that the bottom-up parsers try to find the right-most derivation of the
given source program in the reverse order.
Parse Tree
*  Inner nodes of a parse tree are non-terminal symbols.
*  The leaves of a parse tree are terminal symbols.
* A parse tree can be seen as a graphical representation of a derivation.

E .
E — 'E S \\\\\.q p— -[E} P E — 'tE+E) ) E\
I . E . E
S AR
( E ) ( E )
E E E+ E
= -(1d+E) S = -(1d+1d) N
( E ] ( E )
E + E E + E

l | |

id id id
Problems on derivation of a string with parse tree:
1. Consider the grammar S (L) | a
L->LS|S
1. What are the terminals, non terminal and the start symbol?
ii. Find the parse tree for the following sentence
a. (a,a)
b. (a, (a, a))
c. (a,((a,a),(a,a)
iii. Construct LMD and RMD for each.
2. Do the above steps for the grammar S = aS | aSbS | € for the string “aaabaab”
Ambiguity
* A grammar produces more than one parse tree for a sentence is
called as an ambiguous grammar.
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E
E = E+E = id+E = id+E*E PP I
= id+Hd*E = id+id*id e
1d E E
| |
id id
- ~ T ~ TR . ~ T E
E = E*E = E+E*E = id+E*E RN
= id+id*E = id+id*id E " E
PARN |

E + E
|

| 1d

I

SYNTAX ANALYSIS-1

* For the most parsers, the grammar must be unambiguous.

* unambiguous grammar

=> unique selection of the parse tree for a sentence
* We should eliminate the ambiguity in the grammar during the design phase of the

compiler.

* An ambiguous grammar should be written to eliminate the ambiguity.
* We have to prefer one of the parse trees of a sentence (generated by an ambiguous
grammar) to disambiguate that grammar to restrict to this choice.

« EG:
Ambiguity (cont.)
stmt > if expr then stmt |
if expr then stmt else stmt | otherstmts
if E, then if E, then §, else §,
stmt stmt
if expr then stmt else stmt if expr then stmt

E, if expr then stmt S,

2 1

E,

if expr then stmt else stmt

AN NN

E, S, S,

*  We prefer the second parse tree (else matches with closest if).
*  So, we have to disambiguate our grammar to reflect this choice.

*  The unambiguous grammar will be:
* stmt — matchedstmt | unmatchedstmt
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* matchedstmt — if expr then matchedstmt else matchedstmt | otherstmts

* unmatchedstmt — if expr then stmt |

. if expr then matchedstmt else unmatchedstmt

Problems on ambiguous grammar:
Show that the following grammars are ambiguous grammar by constructing either
2 Imd or 2 rmd for the given string.

1. S > S(S)S| € with the string (()())

2. S>> S+S||SS|(S) |S* a with the string (ata)*a

3. S > aS|aSbS | € with the string abab

Ambiguity — Operator Precedence
* Ambiguous grammars (because of ambiguous operators) can be disambiguated
according to the precedence and associativity rules.
E—> E+E | E*E | E*E | id | (E)
disambiguate the grammar
precedence: * (right to left)
* (left to right)
+  (left to right)

E>E+T | T
T — T*F | F
F>G' | G
G—id | (E)

Left Recursion
* A grammar is left recursive if it has a non-terminal A such that there is a

derivation.
+
A= Aa for some string o
* Top-down parsing techniques cannot handle left-recursive grammars.
* So, we have to convert our left-recursive grammar into an equivalent grammar
which is not left-recursive.
* The left-recursion may appear in a single step of the derivation (immediate left-
recursion), or may appear in more than one step of  the derivation.
Immediate Left-Recursion
A—>Aal| P where 3 does not start with A
eliminate immediate left recursion
A>PA
A—>aA e an equivalent grammar
In general,
A>Ao|...|Aom|Bi].]|Bn where f3; ... B, do not start with A
eliminate immediate left recursion
A>BiA | [BaA
A->oA |..lonA |e an equivalent grammar
Example
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E—E+T | T
T —> THF F

F—id | (E)

U eliminate immediate left recursion
E—TE
E—+TE |&
T FT

T —*FT |&

F—id | (E)

Left-Recursion — Problem
* A grammar cannot be immediately left-recursive, but it still can be
left-recursive.
* By just eliminating the immediate left-recursion, we may not get
a grammar which is not left-recursive.
S— Aa|b
A — Sc|d  This grammar is not immediately left-recursive,
but it is still left-recursive.
S = Aa= Sca or
A = Sc = Aac causes to a left-recursion
*  So, we have to eliminate all left-recursions from our grammar
Eliminate Left-Recursion — Algorithm
- Arrange non-terminals in some order: Aj ... A,
-for i from 1 to n do {
- for jfrom 1 toi-1 do {
replace each production

Ai —> Aj Y
by
Ai>aryl|..|oky
where A;j — oy | ... | ok
§
- eliminate immediate left-recursions among A; productions
j
Example2:
S— Aa|b
A—>Ac|Sd|f
- Order of non-terminals: A, S
for A:
- we do not enter the inner loop.
- Eliminate the immediate left-recursion in A
A — SdA' | fA
A —>cA e
for S:

-Replace S — Aa with S—SdAa | fAa
So, we will have S — SdAa | fAa |b
- Eliminate the immediate left-recursion in S
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S — fA’aS’ |bS
S >dAaS’ | ¢
So, the resulting equivalent grammar which is not left-recursive is:
S — fA’aS’ |bS
S >dAaS’ | ¢
A — SdA |fA
A —>cA e

Problems of left recursion
1. S>S(S)S|e
2. S>S+S|ISS|(S)|S*a
3. S>SS+|SS*|a
4. bexpr = bexpr or bterm | bterm

bterm —>bterm and bfactor | bfactor
bfactor = not bfactor | (bexpr) | true | false
5. S=>@L)|a,L>LS|S

Left-Factoring
* A predictive parser (a top-down parser without backtracking) insists that the

grammar must be left-factored.
grammar =» a new equivalent grammar suitable for predictive parsing
stmt — if expr then stmt else stmt |
if expr then stmt
» when we see if, we cannot now which production rule to choose to re-write stmt
in the derivation.
* In general,
A— afi | a2 where o is non-empty and the first symbols
of B; and B, (if they have one)are different.
* when processing o we cannot know whether expand

Atoaf; or
A to a3,
* But, if we re-write the grammar as follows
A— oA
A>Bi | B2 s0, we can immediately expand A to alA’

Left-Factoring — Algorithm
* For each non-terminal A with two or more alternatives (production rules) with a

common non-empty prefix, let say
A= afy]...|oBa] y1]-|Vm
convert it into
A— aA [ 71| |¥m
A —>Bi]..|Bn
Left-Factoring — Examplel
A — abB | aB | cdg | cdeB | cdfB
U
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A —aA | cdg | cdeB | cdfB
A —>bB|B
U
A —>aA |cdA’
A >bB|B
A —>gl|eB|fB
Example2
A —ad|alab|abc|b
U

A —>aA’|b
A’ —>dle |b]|bc
U

A—>aA’|b

A’ —>d|e |bA”

A’ —>¢g |c

Problems on left factor

1. S > iEtS |iEtSeS | a, E->Db 6.S-> 0S1 |01

2. S>S(S)S|e 7.S > S+S|ISS|(S) |S* a

3. S>aS|aSbS|e 8.S>([L)|a,L>L,S|S

4. S>> SS+|SS*|a

5. bexpr = bexpr or bterm | bterm 9. rexpr =2 rexpr + rterm | rterm
bterm —>bterm and bfactor | bfactor rterm  —>rterm rfactor |
rfactor
bfactor = not bfactor | (bexpr) | true | false rfactor = rfactor* | rprimary

rprimary —2a |b do both
leftfactor and left recursion

Non-Context Free Language Constructs
* There are some language constructions in the programming languages which are

not context-free. This means that, we cannot write a context-free grammar for
these constructions.
* Ll={wco|misin(a|b)*} is not context-free
> Declaring an identifier and checking whether it is declared or not later.
We cannot do this with a context-free language. We need semantic analyzer (which is
not context-free).
¢ L2={a"b"c"d"| n>1 and m>1 } is not context-free
> 4 Declaring two functions (one with n parameters, the other one with
m parameters), and then calling them with actual parameters.

Top — down parser
Recursive Descent parser Predictive parser

LL(1) parser LL(k) parser
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First L stands for left to right scan
Second L stands for LMD
(1) stands for only one i/p symbol to predict the parser
(2) stands for k no. of i/p symbol to predict the parser
» The parse tree is created top to bottom.

* Top-down parser
— Recursive-Descent Parsing
» Backtracking is needed (If a choice of a production rule does not
work, we backtrack to try other alternatives.)
» Itis a general parsing technique, but not widely used.
* Not efficient
— Predictive Parsing
* no backtracking
» efficient
* Needs a special form of grammars (LL (1) grammars).
* Recursive Predictive Parsing is a special form of Recursive
Descent parsing without backtracking.

Non-Recursive (Table Driven) Predictive Parser is also known as LL (1) parser.
Recursive-Descent Parsing (uses Backtracking)
» Backtracking is needed.

o [t tries to find the left-most derivation.

S — aBc
B—bc | b

S
input: abc /IB\ /f
a C a lf\c
b c
Predictive Parser

fails. backtrack b
*  When re-writing a non-terminal in a derivation step, a predictive parser can
uniquely choose a production rule by just looking the current symbol in the input

string.
A->a]..|o, input: ...a.......
Eurrent token
example
stmt — if ...... |
while ...... |
begin ...... |
for .....

*  When we are trying to write the non-terminal s¢mt, if the current token is if we
have to choose first production rule.
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*  When we are trying to write the non-terminal stm¢, we can uniquely choose the
production rule by just looking the current token.

* We eliminate the left recursion in the grammar, and left factor it. But it may not
be suitable for predictive parsing (not LL(1) grammar).

Non-Recursive Predictive Parsing -- LL(1) Parser
* Non-Recursive predictive parsing is a table-driven parser.

* Itis atop-down parser.
* Itis also known as LL(1) Parser.

Inpat Buffer

Stack
Chatpmt

Fiz: Model Of Hon-Eemis e predictve parsing

LL(1) Parser
input buffer
— our string to be parsed. We will assume that its end is marked with a
special symbol §.
output
— a production rule representing a step of the derivation sequence (left-most
derivation) of the string in the input buffer.
stack
— contains the grammar symbols
— at the bottom of the stack, there is a special end marker symbol $.
— initially the stack contains only the symbol $ and the starting symbol S. $S
€ initial stack
— when the stack is emptied (ie. only $ left in the stack), the parsing is
completed.
parsing table

— atwo-dimensional array M[A, a]
— each row is a non-terminal symbol
— each column is a terminal symbol or the special symbol $

each entry holds a production rule.
Constructing LL(1) Parsing Tables
* Two functions are used in the construction of LL(1) parsing tables:

— FIRST FOLLOW
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* FIRST(a) is a set of the terminal symbols which occur as first symbols in strings
derived from a where a is any string of grammar symbols.
* if a derives to g, then ¢ is also in FIRST(a) .
« FOLLOWT(A) is the set of the terminals which occur immediately after (follow)
the non-terminal A in the strings derived from the starting symbol.
— aterminal a is in FOLLOW(A) if S = aAa
— $isin FOLLOW(A) if S= aA

Compute FIRST for Any String X
» If X is a terminal symbol = FIRST(X)={X}

e If X is a non-terminal symbol and X — ¢ is a production rule = ¢ is in
FIRST(X).
+ If X is a non-terminal symbol and X — YY>..Y, is a production rule

=>» if a terminal a in FIRST(Y;) and ¢ is in all FIRST(Yj) for j=1,...,i-1then a is in
FIRST(X).
=>» if ¢ is in all FIRST(Y;) for j=1,...,n then ¢ is in FIRST(X).

e IfXise > FIRST(X)={¢}
e IfXisYY,.Y, -> if a terminal a in FIRST(Y;) and ¢ is in all
FIRST(Y;) for

7=1,...1-1 then a is in  FIRST(X).
> if e is in all FIRST(Y;) for j=1,...,n
then ¢ is in FIRST(X).
Compute FOLLOW (for non-terminals)
» If S is the start symbol =» $is in FOLLOW(S)

* if A— aBp isaproductionrule =>» everything in  FIRST(B) is

FOLLOW(B) except ¢
« If (A — aBisaproductionrule) or ( A — aBp is a production rule and € is in
FIRST(B) )
= everything in FOLLOW(A) is in
FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

LL(1) Parser — Parser Actions
* The symbol at the top of the stack (say X) and the current symbol in the input

string (say a) determine the parser action.
* There are four possible parser actions.
1. If X and aare $§ = parser halts (successful completion)
2. If X and a are the same terminal symbol (different from $)

=> parser pops X from the stack, and moves the next symbol in the input buffer.
3. If X is a non-terminal
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=>» parser looks at the parsing table entry M[X, a]. If M[X, a] holds a production

rule X—>YY;...Yy, it pops X from the stack and pushes Yk, Yk.1,..., Y into the stack. The

parser also outputs the production rule X—YY,...Y to represent a step of the derivation.
4. none of the above =» error

— all empty entries in the parsing table are errors.
— If X is a terminal symbol different from a, this is also an error case.

Non-Recursive predictive parsing Algorithm

METHOD: Initially. the parser is in a configuration with w$ in the input buffer
and the start symbol S of G on top of the stack, above §. The program in
Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for
the input. O

set ip to point to the first symbol of w;
set X to the top stack symbol;
while ( X #$ ) { /* stack is not empty */
if ( X is a ) pop the stack and advance ip;
else if ( X is a terminal ) error();
else if ( M[X,a] is an error entry ) error();
else if ( M[X,a]=X =2 Y1Y2---Y ) {
output the production X — Y1¥5--- ¥}
pop the stack;
push Y%, Yx_1,...,Y] onto the stack, with ¥} on top;

}

set X to the top stack symbol;

Figure 4.20: Predictive parsing algorithm

LL(1) Parser — Examplel

S — aBa LL (1) Parsing Table
B—>bB |¢
FIRST FUNCTION
FIRST(S) = {a} FIRST (aBa) = {a}
FIRST (B) = {b} FIRST (bB) = {b} FIRST (¢) = {¢}
FOLLOW FUNCTION
FOLLOW(S) = {$} FOLLOW (B)= {a}
a b $
S S — aBa
B |B—o¢ B — bB
stack input output
$S abba$ S —» aBa
$aBa abba$
$aB bba$ B — bB
$aBb bba$

DEPT. OF CSE, SIBIT Page 43



COMPILER DESIGN [10CS63] UNIT- 11 SYNTAX ANALYSIS-1

$aB ba$ B — bB

$aBb ba$

$aB a$ B—e

$a a$

$ $ accept, successful completion

Outputs: S—>aBa B —>bB B —>bB B—oe

Derivation(left-most): S—aBa—abBa—>abbBa—>abba
S

parse tree

Example2

E—>TE

E >+TE | ¢

T—>FT

T —*FT | ¢

F—(E) | id

Soln:

FIRST Example

E—TE

E 5>+TE | ¢

T—>FT

T > *FT | ¢

F—(E) | id

FIRST(F) = {(,id} FIRST(TE) = {(,id}
FIRST(T) = {*, €} FIRST(+TE ) = {+}
FIRST(T) = {(,id} FIRST(¢) = {&}
FIRST(E) = {+, &} FIRST(ET) = {(,id}
FIRST(E) = {(,id} FIRST(*FT ) = {*}
FIRST(¢) = {¢} FIRST((E)) = {(} FIRST(id) = {id}
FOLLOW Example

E—TE

E 5>+TE | ¢

T—>FT

T > *FT | ¢

F—(E) | id

FOLLOW (E) = {$,)}
FOLLOW (E) = {$,)}
FOLLOW (T) = {+,), $}
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FOLLOW (T) = {+,), $}
FOLLOW (F) = {+, *,), $}
Constructing LL (1) Parsing Table — Algorithm
+ for each production rule A — o of a grammar G

for each terminal a in FIRST(a)
If € in FIRST(o)
— a to M[A, a]
If ¢ in FIRST(a) and $ in FOLLOW(A) =» add A — a to M[A, $]
All other undefined entries of the parsing table are error entries.

= add A - a to M[A, a]
=>» for each terminal a in FOLLOW(A) add A

Constructing LL (1) Parsing Table — Example

E—TE FIRST (TE) = {(, id} = E - TE into M [E, (] and M[E, id]
E >+TE  FIRST (+TE)= {+} = E — +TE into M [E, +]
E >¢ FIRST (¢) = {¢} => none
but since € in FIRST(g) and FOLLOW(E )={$,)}
2 E — ¢ into M[E,$] and M[E )]
T—>FT FIRST (FT) = {(, id} = T — FT into M[T,(] and M[T, id]
T —*FT  FIRST (*FT)={*} =T — *FT into M [T ,*]
T >e¢ FIRST (¢) = {¢} => none
but since ¢ in FIRST(¢)
and FOLLOW(T )={$, ) ,+}
ST ¢ intoM[T,$,M[T,)] and M [T ,+]
F - (E) FIRST ((E)) = {(} = F - (E) into M [F, (]
F > id FIRST (id)= {id} = F — id into M [F, id]
id + * ( ) $
E |E > E—>TE
TE
’ E — +TE E >¢ E >¢
T - T—>FT
FT
T T >e¢ T - Toe |Toe
*FT
F F—id F— (E)
stack input output
$E id+id$ E—>TE
SET id+id$ T—>FT
$SE TF id-+id$ F—id
$E Tid id-+id$
SET +id$ T >e¢
$E +id$ E - +TE
$E T+ +id$
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SET id$ T—>FT
SETF id$ F—id
$E Tid id$

SET $ T >¢

SE $ E >¢

$ $ accept

Construct the predictive parser LL (1) for the following grammar and parse the
given string

1. S = S(S)S | € with the string ( () ( 7. P> Ra|Qba

)) R - aba | caba | Rbc
2. S +SS||*SS | a with the string Q - bbe be string
5. S5 PR
3. S > aSbS | bSaS | € with the string ' P>a|Rb|c
“aabbbab” Q>c|dP|e
4. bexpr = bexpr or bterm | bterm R>el|f string*adeb”
E‘;er?l —->bterm and bfactor | 9. EQE+TIT
actor o :
bfactor = not bfactor | (bexpr) | ;[(3 1121’ |Fid|[F} | 11%1]1 g “id[id]”
true | false 10.S > (A) |0
string * not(tme or false)” AS SB
5. S 0S1]01 string “00011” B> SBle string® (0, (0.0))"
6. S—>aB|aC|Sd|Se 11.89;|T|(T) T
B 2> bBc|f T>TS|S
C2s String (a,(a,a))

String ((a,a), T , (a),a)

LL (1) Grammars
* A grammar whose parsing table has no multiply-defined entries is said to be LL

(1) grammar. one input symbol used as a look-head symbol do determine parser
action LL (1) left most derivation input scanned from left to right
* The parsing table of a grammar may contain more than one production rule. In
this case, we say that it is not a LL (1) grammar.
A Grammar which is not LL (1)
S—>iCtSE | a
E—>eS | ¢

C—>b

FIRST(iCtSE) = {i} FOLLOW(S) = {8, ¢}
FIRST(a) = {a} FOLLOW (E) = {8, e}
FIRST(eS) = {e} FOLLOW(C)= {t}

FIRST(e) = {&}
FIRST(b) = {b}
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a b e i t $
S—a S — iCtSE
E E—>eS E—>¢
Fias
C C—->b ]l

two production rules for M[E, e]
Problem =» ambiguity
»  What do we have to do it if the resulting parsing table contains multiply defined

entries?

— If we didn’t eliminate left recursion, eliminate the left recursion in the
grammar.

— If the grammar is not left factored, we have to left factor the grammar.

— If it’s (new grammar’s) parsing table still contains multiply defined
entries, that grammar is ambiguous or it is inherently not a LL(1)
grammar.

* A left recursive grammar cannot be a LL (1) grammar.
- A->Aa|B
=>» any terminal that appears in FIRST(B) also appears FIRST(Aa)
because Ao = Pa.
= If B is &, any terminal that appears in FIRST(a) also appears in
FIRST(Aa) and FOLLOW(A).
* A grammar is not left factored, it cannot be a LL(1) grammar
- A-> OLB] | OLBQ
=» any terminal that appears in FIRST(af;) also appears in
FIRST(ap2).
* An ambiguous grammar cannot be a LL (1) grammar.

Properties of LL(1) Grammars
* A grammar G is LL(1) if and only if the following conditions hold for two

distinctive production rules A > a and A —
1. Both a and B cannot derive strings starting with same terminals.
2. At most one of a and [ can derive to €.

3. If B can derive to €, then o cannot derive to any string starting  with a
terminal in FOLLOW(A).

Error Recovery in Predictive Parsing
* An error may occur in the predictive parsing (LL(1) parsing)

— if the terminal symbol on the top of stack does not match with the current
input symbol.
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— if the top of stack is a non-terminal A, the current input symbol is a, and
the parsing table entry M[A, a] is empty.
*  What should the parser do in an error case?
— The parser should be able to give an error message (as much as possible
meaningful error message).
— It should be recovered from that error case, and it should be able to
continue the parsing with the rest of the input.

Error Recovery Techniques
* Panic-Mode Error Recovery

— Skipping the input symbols until a synchronizing token is found.
* Phrase-Level Error Recovery
— Each empty entry in the parsing table is filled with a pointer to a specific
error routine to take care that error case.
*  Error-Productions
— If we have a good idea of the common errors that might be encountered,
we can augment the grammar with productions that generate erroneous
constructs.
— When an error production is used by the parser, we can generate
appropriate error diagnostics.
— Since it is almost impossible to know all the errors that can be made by the
programmers, this method is not practical.
* Global-Correction
— Ideally, we would like a compiler to make as few changes as possible in
processing incorrect inputs.
— We have to globally analyze the input to find the error.
This is an expensive method, and it is not in practice.

Panic-Mode Error Recovery in LL (1) Parsing
* In panic-mode error recovery, we skip all the input symbols until a synchronizing

token is found.
* What is the synchronizing token?

— All the terminal-symbols in the follow set of a non-terminal can be used as
a synchronizing token set for that non-terminal.

*  So, a simple panic-mode error recovery for the LL(1) parsing:

— All the empty entries are marked as synch to indicate that the parser will
skip all the input symbols until a symbol in the follow set of the non-
terminal A which on the top of the stack. Then the parser will pop that
non-terminal A from the stack. The parsing continues from that state.

— To handle unmatched terminal symbols, the parser pops that unmatched
terminal symbol from the stack and it issues an error message saying that
that unmatched terminal is inserted.
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Panic-Mode Error Recovery — Example
S—> AbS|e|e
A —a|cAd
Soln:
FIRST (S) = FIRST (A) = {a, c}
FIRST (A) = {a, c}
FOLLOW (S) = {$}
FOLLOW (A) = {b, d}
a b c d e $
S|S — | sync | S > |sypc | S > S -
AbS AbS e €
AlA—>a sync | A — | sync | sync | sync
cAd

SYNTAX ANALYSIS-1

Eg: input string “aab”

stack input output

$S aab$ S — AbS

$SbA aab§ A —>a

$Sba aab$

$Sb  ab§  Error: missing b, inserted
$S ab§ S — AbS

$SbA ab$§ A —oa

$Sba ab$

$Sb  b$

$S $ S—>¢

$ $ accept

Eg: Another input string “ceadb”

stack input output

$S ceadb$ S — AbS

$SbA ceadb$ A — cAd
$SbdAc ceadb$

$SbdA eadb$ Error:unexpected e (illegal A)
(Remove all input tokens until first b or d, pop A)
$Sbd db$

$Sb b$

$S $ S—>¢

$ $ accept

Phrase-Level Error Recovery

Each empty entry in the parsing table is filled with a pointer to a special error

routine which will take care that error case.
These error routines may:

Change, insert, or delete input symbols.
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— issue appropriate error messages
— Pop items from the stack.
* We should be careful when we design these error routines, because we may put
the parser into an infinite loop.
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UNIT III: SYNTAX ANALYSIS-2
SYLLABUS

e Top-down Parsing;

e Bottom-up Parsing
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Bottom-Up Parsing

order)

A bottom-up parser creates the parse tree of the given input starting from leaves
towards the root.
A bottom-up parser tries to find the right-most derivation of the given input in the
reverse order.
S = ...= o (the right-most derivation of ®)

< (the bottom-up parser finds the right-most derivation in the reverse

Bottom-up parsing is also known as shift-reduce parsing because its two main
actions are shift and reduce.

— At each shift action, the current symbol in the input string is pushed to a
stack.

— At each reduction step, the symbols at the top of the stack (this symbol
sequence is the right side of a production) will replaced by the non-
terminal at the left side of that production.

— There are also two more actions: accept and error.

Shift-Reduce Parsing

A shift-reduce parser tries to reduce the given input string into the starting
symbol.

astring =2 the starting symbol

reduced to

At each reduction step, a substring of the input matching to the right side of a
production rule is replaced by the non-terminal at the left side of that production
rule.
If the substring is chosen correctly, the right most derivation of that string is
created in the reverse order.

Rightmost Derivation: S= o

m
Shift-Reduce Parser finds: o<« ..<S

nn mnm

Example

S — aABb input string: aaabb

A—aA | a aaAbb

B—>bB |b aAbb U reduction
aABb
S
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S = aABb = aAbb = aaAbb = aaabb

mm mm nn nn

Wv

Right Sentential Forms
*  How do we know which substring to be replaced at each reduction step?
Handle
* Informally, a handle of a string is a substring that matches the right side of a
production rule.

— But not every substring matches the right side of a production rule is
handle

* A handle of a right sentential form y (= afw) is
a production rule A — B and a position of y
where the string 3 may be found and replaced by A to produce
the previous right-sentential form in a rightmost derivation of y.
S = aAw = afw
mm m
» If the grammar is unambiguous, then every right-sentential form of the grammar
has exactly one handle.
*  We will see that o is a string of terminals.
Handle Pruning

* Aright-most derivation in reverse can be obtained by handle-pruning.
S='YO= ‘Yl = ')JZ = ... 'Yn-l = -Yn= w

\ input string

e Start from Yoo find a handle An_)rBrl in Yoo and
replace 8, in by A, to get vy, ;.
e Then find a handle A, ,—8,., in ¥4, and

replace 8,, inby A, to get vy, .
= Repeat this, until we reach S.

e Handle pruning help in finding handle which will be reduced to a non
terminal, that is the process of shift reduce parsing.

A Shift-Reduce Parser
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E—E+T | T Right-Most Derivation of id+id+*id
T—T*F | F E = E+T = E+T*F = E+T*id = E+F*id
F—(E) | id = E+id*id = T+id*id = F+id*id = id+id*id
Right-Most Sentential Form Reducing Production
id+id*id F—id

F+id*id T—F

r+id*id E—>T

E+id*id F—id

E+F*id T>F

E+T*id F—id

E+T*F T— T*F

;i E— E+T

Handles= arered and underlined in the right-sentential forms.

A Stack Implementation of A Shift-Reduce Parser
» There are four possible actions of a shift-parser action:
1. Shift : The next input symbol is shifted onto the top of the stack.
2. Reduce: Replace the handle on the top of the stack by the non-terminal.
3. Accept: Successful completion of parsing.
4. Error: Parser discovers a syntax error, and calls an error recovery routine.
* Initial stack just contains only the end-marker $.
» The end of the input string is marked by the end-marker $.

Consider the following grams and parse the respective strings using shift-
reduce parser.
(OE—-E+T | T
T—>T*F |F
F—>(E) | id string is “id +1d * id”
Here we follow 2 rules
1. If the incoming operator has more priority than in stack operator then
perform shift.
2. If in stack operator has same or less priority than the priority of incoming
operator then perform reduce.
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A Stack Implementation of A Shift-Reduce Parser

Stack Input Action
$ id+id*id$ shift
$id +id*id$ reduce by F — id
$F +id*id$ reduce by T - F
$T +id*id$ reduceby E > T
$E +id*id$ shift
$E+ id*id$ shift
$E+id *1d$ reduce by F — id
$E+F *1d$ reduce by T —> F
$E+T *id$ shift
SE+T* id$ shift
$E+T*id $ reduce by F — id
$E+T*F $ reduce by T — T*F
$E+T $ reduce by E — E+T
$E $ accept
(2) S >TL;

T —>int | float

L->L,id|id

String is “int id, id;” do shift-reduce parser.

3)S>@D)a
L->LS]|S

String “(a,(a,a))” do shift-reduce parser.

Parse Tree

y
Lol !
i(|i i(|1
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Shift reduce parser problem

Take the grammar:
Sentence --> NounPhrase VerbPhrase = NounPhrase --> Art Noun
VerbPhrase --> Verb | Adverb Verb Art-->the|a]...

Verb --> jumps | sings | ... Noun --> dog | cat | ...

And the input: “the dog jumps”. Then the bottom up parsing is:
Stack Input Sequence ACTION
$ the dog jumps$ SHIFT word onto stack
$the dog jumps$ REDUCE using grammar rule
SArt dog jumps$ SHIFT..
$Art dog jumps$ REDUCE..
$Art Noun jumps$ REDUCE
$NounPhrase jumps$ SHIFT
$NounPhrase jumps $ REDUCE
$NounPhrase Verb $ REDUCE
$NounPhrase VerbPhrase $ REDUCE
$Sentence $ SUCCESS

Conflicts During Shift-Reduce Parsing

There are context-free grammars for which shift-reduce parsers cannot
beused.

Stack contents and the next input svmbol mav not decide action:
— shift'reduce conflict: Whether make a shift operation or a reduction.

— reduce/reduce conflict: The parser cannot decide which of several
reductions to make.

If a shift-reduce parser cannot be used for a grammar, that grammar is
called as non-LE(k) grammar.

left té right right-most klookhead
sCENnmg derivation

An ambiguous grammar can never be a LR grammar.

Shift-Reduce Parsers

There are two main categories of shift-reduce parsers
Operator-Precedence Parser
— Simple, but only a small class of grammars.
— LR-Parsers

DEPT. OF CSE, SIBIT Page 56



COMPILER DESIGN [10CS63] UNIT- 11 SYNTAX ANALYSIS-2

— Covers wide range of grammars.
* SLR —simple LR parser
* LR —most general LR parser
* LALR — intermediate LR parser (lookhead LR parser)
SLR, LR and LALR work same, only their parsing tables are different

LR Parsers

* The most powerful shift-reduce parsing (vet efficient)is:

LR(k) parsing.

left té right-moest kIFokhead

sCEnning derivation (kis omitted = it1s 1)

» LR parsing is attractive because:
— LR parsing iz most generzl non-backtracking shift-reduce parsing, vet it 1z still efficient.
— The class of grammoars that can be parsed using ILE. methods is 2 proper superset of the class
of grammears that can be parsed with predictive parsers.
LL{1)-Grammars — LE{1)-Grammars
— AnLF-parser can detect = syntactic efrof 25 3000 23 it i3 possible to do so 2 lefi-to-right
scan of the mput.

LR Parsers
* LR-Parsers
— covers wide range of grammars.
— SLR —simple LR parser
— LR — most general LR parser(canonical LR)
— LALR - intermediate LR parser (look-head LR parser)
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— SLR, LR and LALR work same (they used the same algorithm), only their
parsing tables are different.

LR Parsing Algorithm
input |a1 | |ai | |an |$ |
stack
S
)S(m \ LR Parsing Algorithm [——output
'm-1
X

AN

Action Table Goto Table

S] terminals and $ non-terminal
X, s s

t four different t each item is
Sy a actions a a state number

t t

e e

s s

A Configuration of LR Parsing Algorithm

* A configuration of a LR parsing is:

(S Xy Sy Xy S @254, -2, 8)

Stack Rest of Input

* S, and a; decides the parser action by consulting the parsing action
table. (/nitial Stack contains just S, )

* A configuration of a LR parsing represents the right sentential form:

X Xnaa,..a, 8

1
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Actions of A LR-Parser

1. shifts -- shifts the next input symbol and the state s onto the stack
(Se Xy Sy Xy Spp @351 -3, 8) P (S, Xy S Xy S @i S, 84y -8, 8)

2. reduce A—>B (or rn where n is a production number)
— pop 2|B| (=r) items from the stack;

— then push A and s where s=gotol[s,, ,A]
(S XSy X S @ @jq -3, 8) D2 (S, XS, Xy Sy A s, .02, 8)

m ~m’ m-r ~m-r

— Output is the reducing production reduce A—f
3. Accept — Parsing successfully completed

4. Error -- Parser detected an error (an empty entry in the action table)

Reduce Action
* pop 2|B| (=r) items from the stack; let us assume that B =Y;Y>...Y;
* then push A and s where s=goto[spy.r,A]
( So X1 S1 Xm_r Sm_rYl Sm_r ...Yr Sm, aj dj+1 ... Ap $ )
2 (SoXiSy... Xinr SmrA s, ai...aq $)
e Infact, Y1Y5...Y; is a handle.
XioXprAa ...,y $ =X . Xin Y1.. Y 3241 ... 2, $
Constructing SLR Parsing Tables — LR(0) Item
* An LR(0) item of a grammar G is a production of G a dot at the some position of

the right side.
* Ex: A—>aBb Possible LR(0) Items: A — .aBb
(four different possibility) A — a.Bb
A —aB.b
A — aBb.

» Sets of LR(0) items will be the states of action and goto table of the SLR parser.

* A collection of sets of LR(0) items (the canonical LR(0) collection) is the basis
for constructing SLR parsers.

*  Augmented Grammar:
G’ is G with a new production rule S’—S where S’ is the new starting symbol.

The Closure Operation

* If I is aset of LR(0) items for a grammar G, then closure(l) is the set of LR(0)

items constructed from I by the two rules:
1. Initially, every LR(0) item in I is added to closure(I).
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2. If A > a.BB is in closure(I) and B—y is a production rule of G; then
B—.y will be in the closure(I). We will apply this rule until no more new
LR(0) items can be added to closure(I).

The Closure Operation -- Example

E*—>E closure({E’ — .E}) =
E— E+T { E—>.E <«—— kernelitems
E->T E — .E+T
T —> T*F E—>.T
T—>F T — .T*F
F— (E) T—>.F
F—id F— .(E)
F—.d }

Goto Operation
* Iflisasetof LR(0) items and X is a grammar symbol (terminal or non-terminal),
then goto(1,X) is defined as follows:
- If A aXp inl then every item in closure({A — aX.p}) will be
in goto(L,X).
Example:
I={ E —>.E, E—> .E+T, E—>.T,
T— .T*F, T > F,
F— (E), F—>.d }
goto(LE)={E>—>E,E—>EA+T}
goto(LT)={E—>T., T > T.*F }
goto(LF) ={T > F. }
goto(LO={F—>(E),E—> E+T,E—> .T, T - .T*F, T > .F,
F— .(E),F—.d }
goto(Lid) = { F > id. }
Construction of The Canonical LR(0) Collection
* To create the SLR parsing tables for a grammar G, we will create the canonical
LR(0) collection of the grammar G’.
*  Algorithm:
Cis { closure({S’—>.S}) }
repeat the followings until no more set of LR(0) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
+ goto function is a DFA on the sets in C.
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The Canonical LR(0) Collection — Example

I: E>—> .E I:E—>E. Is s E—E+T Io: E— E+T.
E - E+T E—> EAT T —> .T*F T —> T.*F
E—>.T T—.F
T — .T*F L:E—>T. F— .(E) I T— T*F.
T—>.F T —> T.*F F—.d
F— (E)

F — .id I;;: T—>F. I;: T—>T*F I;;: F— (E).
F—> .(E)
Li: F > (.E) F—.id
E —» E+T

E—>.T Is: F— (E.)
T — .T*F E—> EA+T
T—>.F
F— (E)
F— .id

Is: F — 1d.

Transition Diagram (DFA) of Goto Function

Iy——1, I, 1, to1,
- tol;
3 toly
to I

L——1,

F
L
( to I

[—t—1I
Jd tol, ¢ I
I5 to I, to I

to I,
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Constructing SLR Parsing Table

(of an augumented grammar G’)

1. Construct the canonical collection of sets of LR(0) items for G’.

Ce—{Ip,-...1}

UNIT- 11

2. Create the parsing action table as follows

 If aisaterminal, A—o.af} in I; and goto(l;,a)=]; then action[i,a] is shiftj.
+ If A—>oa. isinl;, then action[i,a] is reduce A—a for all ain FOLLOW(A)
where A=S’.

* If S’5S. isin [, then action[i,$] is accept.

+ Ifany conflicting actions generated by these rules, the grammar is not SLR(1).

3. Create the parsing goto table

+ forall non-terminals A, if goto(I;,A)=]; then goto[i,A]=j

4. All entries not defined by (2) and (3) are errors.

5. Initial state of the parser contains S’—.S

(SLR) Parsing Tables for Expression Grammar

1) E—>E+T
2) E->T
3) T>T*F
4) T>F
5) F—>(E)
6) F—id

SYNTAX ANALYSIS-2

Action Table Goto Table
state | id | + * ( ) $ E T | F
0 s5 s4 1 2 3
1 s6 acc
2 2 | s7 2 | 12
3 4 | r4 4 | 4
4 s5 s4 8 2 13
5 6 | 16 r6 | 16
6 s5 s4 9 3
7 s5 s4 10
8 s6 sll
9 rl s7 rl rl
10 3 | 13 3 | 13
11 5 | 15 5 | 15
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Actions of A (S)LR-Parser — Example

stack

$0

$0id5
$OF3
$0T2
$0T2*7
$0T2*7id5
$0T2*7F10
$0T2
$OE1
$OE1+6
$OE1+6id5
$OE1+6F3

$0E1+6T9

$0E1

input
id*id+id$
*id+id$
*d+1d$

*1d+id$

id+id$

+id$
+id$
+id$
+id$

id$
$

|[E+T]| no. of

UNIT- 111 SYNTAX ANALYSIS-2
action goto parsing
[0,id]=s5 shift 5
[5,¥]=r6 [0,F]=3  reduce by F—id (pop 2|id| no. of
symbols from stack and push F to the stack)
[3,*]=r4 [0,T]=2 reduce by T—>F (pop 2|F| no. of
symbols from stack and push T onto the stack)
[2,*]=s7 shift7

[7,id]=s5 shift 5
[5,+]=r6 [7,F]=10 reduce by F—id(pop 2[id| no. of
symbols from stack and push F onto the stack)
[10,#+]=r3 [0,T]=2 reduce by T>T*F(pop 2 |[T*F| no. of
symbols from stack and push F on the stack)
[2,¥]=r2 [0,E]=1 reduce by E->T (pop 2|T| no. of
symbols from stack and push E onto the stack)

[1,+]=s6 shift 6
[6,id]=s5 shift 5
[5,$]=r6  [6,F]=3 reduce by F—id (pop 2|id| no. of

symbols from stack and push F onto the stack)
[3,$]=r4 [6,F]=3
symbols

[9,8]=r1

reduce by T—F (pop 2|F| no. of
from stack and push T onto the stack)

[0,E]=1 reduce by E5>E+T (pop 2
symbols from stack and push F on the stack)
accept

Parsing T ables of Expression Grammar

Action Table Goto Tabkle
giate | i | + | * | ¢ |2 | % E|T|F
o a5 ad 1 213
1 i) acc
2 2 | 57 2 | 12
3 | |
4 a5 ad 2 2|3
] L ] W |
fi 85 ad Q|3
7 85 g4 10
& i) all
a 1 | =7 1 | 1l
10 3| 13 3| 13
1 o 1o | 1o
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SLR(1) Grammar

An LR parser using SLR(1) parsing tables for a grammar G is called as the
SLR(1) parser for G.

If a grammar G has an SLR(1) parsing table, it is called SLR(1) grammar (or SLR
grammar in short).

Every SLR grammar is unambiguous, but every unambiguous grammar is not a
SLR grammar.

shift/reduce and reduce/reduce conflicts

If a state does not know whether it will make a shift operation or reduction for a
terminal, we say that there is a shift/reduce conflict.

If a state does not know whether it will make a reduction operation using the
production rule i or j for a terminal, we say that there is a reduce/reduce conflict.
If the SLR parsing table of a grammar G has a conflict, we say that that grammar
is not SLR grammar.

Problems on SLR

1.

S > SS+| SS* | a with the string “aa+a*” 6. S > +SS | *SS | a with the
string “+*aaa”
S>@L)|a,L>L,S]|S 7. Show that following grammar is SLR(1)
but not LL(1)
S>SA|A
A—>a
S 2>aSb |ab 8. X >Xb |a parse the string “ abb”
S =>aSbS |bSaS | € 9. Given the grammar A = (A) [a  string “((a))”
S — E#
E—>E-T
E->T
T>HT
T—>F
F—> (E)
F—i
Conflict Example
§>L=R s 0 S s SR
SR Ro L
L—*R L-R
L—id L—id
R-L
I:L—*R.
FOLLOW(R)~{=5} L. *R LESL
5 el R L—id
shiﬁr:gliz;zfrl‘:m . IeL—id
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Construct parsing table for this. In this table there are 2 actions in one entry of the
table which is why It is not a SLR(1) grammar.

Another example for not SLR(1) grammar:

Conflict Example2

S — AaAb I:S"—> .S

S — BbBa S — .AaAb
A—>¢ S — .BbBa
B—oe A—.

B—.

i

Problem
FOLLOW(A)={a,b}
FOLLOW(B)={a,b}

a Yreduce by A—>e¢ b Yreduce byA— ¢
reduce by B > ¢ reduce by B> ¢

reduce/reduce conflict reduce/reduce conflict

Problems : show that following grammars are not SLR(1) by constructing
parsing table.
1. Show that S = S(S)S | € not SLR(1)
Show that S - AaAb | BbBa
ADe
B > € is not SLR(1) but is LL(1)
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UNIT IV: SYNTAX ANALYSIS -3
SYLLABUS:

e Introduction to LR Parsing:

e Simple LR;

e More powerful LR parsers (excluding Efficient construction and compaction of
parsing tables) ;

e Using ambiguous grammars;

e Parser Generators.
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Constructing Canonical LR(1) Parsing Tables
* In SLR method, the state i makes a reduction by A—a when the current token is

a:

— ifthe A—>a.inthe [; and a is FOLLOW(A)

— In some situations, BA cannot be followed by the terminal a in a right-
sentential form when Po and the state 1 are on the top stack. This means
that making reduction in this case is not correct.

S — AaAb S—=AaAb=>Aab=ab S=BbBa=Bba—=ba

S — BbBa

A—e Aab = g ab Bba = ¢ ba

B—oe AaAb = Aacgb BbBa = Bb¢a
LR(1) Item

To avoid some of invalid reductions, the states need to carry more information.

» Extra information is put into a state by including a terminal symbol as a second
component in an item.

« ALR(l)itemis:

A > a.p,a where a is the look-head of the LR(1) item
(a 1s a terminal or end-marker.)
* When B (in the LR(1) item A — o.B,a ) is not empty, the look-head does not

have any affect.

* When 3 is empty (A — a.,a ), we do the reduction by A—a only if the next
input symbol is a (not for any terminal in FOLLOW(A)).

* A state will contain A —> a.,a;  where {a,...,a,} € FOLLOW(A)

A — a.,a,
Canonical Collection of Sets of LR(1) Items
* The construction of the canonical collection of the sets of LR(1) items are similar

to the construction of the canonical collection of the sets of LR(0) items, except
that closure and goto operations work a little bit different.

closure(I) is: ( where I is a set of LR(1) items)
— every LR(1) item in I is in closure(I)
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— if A—a.Bp,a in closure(I) and B—y is a production rule of G; then
B—.y,b will be in the closure(I) for each terminal b in FIRST(Ba) .

goto operation
* Iflisasetof LR(1)items and X is a grammar symbol (terminal or non-terminal),

then goto(I,X) is defined as follows:

— If A> aXB,a inl then
every item in closure({A — aX.pB,a}) will be in goto(I,X).

Construction of The Canonical LR(1) Collection
» Algorithm:

Cis { closure({S’—>.S,$}) }
repeat the followings until no more set of LR(1) items can be added to C.
for each I in C and each grammar symbol X
if goto(I,X) is not empty and not in C
add goto(I,X) to C
goto function is a DFA on the sets in C.
A Short Notation for The Sets of LR(1) Items
* A set of LR(1) items containing the following items

A — a.p,a

A — o.p,a,
can be written as
A —> a.B,aj/ay/.../a,

Canonical LR(1) Collection -- Example

5 — AzAb I8 =55 g I8 =5 5§
5 — BbBa 5— AsAb S A
A—s 5— BbBa % I:5 = Aazab § -2 . 1ol
E—= A o2
E—.b I;S—>BbBaS P, tol
L:5—AaAb S _ A& I 53— A24b 5 : Ii: 5 — AzAb 5
A= Db

I.5—EBbBa§ _ B I-S5—BbBasS__ b 1.5 BbBa §

E—. 2
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Canonical LR({0) Collection

i I o 1555
5=2l=R s, 1-R
5= LR I;5 = L=Ek
3—=h L s *R R—=L
L—*R. :
P ;‘_’;f IS SR
F =L '
IS = L=R.
1,5 > L=k
FE—=L
L — *
L—=id
I;L —*R.
Iy =L
SLR(1) Parsing table
id | * = $ S |L
0 | s5 | s4 1 {2
1 acc
2 s6/r5 | 15
3 12
4 | s5 | s4 8
5 4 r4
6 | s5 | s4 10
7 r3 r3
8 r5 5
9 rl

UNIT- 1V

L. L=+*R
E—=L
L= *hH
L—=.d

IyL - id.

SYNTAX ANALYSIS-3
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Canonical LR(1) Collection — Example2

SER IS’ 8.8 18> S.8 L *RS$/= R o1,
1)S - L=R S— L=R.,$ R— L$/=
2) S—>R S—> .R,$ IZZS — L.:R,$ —»to 16 L— .*R,$/: * to Ig
3)L— *R L — *R,$/= L— .id,$/= N ol
4HL—id L .id,$/= tols
55 R—>L R— LS$ ;L —id..$/=
R I;:S > L=R.,$

I;;S > L=R,$ to Iy [,;;L - *R.,$

R - .L$ ol LR —L.$

L— *R,$ X 0 R I, and 1,

L—.id$ N Il1ii4_>;l;a$ to 1

tol}, L:.;"R’$ to1,, I; and 1,
I;L - *R.$/= Lo id$ N tol,, I; and 1,5
1

I R—>L.$/= LT id.$ tol,, I, and I,

Construction of LR(1) Parsing Tables
1. Construct the canonical collection of sets of LR(1) items for G*.  C<«—{ly,...,Is}

2. Create the parsing action table as follows
* If ais a terminal, A—>oa.aB,b in I; and goto(l;,a)=]; then action[i,a] is
shift j.
* If A>a.,a isinlj, then action[i,a] is reduce A—a where A#S’.
« If S’>S.8 isin [, then action[i,$] is accept.
+ If any conflicting actions generated by these rules, the grammar is not
LR(1).
3. Create the parsing goto table
 for all non-terminals A, if goto(I;,A)=I; then goto[i,A]=j
4. All entries not defined by (2) and (3) are errors.
Initial state of the parser contains S’—.S,$
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LR(1) Parsing Tables — (for Example2)

id| * | =|¢s]|[s|L|R
0 s5 s4 1 2 3
1 acc
2 s6 r5
3 12
4 s5 s4 8 7
5 4 | r4 no shift/reduce or
6 | s12 | sll 10| 9 no reduce/reduce conflict
7 r3 r3 U
8 r5 r5
9 rl so, it is a LR(1) grammar
10 r5
11 | s12 | sll 10 | 13
12 4
13 r3
LALR Parsing Tables

* LALR stands for LookAhead LR.
* LALR parsers are often used in practice because LALR parsing tables are smaller
than LR(1) parsing tables.
* The number of states in SLR and LALR parsing tables for a grammar G are equal.
* But LALR parsers recognize more grammars than SLR parsers.
* yacc creates a LALR parser for the given grammar.
» A state of LALR parser will be again a set of LR(1) items.
Creating LALR Parsing Tables
Canonical LR(1) Parser > LALR Parser
shrink # of states
» This shrink process may introduce a reduce/reduce conflict in the resulting
LALR parser (so the grammar is NOT LALR)
* But, this shrik process does not produce a shift/reduce conflict.

The Core of A Set of LR(1) Items
* The core of aset of LR(1) items is the set of its first component.

Ex: S—>L=RS$ =2 S—>L=R <—— C(Core
R—>L.$ R— L.
*  We will find the states (sets of LR(1) items) in a canonical LR(1) parser with
same cores. Then we will merge them as a single state.

I;:L > id.,= A new state: ;L —>id.,=
-> L —id..$
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L:L —»id.$ have same core, merge them
We will do this for all states of a canonical LR(1) parser to get the states of the

LALR parser.

In fact, the number of the states of the LALR parser for a grammar will be equal
to the number of states of the SLR parser for that grammar.

Creation of LALR Parsing Tables

Create the canonical LR(1) collection of the sets of LR(1) items for the given
grammar.

Find each core; find all sets having that same core; replace those sets having same
cores with a single set which is their union.

C={lp,...,.In} =2 C={1,....0n} where m <n
Create the parsing tables (action and goto tables) same as the construction of the
parsing tables of LR(1) parser.

— Note that: If J=I, U ... Ul since Ii,...,Ix have same cores

=>» cores of goto(I;,X),...,goto(I,,X) must be same.
— So, goto(J,X)=K where K is the union of all sets of items having same

cores as goto(I;,X).

* If no conflict is introduced, the grammar is LALR(1) grammar. (We may
only introduce reduce/reduce conflicts; we cannot introduce a shift/reduce
conflict)

Shift/Reduce Conflict

We say that we cannot introduce a shift/reduce conflict during the shrink process
for the creation of the states of a LALR parser.

Assume that we can introduce a shift/reduce conflict. In this case, a state of LALR
parser must have:

A —>a.,a and B —>B.ayb
This means that a state of the canonical LR(1) parser must have:

A—>a.,a and B — B.ay.c
But, this state has also a shift/reduce conflict. i.e. The original canonical LR(1)

parser has a conflict.

(Reason for this, the shift operation does not depend on lookaheads)

Reduce/Reduce Conflict

But, we may introduce a reduce/reduce conflict during the shrink process for the
creation of the states of a LALR parser.
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IL:A—>oa.,a L:A—>oa.,b
B> B.b B—B.c
Ii2: A — a.,a/b =>» reduce/reduce conflict
B — B.,b/c

Canonical LALR(1) Collection — Example2

S —>S I;:S°—> «8S.$ 1:S"—> S.,$ LjL > *eR,$/= R i L
1)S—>L=R  S— .L=R;$ R— L3/~ )
2)S >R S5 oRS$ 7S Le=RS$—toly L[> J*R$/= « 2 olgyo
3)L->*R L— «*R$/= 2L.8 L— «id,$/= b to Iy,
4L —id L— .id,$/= to Ls;,
? I;:S > Re.$ . : —
S)R—)L R - .L,$ 3 1512.L4)1d0,$/
R L:S — L-R..$
IS —L=eR.$ toly o * Same Cores
R— .L3$ 8 0 Iy I, and I},
L— «*R,$ ol
. 0
L— .id,$ id 41 I; and I,
to I
I, and I}5
L;L > *Re,$/=
Iy and I,

Iy R > La.$/=

LALR(1) Parsing Tables — (for Example2)

i | z = $ 5 L R
0 g5 g 1 2 3
1 ace
2 56 5
3 ¥l
4 g5 g 2 7
5 | no shiftfreduce or
6 =12 | sl ml o no reducefreduce conflict
7 n| A U_
8 ] 5
g 1l so,itis a LATE(1) grammar

Using Ambiguous Grammars
e All grammars used in the construction of LR-parsing tables must be  un-
ambiguous.

* (Can we create LR-parsing tables for ambiguous grammars ?
—  Yes, but they will have conflicts.

— We can resolve these conflicts in favor of one of them to disambiguate the
grammar.
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— At the end, we will have again an unambiguous grammar.
*  Why we want to use an ambiguous grammar?

— Some of the ambiguous grammars are much natural, and a corresponding
unambiguous grammar can be very complex.

— Usage of an ambiguous grammar may eliminate unnecessary reductions.

« Ex.
ESE+T | T
E > E+E | E*E | (E) | id > T—>T*F | F
F— (E) | id
Sets of LR(0) Items for Ambiguous Grammar
;B> .E _ELI:E>E. * L I:E—>E+.E I:E—E+E. &1,
E— .E+E E—E .+E E— JE+E E—E.+E
E - .E*E E—E .*E E > .E*E E—>E.*E
E— «(E) “ Eo W(F)
E— .id ( E— .id
( )
IS'E”E;E b G EoE*E. S,
L:E— (+E) G A\ N E > E.+E
E—> JE+E E—.EE id\ "2 E>EJE
E - E*E E= (B . )
E— +(E) E— .id
id|  E—.id /
Iy E— (E.) Iy:E— (E)e
E—>E.+E
L E > id. EsESE ¥k

SLR-Parsing Tables for Ambiguous Grammar
FOLLOWE) ={ &, +,%, )}

State I has shift/reduce conflicts for symbols + and *.

E E
I —— Lt —E,

when current tolken 15 +
shift =¥ +1isright-associative
reduce = +1:z left-associative
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when current token 15 *
shift =@ *has higher precedence than +
reduce =¥ + has higher precedence than *

SLR-Parsing Tables for Ambiguous Grammar

FOLLOW(E)={$,+,*,) }

State I; has shift/reduce conflicts for symbols + and *.

Iy L;

when current token is *
shift =» * is right-associative
reduce = * is left-associative

when current token is +
shift = + has higher precedence than *
reduce = * has higher precedence than +

SLR-Parsing Tables for Ambiguous Grammar

Action Goto
id | + * ( ) $ E
0 s3 s2 1
1 s4 | s5 acc
2 s3 s2 6
3 4 | r4 4 | r4
4 s3 s2
5 s3 s2
6 s4 | s5 s9
7 rl s5 rl rl
8 2 | 2 2 | 2
9 3| 13 3 | 3

SYNTAX ANALYSIS-3
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Error Recovery in LR Parsing

* An LR parser will detect an error when it consults the parsing action
table and finds an error entry. All empty entries in the action table are
error entries.

» Errors are never detected by consulting the goto table.

* An LR parser will announce error as soon as there is no valid
continuation for the scanned portion of the input.

* A canonical LR parser (LR(1) parser) will never make even a single
reduction before announcing an error.

* The SLR and LALR parsers may make several reductions before
announcing an error.

* But, all LR parsers (LR(1), LALR and SLR parsers) will never shift an
erroneous input symbol onto the stack.

Panic Mode Error Recovery in LR Parsing

* Scan down the stack until a state s with a goto on a particular
nonterminal A is found. (Get rid of everything from the stack before this
state s).

* Discard zero or more input symbols until a symbol a is found that can
legitimately follow A.

— The symbol a is simply in FOLLOW(A), but this may not work for all situations.

» The parser stacks the nonterminal A and the state goto[s,A], and it
resumes the normal parsing.

+ This nonterminal A is normally is a basic programming block (there can
be more than one choice for A).

— stmt, expr, block, ...

Phrase-Level Error Recovery in LR Parsing
» Each empty entry in the action table is marked with a specific error routine.
* An error routine reflects the error that the user most likely will make in that case.
* An error routine inserts the symbols into the stack or the input (or it deletes the
symbols from the stack and the input, or it can do both insertion and deletion).
— missing operand
— unbalanced right parenthesis
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PART-B
UNIT V: SYNTAX-DIRECTED DEFINITIONS

SYLLABUS:
e Syntax-directed definitions;
e Evaluation orders for SDDs;
e Applications of syntax-directed translation;

e Syntax-directed translation schemes
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Overview
input —parse tree —+dependency graph —attribute evaluation order
v' Grammar symbols are associated with attributes to associate information with
the programming language constructs that they represent.
v Values of these attributes are evaluated by the semantic rules associated with the
production rules.
v' Evaluation of these semantic rules:
o may generate intermediate codes
may put information into the symbol table
may perform type checking
may issue error messages
may perform some other activities
o 1n fact, they may perform almost any activities.
v An attribute may hold almost anything.

o O O O

o astring, a number, a memory location, a complex record.
Attributes for expressions:
type of value: int, float, double, char, string,...
type of construct: variable, constant, operations, ...
Attributes for constants: values
Attributes for variables: name, scope
o Attributes for operations: arity, operands, operator,...
v" When we associate semantic rules with productions, we use two notations:
o Syntax-Directed Definitions
o Translation Schemes
v Syntax-Directed Definitions:
o give high-level specifications for translations
o Hide many implementation details such as order of evaluation of semantic
actions.
o We associate a production rule with a set of semantic actions, and we do
not say when they will be evaluated.
v Translation Schemes:
o Indicate the order of evaluation of semantic actions associated with a
production rule.
o In other words, translation schemes give a little bit information about
implementation details.
Syntax directed definition (SDD) :
v' To translate a programming language construct compiler has to keep track of
many quantities such as the type of the construct, location of the first instruction
in target code or the number of instructions generated.
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v A formalist called as syntax directed definition is used fort specifying translations
for programming language constructs.

v' A syntax directed definition is a generalization of a context free grammar in
which each grammar symbol has associated set of attributes and each and each
productions is associated with a set of semantic rules

Definition of (syntax Directed definition ) SDD :

SDD is a generalization of CFG in which each grammar productions X—a is
associated with it a set of semantic rules of the form

a: = f(bl,b2.....bk)

Where a is an attributes obtained from the function f.

* A syntax-directed definition is a generalization of a context-free grammar in
which:

— Each grammar symbol is associated with a set of attributes.

— This set of attributes for a grammar symbol is partitioned into two subsets
called synthesized and inherited attributes of that grammar symbol.

— Each production rule is associated with a set of semantic rules.

*  Semantic rules set up dependencies between attributes which can be represented
by a dependency graph.

» This dependency graph determines the evaluation order of these semantic rules.

* Evaluation of a semantic rule defines the value of an attribute. But a semantic rule
may also have some side effects such as printing a value.

The two attributes for non terminal are :

1) synthesized attribute (S-attribute) : (1)

An attribute is said to be synthesized attribute if its value at a parse tree node is
determined from attribute values at the children of the node

2) Inherited attribute : (—,T)

An inherited attribute is one whose value at parse tree node is determined in
terms of attributes at the parent and | or siblings of that node.

*

¢ The attribute can be string, a number, a type, a, memory location or
anything else.
¢ The parse tree showing the value of attributes at each node is called an
annotated parse tree.
The process of computing the attribute values at the node is called annotating
or decorating the parse tree.
Terminals can have synthesized attributes, but not inherited attributes.
Annotated Parse Tree
* A parse tree showing the values of attributes at each node is called an
annotated parse tree.
* The process of computing the attributes values at the nodes is called annotating
(or decorating) of the parse tree.
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* Of course, the order of these computations depends on the dependency graph
induced by the semantic rules.
Ex1:
1) Synthesized Attributes :
Ex: Consider the CFG :
S— EN
E— E+T
E—E-T
E->T
T— T*F
T->T/F
T—>F
F—(E)
F—digit
N—o;
Solution :
The syntax directed definition can be written for the above grammar by using

semantic actions for each production.

Production rule Semantic actions
S -EN S.val=E.val
E -5E1+T E.val =El.val + T.val
E—EI1-T E.val = El.val — T.val
E->T E.val =T.val
T—->T*F T.val = T.val * F.val
T->T|F T.val =T.val | F.val
F—(E) F.val =E.val
T >F T.val =F.val
F—digit F.val =digit.lexval
N—; can be ignored by lexical Analyzer as; is
terminating
Symbol.

For the Non-terminals E, T and F the values can be obtained using the attribute “Val”.
The taken digit has synthesized attribute “lexval”.

In S—>EN, symbol S is the start symbol. This rule is to print the final answer of
expressed.

Following steps are followed to Compute S attributed definition.
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1. Write the SDD using the appropriate semantic actions for corresponding
production rule of the given Grammar.

2. The annotated parse tree is generated and attribute values are computed. The
Computation is done in bottom up manner.

3. The value obtained at the node is supposed to be final output.
PROBLEM 1:
Consider the string 5*6+7; Construct Syntax tree, parse tree and annotated tree.
Solution :
The corresponding annoted parse tree is shown below for the string 5*6+7;
Syntax tree:

Parse tree:

o
ofé
O

<D,
goyo

The corresponding annoted parse tree is shown below for the string 5*6+7;
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Twal=5 * Fral=6 digit lexwval=7
Fwval=3 j ral=6

Digit lexval=3 Fig: Annotated parse tree

Advantages: SDDs are more readable and hence useful for specifications
Disadvantages: not very efficient.
Ex2:
PROBLEM : Consider the grammar that is used for Simple desk calculator. Obtain
the Semantic action and also the annotated parse tree for the string

3*5+4n.
L—En
E—>E1+T
E->T
T—>TI*F
T—F
F—(E)
F—digit
Solution :
Production rule Semantic actions
L—En L.val=E.val
E—E1+T E.val=El.val + T.val
E->T E.val=T.val
T—>TI1*F T.val=T1.val*F.val
T—>F T.val=F.val
F—(E) F.val=E.val
F—digit F.val=digit.lexval

The corresponding annotated parse tree U shown below, for the string 3*5+4n.
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Lwval=1%n

i %,
A

Eval=15 + T.val=4
T|_~.~31=15 | F.val=4
ﬁlxﬂMi \? git lexval=4
Fval=3 Dig't.llxral=i
|

Digit lexval=3
Fig:Annotated parse tree

Exercise :

For the SDD of the problem 1 give annotated parse tree for the Following expressions
a) (3+4)*(5+6)n
b) 1*2*3*(4+5)n
c) (9+8*(7+6)+5)*4n

Solution: a)
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Lwval=77
E.wval=77 n
T wval=77

Ty 8 EERL
,—//’J|\ E;.val=5 + T.wval=6
( Eval=7 ) L ]_
T T.val=5 F.val=6
E,.val=3 + T.wal—
T.val=3 F.val=4 F.val=5 digir lexval=6
F.wval=3 digit lexval=4 digitlexwval=5
digitlexval=3
b)
L.val=34n
E_\'al={\n
T.val=54
T.val=6 X F.val=%
| T
Twal=2 *  Fwval=3 E val=9%
Digit lexval=3  E.val=3 +  Twal=4
Twal =1 *  Fwval=2 | |
Twal=5 Fval =4
| J
Fwval=1 digit lexval=2 F_\'a_1|=5 Digit lexval=4
Digi t_lexl'a_l=1 Digit lexval=3
c)
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L=472n
Eval=472 n
|
T.val=472
T1.val=118 Fval=4
| b=
Digit lexval=4
Fwval=118
( Eval=118 )
=
Elwval=113 + T.val=53
El val=9% i+ /ﬂ F.val=5
T val=% Tival=g  * Fval=13 \
LJ LJ [ digitlexval=s
:F_r| =9 F.val=8 { E.val=13 )
digitlexval=% digitlexval=8 Elwval=7 + Twal=6
T_‘|.' al=7 F.val=6
F_\'TL[=T digit lexval=6
digit lexval=7
Dependency Graphs

Figure 5.6. E.val is synthesized from E;.val and E;.val

E wal

E | val

val

Fo.val
Note: should be T.wvalin Figure 5.6

Dependency graph and topological sort:

1. For each parse-tree node, say a node labeled by grammar symbol X, the
dependency graph has a node for each attribute associated with X.

2. If a semantic rule associated with a production p defines the value of
synthesized attribute A.b in terms of the value of X.c. Then the
dependency graph has an edge from X.cto A.b.

3. If a semantic rule associated with a production p defines the value of
inherited attribute B.c in terms of the value X.a. Then , the dependency
graph has an edge from X.a to B.c.
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Evaluation Orders for SDD’s
» Dependency graphs — are a useful tool for determining an evaluation order for the
attribute instances in a given parse tree.
» A dependency graph depicts the flow of information among the attribute instances
in a particular parse tree.

— An edge from one attribute instance to another means that the value of the
first is needed to compute the second. Edges express constraints implied
by the semantic rules.

Edges express constraints implied by the semantic rules

o A dependency graph is a directed graph depicting the relationehips among inherited
and synthesized attributes in a parse tree.

Constructing a dependency graph:

for each noda N in a parse tras
for each attribute A of nodae N
construct a node labelled A in the dependency graph

for sach node N in a parse traes
for each semantic function A=£f{A1,A2,...,Ak) at node ¥
fori:=1tok
construct an edge from node AL to node A in the graph

2) Inherited attributes :
Consider an example and compute the inherited attributes, annotate the parse
tree for the computation of inherited attributes for the given string int a, b, ¢
Ex:
S—>TL
T—int
T—{float
T—char
T—double
L—L,id
L —id
The steps are to be followed are:
1) Construct the syntax directed definition using semantic action.
2) Annotate the parser tree with inherited attributes by processing in top down
fashion.
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The SDD is given below:

Production rule

UNIT -V SDD

Semantic actions

S—>TL
T—int
T—float
T—char
T—double
L—L,id

L—id

string int a, b,c

S

AN

L.inh=int
ﬁ
a

Example real id;. id;, id;

L.inh =int

int /R
%

L.inh =T.type
T.type = int
T.type =float
T.type =char
T.type=double
T.type =L, inh
Add-type (id.entry,L.inh)
Add — type (id.entry,L.inh)

sddtvpalid, raal)

addtvpafid, raal)

sddtvpae{id, real)

Fig: Annotated parse tree.
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String float id1, id2, id3

.D.

T 4 type mh 5 L 6 eniry

real s .-ids 3 entry
Ros

inh 77 L 8 entry

3 -lidz 2 entry

inh 9 L .10 entry
: |

id; 1 entry

Figure 5.9: Dependency graph for a declaration float id, , id2, ids

Ex2: PROBLEMS: consider the following context free grammar for evaluating
arithmetic expressions with operator *

T=> FT’
T =2 *FT’
T 2e
F >digit
Production Semantic Rules
T-=> FT” T’.inh = F.val
T.val =T .syn
T = *FET’ T".inh =T".inh * F.val
T'.syn =T .syn
T->¢ T .syn=T".inh
F = digit F.val = digit.lexval

DEPT. OF CSE, SIBIT Page 74



COMPILER DESIGN [10CS63] UNIT-V SDD

Annotated Parse Tree for3*5

T.Val=15

N

F.val=3 e

T syn=13

T

= Fral=s el

T syn=13

digit lexval=3

digit lexval=3

3anamz g

Dependency graph above example:

I 9 val

-~
- ~
-~ =
-~
-~
-~
-~
~
~ ~

! |
Digit 1 lexval #T F 4 val | inh
6 T 7syn ,’ |

digit 2 lexval €
A topological sort of the above graph gives the order of evaluation of the SDD. One of
the topological sort order is (1,2,3,4,5,6,7,8 and 9) another topological sort order is
(1,2,5,2,4,6,7,8,9)
Advantages: dependency graph helps in computing the order of evaluation of the
attributes
Disadvantage: it cannot give the order of evaluation of attributes if there is a cycle
formation in the graph. However, this disadvantage can be overcome by using S —
attributed and L — attributed definitions.

Problems on SDD, Annotated parse tree, Dependency graph, evaluation of order:

DEPT. OF CSE, SIBIT Page 75



COMPILER DESIGN [10CS63] UNIT-V SDD

1.

E>TE’ 2. T->BC

E’ 2> +TE’ B - int

E’ > B - float

T 2FT’ C 2 [num]C

T 2> *FT° Cc->

T > String (i) “int[2][3]” (note: int
F >(E) [2][3] should be passed as array(2,
F->id array(3, integer)))

String (i) “id +id*id” (i) “ (id (i1) “float [3]” (ii1) “float
+ id* id)” [31[3][2]”

S-Attributed Definitions

Syntax-directed definitions are used to specify syntax-directed translations.
To create a translator for an arbitrary syntax-directed definition can be difficult.
We would like to evaluate the semantic rules during parsing (i.e. in a single pass,
we will parse and we will also evaluate semantic rules during the parsing).
We will look at two sub-classes of the syntax-directed definitions:
— S-Attributed Definitions: only synthesized attributes used in the syntax-
directed definitions.
— L-Attributed Definitions: in addition to synthesized attributes, we may
also use inherited attributes in a restricted fashion.
To implement S-Attributed Definitions and L-Attributed Definitions are easy (we
can evaluate semantic rules in a single pass during the parsing).
Implementations of S-attributed Definitions are a little bit easier than
implementations of L-Attributed Definitions

L-Attributed Definitions

S-Attributed Definitions can be efficiently implemented.
We are looking for a larger (larger than S-Attributed Definitions) subset of
syntax-directed definitions which can be efficiently evaluated.

=> L-Attributed Definitions
L-Attributed Definitions can always be evaluated by the depth first visit of the
parse tree.

This means that they can also be evaluated during the parsing

A syntax-directed definition is L-attributed if each inherited attribute of Xj,
where 1<j<n, on the right side of A — X;X,...X;, depends only on:
1. The attributes of the symbols Xi,...,Xj.; to the left of Xjin the production
and
2. the inherited attribute of A
Every S-attributed definition is L-attributed, the restrictions only apply to the
inherited attributes (not to synthesized attributes).
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L-attributed definitions
o A syntax-directed definition is L-attributed if each inherited
attribute of Xj, 1<=j<=n, on the right side of A::=X1X2...Xn,
depends only on
= the attributes of X1,X2,...,Xj-1 to the left of Xj in the production
m the inherited attributes of A

L-attributed definition Non L-attributed definition

Production | Semantic rules 5 .
Bari et Production | Semantic rules
e A== "’_’pe Ai:=LM L.E=Ai
T::=int T.Type:=integer R .
T::=real T.type:=real As = M.s
| SR Bl ,id L1l.in := L.in A= Q R R.i= Al
Addtype(id.entry,L.in) Q.i = R.s
L::=id Addtype(id.entry,L.in) As = Q.s

Semantic Rules with Controlled Side effects
» Permit incidental side effects the do not constrain attribute evaluation
» Constrain the allowable evaluation orders, so that the same translation is produced

foer any allowable order.
— Ex: For production L-> En Semantic Rule is print(E.val)

Imnlementina S-attribiuited
HMpP 2ITe nrg S-diripule

AR w W |

definitions
Implementation of a desk calculator with an LR parser

(when a number is shifted onto symbol stack,
its value is shifted onto val stack)

production |Code fragment

E'::=E Print(val[top])

E::=E1 4T |v=val[top-2]+val[top]; top-=2; val[top]=v;
Eii=T

T::=T1 *F |v=val[top-2]*val[top]; top-=2; val[top]=v;
T::=F

Esi==E) v=val[top-1]; top-=2; val[top]=v

Fi=n

Applications of Syntax-Directed Translation
* Construction of syntax Trees
— The nodes of the syntax tree are represented by objects with a suitable
number of fields.

— Each object will have an op field that is the label of the node.

— The objects will have additional fields as follows
» If the node is a leaf, an additional field holds the lexical value for

the leaf. A constructor function Leaf (op, val) creates a leaf object.

* If nodes are viewed as records, the Leaf returns a pointer to a new

record for a leaf.
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» If the node is an interior node, there are as many additional fields
as the node has children in the syntax tree. A constructor function
Node takes two or more arguments:

Node (op , cl,c2,.....ck) creates an object with first field op and k additional fields for
the k children c¢l,c2,.....ck

SDD- To construct syntax tree for a simple expression

Production Semantic Rules

E—-E +T E.node = new Node (‘+’, E; .node, T.node)
E—E -T E.node = new Node (‘-’, E; .node, T.node)
E—-T E. node= T.node

T—(E) T.node = E.node

T—id T.node= new Leaf (id, id.entry)

T — num T.node= new Leaf (num, num.val)

This is an example for S-attributed definition

E.node

to entry for ¢

to entry for e

Figure 5.11: Syntax tree fora — 4+ ¢

1) p1 = new Leaf(id, entry-a);
2)  po = new Leaf(num,4);

3) p3 = new Node('—',p1,p2);
4) pys = new Leaf(id, enitry-c);
5) ps = new Node('+',ps,p1);

Figure 5.12: Steps in the construction of the syntax tree for a — 4

L-attributed definition for Simple Expression
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Syntax-Directed Translation Schemes
A SDT scheme is a context-free grammar with program fragments embedded within
production bodies .The program fragments are called semantic actions and can appear at
any position within the production body.
Any SDT can be implemented by first building a parse tree and then pre-forming the
actions in a left-to-right depth first order. i.e during preorder traversal.
The use of SDT’s to implement two important classes of SDD’s
1. If the grammar is LR parsable, then SDD is S-attributed.
2. If the grammar is LL parsable, then SDD is L-attributed.
Postfix Translation Schemes
The postfix SDT implements the desk calculator SDD with one change: the action for
the first production prints the value. As the grammar is LR, and the SDD is S-attributed.
L - En {print(E.val);}
E— E +T{E.val=E,.val + T.val }
E—E;-T{E.val=E,.val - T.val }
E— T {E.val=T.val }
T— T, *F {T.val =T,.val * F.val }
T—F {T.val =F.val }
F—(E) { F.val=E.val }
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F — digit { F.val = digit.lexval }

Syntax Trees

PRODUCTION SEMANTIC RULES
) E-E+T E.node = new Node('+', Ey.node, T.node)
2) E=E-T E.node = new Node('—', Ey.node, T.node)

3) E=T E.node = T.node

) T—-(F) T.node = E.node

5 T —id T.node = new Leaf(id, id.entry)

6) T — num T.node = new Leaf(num, num.val)

Figure 5.10: Constructing syntax trees for simple expressions

Postfix SDT's

o Leftmost: the leftmost nonterminal is always chosen for expansion at each step of
derivation.
L-attributed SDT's

e Shows a graphical depiction of a derivation.

PRODUCTION SEMANTIC RULES

expr — expr) + term | exprt = ezpr.t || term.t || '+

expr — expr, — term | exprit = expry.t || term.t || '~

expr — term exprt = term.t
term — 0 term.t = ‘0’
term — 1 termt = ‘1’
term — 9 term.t = '9’'

Figure 2.10: Syntax-directed definition for infix to postfix translation

expr.t = 95-2+

expr.t = 95~ + term.t = 2
expr.t =9 = term.t =5 2
| |
term.t =9 5

Figure 2.9: Attribute values at nodes in a parse tree

Bottom-Up Evaluation of S-Attributed Definitions
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= We put the values of the synthesized attributes of the grammar symbolsinto a
parallel stack.
— When an entry of the parser stack holds a grammar symbol X {terminal or non-terminal},
the corresponding entry In the parallel stack will hold the synthesized attribute(s) of the
symbol X_

* We evaluate the values of the attributes during reductions.
A—>XYZ Aa=f{X.xY.y,Z.z) where all attributes are synthesized.

stack parallel-stack

top —»> Zz
Yy
Xx > top—> Aa
Production Semantic Rules
L—E return {print(stack[top-1].val); top =top — 1;}
E—-E +T {stack[top-2].val = stack[top-2].val + stack[top].val; top =
top —2;}
E—-T
T—>T*F {stack[top-2].val = stack[top-2].val * stack[top].val;top =
top —2;}
T—-F
F—(E) { stack[top-2].val = stack[top-1].val ; top = top — 2;}
F — digit

» At each shift of digit, we also push digit.lexval into val-stack.

» At all other shifts, we do not put anything into val-stack because other terminals
do not have attributes (but we increment the stack pointer for val-stack).
Translation Schemes

* In a syntax-directed definition, we do not say anything about the evaluation times
of the semantic rules (when the semantic rules associated with a production
should be evaluated?).

* In a syntax-directed definition, we do not say anything about the evaluation times
of the semantic rules (when the semantic rules associated with a production
should be evaluated?).

* A translation scheme is a context-free grammar in which:

 attributes are associated with the grammar symbols and

* semantic actions enclosed between braces {} are inserted within the right sides
of productions.

* FEx: A-{. . }X{..}Y{..}

N .
L e

Semantic Actions
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When designing a translation scheme, some restrictions should be observed to
ensure that an attribute value is available when a semantic action refers to that
attribute.

These restrictions (motivated by L-attributed definitions) ensure that  a semantic
action does not refer to an attribute that has not yet computed.

In translation schemes, we use semantic action terminology instead of semantic
rule terminology used in syntax-directed definitions.

The position of the semantic action on the right side indicates when that semantic
action will be evaluated.

Translation Schemes for S-attributed Definitions

If our syntax-directed definition is S-attributed, the construction of the
corresponding translation scheme will be simple.
Each associated semantic rule in a S-attributed syntax-directed definition will be
inserted as a semantic action into the end of the right side of the associated
production.

Production = Semantic Rule

E—E;+T E.val=E,.val+ T.val =>» a production of
a syntax directed
definition
U
E—E; +T {E.val=E,.val + T.val } = the production of the
corresponding

translation scheme
SDT for infix —to- prefix translation during parsing
L2 En
E— {print(‘+’);} E;+T
E—-T
T— {print(‘*’);} T;*F
T—F
F — digit { print( digit.lexval); }
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Parse tree for expression 3*4+5

T\ Prefix form of the

E I, expression is +%3534

I

E

{prim(+)) ‘ ﬁ

/T T

: |T * F Digit
| ™

F  Digt

Digit {prnt(3);)

Fovor i A%
{print(*");} o

{print(3);}

A Translation Scheme Example
* A simple translation scheme that converts infix expressions to the
corresponding postfix expressions.
E—-TR
R — + T { print(“+”) } Ry
R—e¢
T — id { print(id.name) }

atb+c¢ = ab+ct

7 ™

infix expression postfix expression
E
/\
I R
id {print(“a”)} + T {print("+7)} R.
id {prinilf"b”}} 70 {ﬁr'iiit(“—.“)} R
id {print(“c”)} g

The depth first traversal ofthe parse tree (executing the semantic actions in that order)
will produce the postfix representation ofthe infix expression.

Inherited Attributes in Translation Schemes
» If a translation scheme has to contain both synthesized and inherited attributes, we
have to observe the following rules:
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1. An inherited attribute of a symbol on the right side of a production must
be computed in a semantic action before that symbol.

2. A semantic action must not refer to a synthesized attribute of a symbol to
the right of that semantic action.

3. A synthesized attribute for the non-terminal on the left can only be
computed after all attributes it references have been computed (we
normally put this semantic action at the end of the right side of the
production).

4. With a L-attributed syntax-directed definition, it is always possible  to
construct a corresponding translation scheme which satisfies these
three conditions (This may not be possible for a general  syntax-directed
translation).

A Translation Scheme with Inherited Attributes

D — T id { addtype(id.entry,T.type), L.in =T.type } L
T —int { T.type = integer }
T — real { T.type =real }
L —id { addtype(id.entry,L.in), L;.in=L.in } L;
L—e

This is a translation scheme for an L-attributed definition.
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UNIT VI: INTERMEDIATE-CODE GENERATION
SYLLABUS

e Variants of syntax trees;

e Three-address code;

e Translation of expressions;

e Control flow; Back patching;

e Switch statements;

e Procedure calls.
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Background
_ intermediate . . code
parser static code intermediate Hetaiaion
checker deneration code
< front end —»«—back end —»

Fig 6.1: Logical structure of the compiler frond end

Static checking includes type checking, which ensures that operands are applied to
compatible operands. It also includes any syntactic checks that remain after parsing.

Ex: Static checking assures that a break statement in C is enclosed within a while, for or
switches statement; otherwise an error message is issued.

Intermediate representation

A complier may construct a sequence of intermediate representation as in fig.

Source N High level Low
program IR

| Target
level IR | code

Fig6.2: A compiler might use a sequence of intermediate representation

High level representations are close to source language and low level representations are
close to the target machine.

There are three types of intermediate representation:-

1. Syntax Trees

2. Postfix notation
3. Three Address Code
6.1 Variants of Syntax Trees
* Nodes of syntax tree represent constructs in the source program; the children of a

node represent the meaningful components of a construct.

* A directed acyclic graph (DAG) for an expression identifies the common
subexpressions of the expression. (subexpressions that appears more than once)

* A DAG as leaves corresponding to atomic operands and interior codes
corresponding to operators. A node N in a DAG has more than one parent if N
represents a common subexpression; in a syntax tree.

6.1.1 Directed Acyclic Graphs for Expressions
Egl: Following Figure shows a dag for the expressiona+a* (b-¢)+(b-c¢) *d.
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Fig63DAGa+a*(b-c)+(b-c)*d

< T
e
7N

b c

Syntax tree fora+a*(b-c)+(b-c)*

/\ b c
b c

Eg2: syntax tree for assignment statement
a=b*-c + b*-c

/ \
a +
0N
* *
AN /N
b minus b minus
| |
c c

(a) Syntax tree

DAG for a=b*-c + b*-c

assign

A

d of

O

TN

b LIS

a

Eg 3 : For example, the expression 2*x +y
* (2*x - y) could be represented by
DAG

Syntax tree for 2*x +y * (2*x - y)

N
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The DAG representation may expose instances where redundancies can be eliminated.
SDD to construct DAG for the expressiona+a*(b-¢)+(b-c¢)*d.

t’mﬂ'.][rf_-'rrn\' |m['u-:ﬁ
1) E— .'_'. +T . | E . node = new Node [.’_+’_ E.node, T.node)
N E= FE T E.node = new Node('—', Eq.node, T.node)
3 E—-=T E.node = T .node
4) T=a(FE) T.node = E.node
5) T —id T.node = new Leaf(id, id. entry)

6) T — num

Figure 6.4: Syntax-directed definition to produce syntax trees or DAG’s

1)
2)
3
4)
5)
6}
7)
H:.
2]
10)
11)
12)
13)

1
e
b s
P
Ps
Py
pr
8

Pa

| T.node = new Leaf (num, num. val)

= Leaf(id, entry-a)

— Leaf (id, entry-a) = p
= Leaf (id, entry-b)

= Leaf (id, entry-c)

= Node('—', p3, ps)

= Node('#', P1.Ps)

= Node('+', 1. ps)

= Leaf (id, entry-b) = ps
— Leaf (id, entry-c) = py

pro = Node('—', ps.pa) = Ps

P11

= Leaf(id, entry-d)

p12 = Node('s', ps.p11)

p1a = Node('+', pr.pa)

Figure 6.5: Steps for constructing the DAG of Fig. 6.3

6.1.2 The Value-Number Method for Constructing DAG’s

In many applications, nodes are implemented as records stored in an array, as in Figure
7.In the figure; each record has a label field that determines the nature of the node. We
can refer to a node by its index in the array. The integer index of a node is often called

value number. For example, using value numbers, we can say node 3 has label +, its left
child is node 1, and its right child is node 2.The following algorithm can be used to create
nodes for a dag representation of an expression.

ASSIGNMENT

ir=i+10

Figure : Nodes o fa DAG for i=i+10 allocated in an array

ARRAY
DAG REPRESENTATION
1= 1 id
\ 2 | num 10
+
/ \ 3|+ 1
i 10 4] := 1
L

— toentry fori
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Algorithm: The value-number method for constructing the nodes of a DAG
Input: Label op, node /, and node r
Output: The value number of a node in the array with signature <op, [, r>
Method: Search the array for a node M with label op, left child /, and right child r. If
there is such node, return the value number of M. If not, create in the array a new node N
with label op, left child /, and right child r, and return its value number.
6.2 Three-Address Code
* In three-address code, there is at most one operator on the right side of an
instruction; that is, no built-up arithmetic expressions are permitted.
Xty*z=>t1=y*z

tb=x+1t
* Example 6.4:
}
T — ty = b ~ £
H % tz = a % t,
A Z . tg = a + t2
| * d
; ¥ tyg = £ * d
a tg = LTg + T4
b ' (]

(a) DAG (b) Three-address code

Figure 6.8: A DAG and its corresponding three-address code
Problems: write the 3-address code for the following expression

. ifx+ty*z>x*y+z)

a=0;

2. 2+a*(-c/d)/e

3. Ac=b*-c+b*-c
6.2.1 Address and Instructions

* Three-address code is built from two concepts: addresses and instructions.

* An address can be one of the following:

— A name: A source name is replaced by a pointer to its symbol table entry.

* A name: For convenience, allow source-program names to
appear as addresses in three-address code. In an
implementation, a source name is replaced by a pointer to
its symbol-table entry, where all information about the
name is kept.

— A constant
* A constant: In practice, a compiler must deal with many different
types of constants and variables
— A compiler-generated temporary
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* A compiler-generated temporary. It is useful, especially in
optimizing compilers, to create a distinct name each time a
temporary is needed. These temporaries can be combined, if
possible, when registers are allocated to variables.
A list of common three-address instruction forms:
Assignment statements
— X=Yy op z, where op is a binary operation
— X=0p Yy, where op is a unary operation
— Copy statement: x=y
— Indexed assignments: x=y[i] and x[i]=y
— Pointer assignments: x=&y, *x=y and x=*y
Control flow statements
— Unconditional jump: goto L
— Conditional jump: if x relop y goto L ; if x goto L; if False x goto L
— Procedure calls: call procedure p with n parameters and return vy, is
optional
param x1
param x2

param xn
call p, n
*  Example 6.5:
— doi=i+1; while (a]i]<v);

L tp =1+ 1 100: £y =1 + 1
i=1+t 101: i=1
te = i * 8 102: g3 =i * 8
tg = a [ te ] 103: tz =a [ ty ]
if t3 < v goto L 104: if t3 < v goto 100
(a) Symbolic labels. (b) Position numbers.

The multiplication i * 8 is appropriate for an array of elements that each take 8
units of space.
6.2.2 Quadruples
» Three-address instructions can be implemented as objects or as record with fields
for the operator and operands.

* Three such representations
—  Quadruple, triples, and indirect triples

* A quadruple (or quad) has four fields: op, arg;, arg,, and result.

*  Example 6.6:
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op arg, arg, result

t; = minus c 0 |minus |, ¢ HET
tz = b * ty 1] * | b 1 t1 . B2
t3 = minus c 2 |minus, ¢ HET
tsg = b * ta 3] * | b | tg | tg
ts = ta + ta4 4 + | tz . tg  ts
a = ts 5 = | ts | a
(a) Three-address code (b) Quadruples

6.2.3 Triples
* A triple has only three fields: op, arg;, and arg,
» Using triples, we refer to the result of an operation x op y by its position, rather by
an explicit temporary name.

Example 6.7
ey e
% / \* ; mi;usf : _i (U)
b /n;\inus b/ }inus 2 : :' (:)) :I g;
| | 5l = Tal(
c c
(a) Syntax tree (b) Triples

Fig6.11: Representations ofa=b *-c+b*-c

instruction op arg; argg
35 [ (0) | 0[minus; e |
36| (1) i » 7 b (D)
37| (2) 2 {minus | ¢ |
38| (3) 3 *+ 1 b (2
39 [ (4) 4l + (1) (3)
40 [ (5) 5[ = 1 a 1 (4
e |

Fig6.12: Indirect triples representation of 3-address code
® The benefit of Quadruples over Triples can be seen in an optimizing compiler,
where instructions are often moved around.
® With quadruples, if we move an instruction that computes a temporary ¢, then the
instructions that use ¢ require no change. With #riples, the result of an operation is
referred to by its position, so moving an instruction may require changing all
references to that result. This problem does not occur with indirect triples.

6.2.4 Static Single-Assignment Form
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» Static single assignment form (SSA) is an intermediate representation that
facilitates certain code optimization.
* Two distinct aspects distinguish SSA from three —address code.
— All assignments in SSA are to variables with distinct names; hence the
term static single-assignment.

p=a+b p, =a+h
9=p =% Qr =Py T %
P=q*d P, =q *d
B = e = p Ps = € = P
qQ=p+tgq Q2 = P3 ¥ q

(a) Three-address code.  (b) Static single-assignment form.

Figure 6.13: Intermediate program in three-address code and SSA

if (flag) = = -1; else x = 1;
v = x * -a

if {(fliag) x = -1; else x; = 1;
Xy = $({x:, =)
6.3 Types and Declarations
» The applications of types can be grouped under checking and translation:

— Type checking uses logical rules to reason about the behavior of a program
at run time. Specifically it ensures that the types of the operands match the
type expected by an operator.

— Translation Applications. From the type of a name, a compiler can
determine the storage that will be needed for the name at run time.

* Type information is also needed to calculate the address denoted
by an array reference, to insert explicit type conversions, and to
choose the right version of an arithmetic operator, among other
things.

* In this section, we examine types and storage layout for names declared within a
procedure or a class.
6.3.1 Type Expressions
* Types have structure, which we shall represent using type expressions:

— A type expression is either a basic type or is formed by applying an

operator called a type constructor or to a type expression
*  Example 6.8:

— int]2][3]

* “array of 2 arrays of 3 integers each”

* array(2, array(3, integer))
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array

LA Ty

2

array
- :
= \

3 integer

Figure 6.14: Type expression for int [2] [3]
* Definition of type expressions:

A basic type is a type expression.

A type name is a type expression.

A type expression can be formed by applying the array type constructor to
a number and a type expression.

A record is a data structure with named fields.

A type expression can be formed by using the type constructor — for
function type.

If s and ¢ are type expressions, then their Cartesian product sxz is a type
expression.

Type expressions may contain variables whose values are type
expressions.

6.3.2 Type Equivalence
*  When type expressions are represented by graphs, two types are structurally
equivalent if and only if one of the following condition is true:

They are the same basic type.

They are formed by applying the same constructor to structurally
equivalent types.

One is a type name that denotes the other.

6.3.3 Declaration
* We shall study types and declarations using a simplified grammar that declares
just one name at a time.

D—Tid;D|¢

T— BC|record ‘{‘D*‘}’

B — int | float

C— ¢|[num] C

*  Example 6.9: Storage Layout for Local Names

Computing types and their widths
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T - B { t = B.type; w = B.width; }

C
B — int { B.type = integer; B.width = 4; }
B — float { B.type = float; B.width = 8; }
C — € { C.type = t; C.width = w; }
C — [num] C, { aerray(num.value, C;.type);

C.width = num.value x C1.width; }
Figure 6.15: Computing types and their widths

e Syntax-directed translation of array types

T type = array(2, array(3, integer))
Dl width = 24
N . t = integer - C type = array(2, array(3, integer))
i%p]i = integer g = 4 - width = 24
- width = 4 ' >
b ' type = array(3, integer)
nt [2] C.  width — 12
. type = integer
[ 3 } ¢ width = 4

Figure 6.16: Syntax-directed translation of array types
Sequences of Declarations
P - { offset = 0; }
D
D - Tid; { top.put{id.lezeme, T.type, offset);
offset = offset + T.width; }

Dy
L = €

® Actions at the end:

P = MD
M = e { offset = 0; }

Fields in Records and Classes

float x;
record { float x; float y; } p;
record { int tag; float x; float y; } q;

T — record '{" { Env.push(top); top = new Enu();
Stack.push(offset): offset = 0; }

Dy { T.type = record(top); T.width = offset;
top = Env.pop(); offset = Stack.pop(); }

6.4 Translation of Expressions
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* An expression with more than one operator, like a + b * ¢, will translate into
instructions with at most one operator per instruction.
* An array reference A[ i ][ j ] will expand into a sequence of three-address
instructions that calculate an address for the reference.
6.4.1 Operations within Expressions
*  Example 6.11:
a=b+-c

!

t]l = minus
t2=D>b +tl
a=1t2

Three-address code for expressions

PRODUCTION SEMANTIC RULES
§ — id=F ; | S.code= E.cade ||
gen( top. get(id. levemne) '=" E.addr)

E — Ei+E; E.addr

new Temp ()

mn

E.code = Ei.code || Ea.code ||
gen{ E.addr '=" Ei.addr '+’ E3.addr)
| - Ey E.addr = new Temyp ()
E.code = Fy.code ||

gen( E.addr '=" 'minus’ E.addr)

| (E1) E.addr = Ey.addr
E.code = Fi.code

| id | E.addr = top.get(id.lezeme)
| E.code=""

Incremental Translation
S = id=E; { gen{topget(id.lexeme) '=" E.addr); }

E — E, +E; { E.addr = new Temp();
gen(E.addr '=" E, .addr '+' Es.addr); }

| - E; { E.addr = new Temp():
gen{ E.addr '=" 'minus’ Fy.addr); }

| CEp) { E.addr = E).addr; }

| id { E.addr = top.get(id.lezeme); }
Addressing Array Elements
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® Layouts for a two-dimensional array:

T Al1,1] TR Yy
F— First column
First row A, 2] Al2,1) | {-
| .
1 ! | A2
=+ '-—ﬂl—"?—}—! 1,2] | Second column
A[2,1] | | Al2,2] | '
TR 201 a1 |
: 4 y Af1,3] |
Secon!d o m‘iﬁ, 24 l———-l — l—-l Third column
' AR,3] | LAR3 |y
(a) Row Major (b) Column Major

Semantic actions for array reference
S = id=E ; { gen(top.getlid.lezeme) '=' E.addr); }

| L=E; { gen(L.addr.base '[' L.addr ') '=" E.addr); }

E — FE + E, { E.addr = new Temp();
gen(E.addr '=" E;.addr '+' Ej.addr); }

| id { E.addr = top.get{id.lezeme); }

| L { E.addr = new Temp();
gen(E.addr '=" L.array.base '[' L.addr ']'); }

L — id[E1 { L.array = top.get(id.lezeme);
L.type = L.array.type.elem;
L.addr = new Temp();
gen{L.addr '=" E.addr '+' L.type.width); }

| Li LE] { L.array = L;.array;
L.type = L,.type.clem;
t = new Temp();
L.addr = new Temp();
gen(t '=" E.addr '+’ L.type.width); }
gen(L.addr '=" Ly.addr '+ t); }

Translation of Array References
Nonterminal L has three synthesized attributes:
® [.addr
e [.array
® L.type
Conversions between primitive types in Java
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double double
| '
float float
| '
long long
| '
it inid
~
short char char —s— short —=—= hyte

bate

(a) Widening conversions

g R stz

—_—

(b) Narrowing conversions

Introducing type conversions into expression evaluation

E — E) + Es

{ E.type =

INTERMEDIATE-CODE GENERATION

maz( B} . type, Ea.type);

a1 = widen(E;.addr, Ey .type, E type);

az =
E.addr = new Temp();

widen( Ea.addr, B type, E.type);

gen(E.addr '=" a, '+" a2); }

Abstract syntax tree for the function definition

fun length(x) =
if mull(x) then O else length(tl(x)+1) fun
[ u/ I N if
ength T i
/ | \
apply + N
Thin ; . ‘ /
This is a polymorphio fanction . 1f T apply 1
in ML language .
length  apply
t T
Inferring a type for the function length
LINE EXPRESSION : TYPE UNIFY
1) length : 8 —
2) z : 0
3) if : boolean x oy X oy —
4) null : list{an) — boolean
5) null(x) : boolean listla,) = 8
6) 0 : integer oy = integer
7) + : integer X integer — integer
&) tl o list(oy) = list(ay)
9) tz) : list{oy) list{ay) = list{cv,)
10) length(tl(z)) : ~ 4 = integer
11) 1 : integer
12) | length(tl(z)) + 1 : integer
13) if{ +-- ) : integer
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Algorithm for Unification

((evy — ea) x list{og)) — list{as)
((xg —r o) = list{oes)) — s

—+: 1 —: 1
A% AN
®:2 list: B b oy 8
/ B
—: 3 list: 6 —: 3 list : 6
# S e
oy s 4 n 1 D g s 4 kg * D

boolean unify (Node m, Node n)
{
s = find(m); t = find(n);
if (s =t) return true;
else if ( nodes s and t represent the same basic type ) return frue;
else if (s is an op-node with children s1 and s2 and
t is an op-node with children t1 and t2) {
union(s , t) ;
return unify(s1, t1) and unify(s2, t2);
}
else if s or t represents a variable {
union(s, t) ;
return true;

}

else return false;

}

Control Flow
Boolean expressions are often used to:
. Alter the flow of control.
. Compute logical values.
Short-Circuit Code
if (x <100 || x> 200 &k x '=y ) x = 0;
if x < 100 goto Lo
ifFalse x > 200 goto L
ifFalse x != v goto L
Le: =z =0
Ly:
Flow-of-Control Statements
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=== to B.true — __t-_LLB.tme

B.code _|to B.false ] B.code to B.false

B.true : B.i = 4
’ "I 8y.code R S .code
B.false : [ | |goto S.next
; B.false :
(a) if fulee S5 . code
S.next :
) - to B.true
begin : | B.cod o (b) if-else
-C00E to B.false
— -
B.true : |
2 Sl.l’:ﬂdﬁ |
goto begin

B false : | (c) while
S - (B)S
S5 —= if(B) 5 else S;
S = while ( B) 95

Syntax-directed definition

PRODUCTION
P -8

5 — assign

S = if(B) 5

S8 = if( B) 5 else 5;

S — while( B) 5,

S =+ 85 5

SEMAN

TIC RULES

S.next

newlabel( )

P.code S.code || label( S.next)
S.code = assign.code
B.true = mnewlabel()
B.false = 5).next = S.nect
S.code = B.code || label( B.true) || S;.code
B.true = newlabel()
B.false = mnewlabel()
S).next = So.next = S.next
S.code = B.code
|| label{ B.true) || Sy.code
|| gen(’'gote’ S.next)
|| label(B.false) || S,.code
begin = newlabel()
B.rue = newlabel()
B.false = S.next
Si.next = begin
S.code = label{begin) || B.code
|| lnbel(B.true) || Sy.code
|| gen('gote” begin)
§1.next = newlabel()
Sa.next = S.next
S.code = S;.code || label(S).next) || S2.code

Generating three-address code for Booleans
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PRODUCTION

SEMANTIC RULES

B = By |l By

B—}H[&&Bg

B = E; rel Es

B — true

B — false

By -;r_r:u-'z B . true

By .false = newlabel()

By true = B.true

B2 false = B.false

B.code = B,.code || label( 3, false) || Ba.code

B, .true = newlabel()
B, .false = B false
By true = B.frue
Bs.false = B.false

B.vode = By.code || labell By .true) || By.code

B, .true = B false
B, .folse = B.true

| B.code = By.code

B.eade = Ey.code || Ez.code
Il gen("if" E,.addr rel.op Es.addr 'gote’ B.true)
|| gen{'gote' B.false)

B.code = gen('goto’ B.true)

B.code = gen('goto’ B.false)

Translation of a simple if-statement

Backpatching

if( x < 100 || x > 200 && x !=y ) x = 0;

if x < 100 goto Lj

goto Lg

Ly: if = > 200 goto Ly
goto Iy

Ly: 1if x '= y goto Las
goto Ly

Le: =0

L-J M

® Previous codes for Boolean expressions insert symbolic labels for jumps

e [t therefore needs a separate pass to set them to appropriate addresses

® We can use a technique named backpatching to avoid this

® We assume we save instructions into an array and labels will be indices in the

array

® For nonterminal B we use two attributes B.truelist and B.falselist together with
following functions:
® makelist(i): create a new list containing only I, an index into the array of

instructions

® Merge(pl,p2): concatenates the lists pointed by p1 and p2 and returns a
pointer to the concatenated list

® Backpatch(p,i1): inserts 1 as the target label for each of the instruction on
the list pointed to by p
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Backpatching for Boolean Expressions
BB || MBy | By && M By | ! By | (B1) | £y rel By | true | false
M — e
1) BB || M B { backpatch{ B, .falselist, M instr);
B.iruelist = merge( By . truelist, B . truelist);
B.falselist = Bs.falselist; }

2) B — By, && M B, { backpatch( B, . truelist, M. instr);
B.truelist = Bo.fruelist;
B.falselist = merge( B, .falselist, By . falselist); }

3 B> !'HB { B.truelist = B1.falselist;
B.falselist = B .truelist; }

4) B —={(B) { B.truelist = B .truelist;
B.falselist = By.falselist; }

5) B — E, rel E; { B.truelist = makelist{ nextinstr);

B falselist = makelist{nextinstr + 1);
emit('if' Fy.addr rel.op Fs. addr 'goto ');
emit('goto '); }

6) B — true { B.truelist = makelist(nertinstr);
emit('goto '); }
7} B — false { B.falselist = makelist{ nextinstr);

emit('goto _'); }
8) M —>e { M.instr = nextinstr; }

® Annotated parse tree for x <100 || x > 200 && x ! =y
Bi = {mu 104}

1uq , 105}
/ "'l*fi—lﬂz

B.t = {100} B.t = {104}

B.f = {101} B.f = {103 105}

Al

LR P Mf_mz_{
B.t = {102} B.t = {104}
B.f = {103} € B.f = {105}
LN 1%
x > 200 x 1=y

Flow-of-Control Statements
S — while M, ( B) M2 5,

DEPT. OF CSE, SIBIT Page 101



COMPILER DESIGN [10CS63] UNIT - VI

1) S — if(B) M S, { backpatch(B.iruelist, M.instr);

S.nextlist merge( B.falselist,

5 —= if(B) M, 5 N else M; 5

{ backpatch( B truelist, M, .instr);

backpatch( B.falselist, Ms.instr);

INTERMEDIATE-CODE GENERATION

Si.nestlist); }

temnp = merge(Sy.nextlist, N.nextlist);
S.nextlist = merge(temp, Sa.nextlist); }

5 — while M, (B) M 5,

{ backpatch(S: . nextlist, M, insir);

backpatch( B.truelist, Mo instr);
S.nextlist = B.falselist;
emit{'goto’ M;.instr); }

4) S =+{ LY { S.nectlist L.nextlist; }

5) § = A; { S.nextlist nulil; }

6) M — €

{ M.instr nextinstr; }

7) N ¢

emit(‘goto '); }

8 L—-Ly M5 { backpatch{L,.nextlist, M.instr);
L.nextlist = S.nextlist; }

9y L —» 8

{ L.nestlist S.nextlist; }

Translation of a switch-statement
switch ( E ) {

case 17: S

case V5 Sp

case V,,_1: S,

default: 5,
}
code to evaluate E into t
goto test
Li: code for 5,
goto next
Ly: code for S Ly:
goto next
Lp-1: code for S, La
goto next
Ly: code for 5, Lii=o
goto next
test: if t = 1| goto L,
if t = 1-{3 thC‘ Lz Lﬂ 1
next:
if t = V-1 gote L,
goto L,
next:

{ N.nextlist = makelist{nextinstr);

code to evaluate F into t
if t 1= V| goto L,
code for S

goto next

if t != V3 goto La
code for S5

goto next

if t !'= V,_4 goto Ly
code for Sn_1

goto next

code for S,
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UNIT VII: RUN-TIME ENVIRONMENTS
SYLLABUS

Storage Organization;

Stack allocation of space;

Access to non-local data on the stack;
Heap management;

Introduction to garbage collection.

RUN TIME ENVIRONMENT
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B Compiler must do the storage allocation and provide access to variables and data
B Memory management
B Stack allocation
B Heap management
B Garbage collection
Storage Organization

Code

Static

Heap

v |

* Assumes a logical address space
— Operating system will later map it to physical addresses, decide how to
use cache memory, etc.
* Memory typically divided into areas for
— Program code
— Other static data storage, including global constants and compiler
generated data
— Stack to support call/return policy for procedures
— Heap to store data that can outlive a call to a procedure
Static vs. Dynamic Allocation
B Static: Compile time, Dynamic: Runtime allocation
B Many compilers use some combination of following
B Stack storage: for local variables, parameters and so on
B Heap storage: Data that may outlive the call to the procedure that created
1t
Stack allocation is a valid allocation for procedures since procedure calls are nest

Sketch of a quicksort program
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int al11];

void readArray() { /* Reads 9 integers into a[l]. ..., a[9]. =/
inmt i;

3
int partition{(int m, int n) A
/* Picks a separator value v, and partitions al[me .. n] so that
ajrrnn .. p — 1] are less than o, al[p] = v, and al[p + 1 .. n] are
equal to or greater than v. Heturns p. */

g
woid gunicksort{(int m, int n)} {
int i;
if (n > m)»
i = partition{m, n);

gquicksort{m, i-—1);
quicksort{i+1, n);

T

main() {
readArray () ;
alflol] = —-9999;
al10] = 9999;
quicksort{l1,9) ;
g
Activation for Quicksort
enter main()
enter readArray ()
leave readArray()
enter guicksort(1l, 9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1l,3)

leave guicksort(1,3)
enter quicksort(5,9)

leave quicksort(5,9)
leave quicksort(1,9)
leave main()

Activation tree representing calls during an execution of quicksort

p(1,9) g(1,3) T 4(5,9)
| ™\ 7 1
p(1,3) q(1,0) q(2,3) p(5,9) q(5,5) q(7,9)
il IS - | %
p(2,3) q(2,1) q(3,3) p(7,9) a(7.7) q(9,9)

Activation records

B Procedure calls and returns are usaully managed by a run-time stack called the
control stack.

B FEach live activation has an activation record (sometimes called a frame)

B The root of activation tree is at the bottom of the stack

B

The current execution path specifies the content of the stack with the last
activation has record in the top of the stack.

A General Activation Record
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Actual parameters

| Temporaries

Activation Record
Temporary values
Local data

A saved machine status

An “access link”
A control link

Elements in the activation record:

Space for the return value of the called function
The actual parameters used by the calling procedure

RUN TIME ENVIRONMENT

B temporary values that could not fit into registers

B Jocal variables of the procedure

B saved machine status for point at which this procedure called. includes

return address and contents of registers to be restored.

access link to activation record of previous block or procedure in lexical
scope chain

control link pointing to the activation record of the caller

space for the return value of the function, if any

actual parameters (or they may be placed in registers, if possible)

Downward-growing stack of activation records

Liﬂﬂ?Lﬂ[EJ { integer a[11]
matn main main main
| S ., o
y —
|_integer 1 |

(a) Frame for main

(b) r is activated

Tﬁﬂ?ﬁrer‘_; 11] integer aj_l-I.
mait main main main
[integer m, n. o | [integer m, A
r g(1,9 T (1,9
10,9 1 4,9 S D0
oot o ) frirass
inieger i p(1,9) q(1.3) | __integer i _l
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Designing Calling Sequences

Access

H ML
m ML
|

Values communicated between caller and callee are generally placed at the
beginning of callee’s activation record

Fixed-length items: are generally placed at the middle

Items whose size may not be known early enough: are placed at the end of
activation record

We must locate the top-of-stack pointer judiciously: a common approach is to
have it point to the end of fixed length fields.

to dynamically allocated arrays

Activation record
for p

Arrays of p

»l

\ Control link and saved status Activation record for
top_sp — ™ - - - - - - - T oo oo o oo s procedure g called by p

Arrays of g

top e e e —————————

is a functional language

Variables are defined, and have their unchangeable values initialized, by a statement
of the form:
val (name) = (expression)
B Functions are defined using the syntax:
fun (name) ( (arguments) ) = (body)
B For function bodies we shall use let-statements of the form:
let (list of definitions) in (statements) end
A version of quicksort, in ML style, using nested functions
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1} fun sort(inputFile, outputFile) =

let
2) val a = array(11,0);
3) fun readArray(inputFile) = :-- ;
4) creeog oses
5) fun exchange(i,j) =
ﬁ] cee @ e
7) fun quicksort(m,n) =
let
8) val v = ---
9) fun partition(y,z) =
lﬂ] <+ @ --- v --- exchange ---
in
11) s++ @+ v .- partition .-+ quicksort
end
in
12) -+ a --- readArray --- quicksort ---
end;
Access links for finding nonlocal dat
e ] e ] s ] T
| access link access link

| access link

[ v v
(a) _Fil-@}._./ | _e(1,3)

aceess link

access link

(b) _p(1,3) [ _»(1,3) |
access link | access link
_________ peeeE ot

(e) [ 1,3)

Sketch of ML program that uses function-parameters

fun a(x) =

let
fun b(f) =
BT S
fun c(y) =
let
fun A(=z) = ---
in
b{d_} —_—
aend
in
cld1)
end ;

Actual parameters carry their access link with them
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access Link

(b)
Maintaining the Display

1] s dfi] E—\. .|
d[2) 2| |
(a) (b) |

________

Memory Manager
Two basic functions:
B Allocation
B Deallocation
B Properties of memory managers:
B Space efficiency
B Program efficiency
Low overhead
Typical Memory Hierarchy Configurations

Typical Sizes Typical Access Times
> 2GB [ Virtual Memory (Disk) 3 - 15 ms
256MB - 2GB Physical Memory i 100 - 150 ns
128KB - 4MB 2nd-Level Cache ‘ 40 - 60 ns
(. I
— i
16 - 64KB | Lst-Level Cache —‘ 5-10 ns
32 Words ; Registers (Processor) ‘ 1 ns

Locality in Programs
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The conventional wisdom is that programs spend 90% of their time executing 10% of the
code:
B Programs often contain many instructions that are never executed.
B Only a small fraction of the code that could be invoked is actually executed in a
typical run of the program.
B The typical program spends most of its time executing innermost loops and tight
recursive cycles in a program.
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UNIT-VIII: CODE GENERATION
SYLLABUS

Issues in the design of Code Generator;
The Target Language;

Addresses in the target code;

Basic blocks and Flow graphs;
Optimization of basic blocks;

A Simple Code Generator

CODE GENERATION
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* The final phase in our compiler model

source Fromnt intermediate Code 'intermediate | Code target
- ! - —- - T P [T B
Program End | code Optimizer! code Generator| progran

Figure 8.1: Position of code generator
* Requirements imposed on a code generator
— Preserving the semantic meaning of the source program and being of high
quality
— Making effective use of the available resources of the target machine
— The code generator itself must run efficiently.
* A code generator has three primary tasks:
— Instruction selection, register allocation, and instruction ordering

Issue in the Design of a Code Generator
* General tasks in almost all code generators: instruction selection, register

allocation and assignment.
— The details are also dependent on the specifics of the intermediate
representation, the target language, and the run-tie system.
* The most important criterion for a code generator is that it produce correct code.

Given the premium on correctness, designing a code generator so it can be easily
implemented, tested, and maintained is an important design
Input to the Code Generator

* The input to the code generator is

— the intermediate representation of the source program produced by the
frontend along with
— information in the symbol table that is used to determine the run-time
address of the data objects denoted by the names in the IR.
* Choices for the IR
— Three-address representations: quadruples, triples, indirect triples
— Virtual machine representations such as bytecodes and stack-machine
code
— Linear representations such as postfix notation
— Graphical representation such as syntax trees and DAG’s
* Assumptions
— Relatively lower level IR
— All syntactic and semantic errors are detected.

The Target Program
» The instruction-set architecture of the target machine has a significant impact on

the difficulty of constructing a good code generator that produces high-quality
machine code.
* The most common target-machine architecture are RISC, CISC, and stack based.
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— A RISC machine typically has many registers, three-address instructions,
simple addressing modes, and a relatively simple instruction-set
architecture.

— A CISC machine typically has few registers, two-address instructions, and
variety of addressing modes, several register classes, variable-length
instructions, and instruction with side effects.

In a stack-based machine, operations are done by pushing operands onto a stack and then
performing the operations on the operands at the top of the stack
* Java Virtual Machine (JVM)

— Just-in-time Java compiler
* Producing the target program as
— An absolute machine-language program
— Relocatable machine-language program
— An assembly-language program
* In this chapter
— Use very simple RISC-like computer as the target machine.
— Add some CISC-like addressing modes
— Use assembly code as the target language.

Instruction Selection
* The code generator must map the IR program into a code sequence that can be

executed by the target machine.
* The complexity of the mapping is determined by the factors such as
— The level of the IR
— The nature of the instruction-set architecture
— The desired quality of the generated code
« If the IR is high level, use code templates to translate each IR statement into a
sequence of machine instruction.
— Produces poor code, needs further optimization.
» If the IR reflects some of the low-level details of the underlying machine, then it
can use this information to generate more efficient code sequence.

Instruction Selection

+ The nature of the instruction set of the target machine has a strong effect on
the difficulty of instruction selection. For example,
— The uniformity and completeness of the instruction set are important factors.
— Instruction speeds and machine idioms are another important factor,

Ifwe do not care about the efficiency ofthetarget program, instruction selection is
strad ght forwmatd.
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X=%¥+z= LD RO, V¥
ADD RO, RO, Z
ST %, RO

b+ cCc = LD RO, b
a+ e ADD RO, RO, C
=T a, RO
L Rro, a Re
ADD RO, RO,e
=T d, RO

am

dundant

The quality of the generated code is usually determined by its speed and size.

A given IR program can be implemented by many different code sequences, with
significant cost differences between the different implementations.

A naive translation of the intermediate code may therefore lead to correct but
unacceptably inefficient target code.

For example use INC for a=a+1 instead of

LD RO,a
ADD RO, RO, #1
ST a, RO
We need to know instruction costs in order to design good code sequences but,

unfortunately, accurate cost information is often difficult to obtain.

Register Allocation

A key problem in code generation is deciding what values to hold in what
registers.
Efficient utilization is particularly important.
The use of registers is often subdivided into two subproblems:
1. Register Allocation, during which we select the set of variables that will
reside in registers at each point in the program.
2. Register assignment, during which we pick the specific register that a
variable will reside in.
Finding an optimal assignment of registers to variables is difficult, even with
single-register machine.
Mathematically, the problem is NP-complete.

Register pairs (even/odd numbered) for some operands & results

Multiplication instruction is in the form M x, y where x, the multiplicand, is the
even register of even/odd register pair and y, the multiplier, is the odd register.
The product is occupies the entire even/odd register pair.

D x, y where the dividend occupies an even/odd register pair whose even register
is x, the divisor is y. After division, the even register holds the remainder and the
odd register the quotient.

Example:
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t = a + b t = a + b
t =t * c t =t + c
t=t / d t =t / d
(a) (b)
Figure 8.2: Two three-address code sequences

55 Rl.,a L RO, a
A R1l,b A RO, b
M RO, C A RO, c
D RO,d SRDA RO, 32
ST Ri.t D RO, d

ST Ri, t

(a) (b)

Figure 8.3: Optimal machine-code sequences

Evaluation Order

The order in which computations are performed can affect the efficiency of the
target code.

Some computation orders require fewer registers to hold intermediate results than
others.

However, picking a best order in the general case is a difficult NP-complete
problem.

A Simple Target Machine Model

Our target computer models a three-address machine with load and store
operations, computation operations, jump operations, and conditional jumps.
The underlying computer is a byte-addressable machine with » general-purpose
registers.
Assume the following kinds of instructions are available:

— Load operations Ex: LD dst, addr

— Store operations Instruction like ST x, r

— Computation operations of the form  OP dst,srcl,src2

— Unconditional jumps  : The instruction BR L

— Conditional jumps : Bcondr, L
Ex: BLTZr, L
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A Simple Target Machine Meodel

+  Hxamplz8.2:

X =% -=Z=LD Rl ¥ X=% = LD Rl p
LD R2, Z LD R2, O(R1)

SUB R1, R1, R2Z ST X, R2

5T x, R1

p=y = LD Rl p

_ . . LD R2, ¥
b = a[i] = Lp PR1, i st o(r), R2

MUL R1, R1, B
LD R2, afrRl)

st Thyhe fFx<ygotoL = LD Rl X
LD RZ2, ¥
a[jl=c= LD R, C i_?z g’ El’ R2
LD RZ, j 4

MUL B2, R2, 8
sT a(rR?), RL

Program and Instruction Costs
* For simplicity, we take the cost of an instruction to be one plus the costs
associated with the addressing modes of the operands.
* Addressing modes involving registers have zero additional cost, while those
involving a memory location or constant in them have an additional cost f one.
* For example,
— LD RO,R1 cost=1
— LD RO, M cost=2
— LD R1, *100(R2) cost =3
Addresses in the Target Code
*  We show how names in the IR can be converted into addresses in the target code
by looking at code generation for simple procedure calls and returns using static
and stack allocation.
* In Section 7.1, we described how each executing program runs in its own logical
address space that was partitioned into four code and data areas:
1. A statically determined area Code that holds the executable target code.
2. A statically determined data area Static, for holding global constants and
other data generated by the compiler.
3. A dynamically managed area Heap for holding data objects that are
allocated and freed during program execution.

A dynamically managed area Stack for holding activation records as they are created and
destroyed during procedure calls and returns
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Target Code Addresses

* Four areas of memory: Code, Static, Heap and Stack
* Can use one static base location for Code and Static variable
area
- procedures have a location (offset) of the code in this area
— global variables allocated in the static area also given offsets here
* Other program variables, local variables and formal
parameters, are given offset locations with regard to a stack
activation record pointer

Basic Blocks and Flow Graphs

* Representation of intermediate code as a graph

— nodes of the graph are basic blocks, where the flow of control can
only enter at the first instruction and leave through the last

— edges indicate which blocks can follow other blocks, representing
the jumps in the code
» Useful for discussing code generation

» Defining basic blocks

— separate sequence of TAC (three address code) into basic blocks by
identifying the first instruction as a leader:

+ very first instruction is a leader
* any instruction that is the target of a jump is a leader
 any instruction following a jump is a leader

Basic Blocks

= A basic block is a sequence of statements such
that:
— Flow of control enters at the beginning of the basic block
— Flow of control leaves at the end of the basic block
— No possibility of halting or branching except at end

= A name is live at a given point if its value will be
used again in the program

» Each basic block has a first statement known as
the leader of the basic block
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Partitioning Code into Basic Blocks

= Algorithm must determine all leaders:
— The first statement is a leader

— Any statement that is the target of a conditional or
unconditional goto is a leader

— Any statement immediately following a goto or
unconditional goto is a leader

= A basic block:
— Starts with a leader

— Includes all statements up to but not including the next
leader

Example of Basic blocks

| T | leader
psuedo code to initialize a 10 by 10 s . - ?;Z;;j
array to be the identity matrix, 3‘ J[]_: 10 #4 e
fori from 1 to 10 do ;1 g i ;;] ’:IJZ
for j from 1 to 10 do 6. t4:[3—88
ali,j]=0.0 e e
fori from 1 to 10 do ; J?[_[?;]O'O
ali,jl1=1.0 9. ifj<=10goto 3.
. 10. i=1+1 leader
Three address code, assuming 11. if i <= 10 goto 2.
a is the starting address of the 12; =1 leader
array in row-major form and 3. 5=i-1 leader
that each element takes 8 bytes }‘51 [f{ ZJSS ;(‘)5
i . a[t6] = 1.
e 16. i=i+1

17. ifi<=10 goto 13.

Graph Representation

: Bl: i=1 |
* Basic blocks connected by B2 =1 N
edges representing jumps B3: tl=10%1 v
+ add an entry and exit point tg = 181 I‘LJ'2
B3=8%¢
* can also identify set of {4 =3 _ 88
nodes as a loop alt4] = 0.0
— loop entry is only node with J =J +1
predecessor outside the loop ff L== 10 goto B3. i
— every node in the loop has a B4: e +1
path to the entry ff 1< 10 oo B2, l
B5: i=:l |
B6:  15=i-1 '
t6 =88 * 15
a[t6] = 1.0
i=i+1
if i <= 10 goto B6.

)
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Good Code Generation for Basic Blocks

* Some local optimization can be achieved by building a DAG
representation of the basic block
— node for each instruction in the block whose children are the previous
statements giving the last definition of the operands
* Eliminate local common subexpressions
— check if there are nodes with the same operator and the same children

* Dead code elimination
— if there is a node with no ancestors and with no live variables, then that
node can be eliminated
* Algebraic identities
— arithmetic identities (e.g. X —0=x=x+0=0+x...)
— reduction in strength, replacing expensive operations with cheaper ones
g X=X ¥X2¥x=X+X)
— constant folding - evaluate constant expressions at compile time (e.g. 2
*3.14)

Simple code generation

* Generates code considering just one basic block, but
introduces the ideas of register allocation

» assume that we keep information about registers

— register descriptor keeps track of which variable names have a
current value in that register

— address descriptor for each program variable keeps track of where
the current value of the variable can be found
» GetRegister function gets an appropriate register for any
operand of the TAC
= For the instructionx =y + z
— call GetRegister for each of the operands
« if y is not already in its register: lw Ry, y
« if zis not already in its register: 1w Rz, z
* give the instruction add Rx, Ry, Rz

Simple generation updates descriptors

* At end of basic block, ignore TAC temporaries (not live)
— for each program variable x, if current value of x is not in memory,
issue a sw instruction
» Updating descriptors:

— For the instruction Iw Ry, y, change register descr. for Ry to only
hold y

— add Ry to address descriptor of y as a location

— for the instruction sw x, Rx, change the address descr of x to include
memory address of x

— for each operation add Rx, Ry, Rz
* register descr Rx holds only x
* address descr of x has only Rx (not any memory location)
* remove Rx from address descr of any other variable
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GetRegister function

* Pick a register TQy for any variable y that is an operand
— if'y is already in a register, pick it (no load instruction needed)
— if y is not in a register, but one is free, pick that register (and load it)
— if'y is not in a register but there is not register free, consider candidate
registers R
+ any register with a variable v, whose descriptor says its current
value is in memory already

* any register with the variable x, the result of the instruction, and x
is not also one of the operands (x will be rewritten anyway)

 any register with a variable v that is not used later

+ otherwise, generate a store instruction sw R, v to “spill” v

« repeat these steps for other variables in the register, and pick a
register with the fewest number of stores

» Pick a register Rx for the variable x that is the result
« in addition to above: any register holding only x
« if y is not used later, use Ry to hold the result Rx (e.g. x =y )
* Code optimization:

— A transformation to a program to make it run faster and/or take up less
space

— Optimization should be safe, preserve the meaning of a program.

— Code optimization is an important component in a compiler

— Examples:
* Flow of control optimization:

goto L1 goto L2

L1: goto L2 | L1: goto L2

if a<b goto LI if a<b goto L2

L1: goto L2 L1: goto L2
goto L1 ifa<b goto L2
gotoL3
L1: ifa<bgotoL2
Ll:
L3:

* Algebraic simplification:

X :=x10

X :=x*1 === nop
* Reduction in strength

X2 2> x*x

X*4-> x<<2

* Instruction selection
Sometimes some hardware instructions can implement certain operation efficiently.
* Code optimization can either be high level or low level:
— High level code optimizations:
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* Loop unrolling, loop fusion, procedure inlining
— Low level code optimizations:
* Instruction selection, register allocation
— Some optimization can be done in both levels:
» Common subexpression elimination, strength reduction, etc.
— Flow graph is a common intermediate representation for code
optimization.
* Code optimization can either be high level or low level:
— High level code optimizations:
* Loop unrolling, loop fusion, procedure inlining
— Low level code optimizations:
» Instruction selection, register allocation
— Some optimization can be done in both levels:
* Common subexpression elimination, strength reduction, etc.
— Flow graph is a common intermediate representation for code
optimization.
* Basic block: a sequence of consecutive statements with exactly 1 entry and 1 exit.
» Flow graph: a directed graph where the nodes are basic blocks and block B1->
block B2 if and only if B2 can be executed immediately after B1:
* Algorithm to construct flow graph:
— Finding leaders of the basic blocks:
* The first statement is a leader
* Any statement that is the target of a conditional or unconditional
goto is a leader
* Any statement that immediately follows a goto or conditional goto
statement is a leader
— For each leader, its basic block consists all statements up to the next
leader.
— B1->B2 if and only if B2 can be executed immediately after B1.
* Example:

100: sum=0
101: j=0

102: goto 107
103: tl=j<<2

104: t2 =addr(a)
105: t3 =1t2[tl]
106: sum = sum + t3
107: ifj <n goto 103
* Optimizations within a basic block is called local optimization.
* Optimizations across basic blocks is called global optimization.
* Some common optimizations:
— Instruction selection
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— Register allocation
— Common subexpression elimination

— Code motion

— Strength reduction

— Induction variable elimination
— Dead code elimination

— Branch chaining

— Jump elimination

— Instruction scheduling

— Procedure inlining

— Loop unrolling

— Loop fusing
— Code hoisting
* Instruction selection:

CODE GENERATION

— Using a more efficient instruction to replace a sequence of instructions

(space and speed).
— Example:
Mov R2, (R3)
Add R2, #1,R2
Mov (R3), R2 = Add(R3), 1, (R3)
* Register allocation: allocate variables to registers (speed)
* Example:
M[R13+sum] = 0 =
MIR13+j] =0 oo
GOTOL18 GOTOL1S
L19: L19:
RO=MJR134j]* 4 RO=RI1*4
MIR13+sum] = M[R13+sum] R2 = R2+MIRO+ a]
+MIRO+_a] R1 =R1+
Lig: TIRI3H) = MR L18:
Nz = . NZ=R1-M[ 5]
?fzm i‘mill.l;‘l_n] if NZ <0 goto L19

* Example:

R2=0
Rl=0
GOTOLI18
i19:
RO=R1*4
R2 = R2+M[R0+_a]
Rl =RI1+1
L18:
Rd =M[_n]
NZ=R1-R4
if NZ <0 goto L19

R2=0
Rl=0
R4 =M][ n]
GOTOL18
L19:
RO=RI1*4
R2 = R2+M[RO+_a]
R1=RI1+1
L18:
NZ =R1-R4
if NZ < 0 goto L19

* Code motion: move a loop invariant computation before the loop

* Strength reduction: replace expensive operation by equivalent cheaper

operations
* Example:
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R2=0 R2=0
R1=0 R1=0
R4=M] n] R4 =M][ n]
GOTOL18 R3=_a
L19: GOTOL18
RO=R1*4 L19:
R2=R2+M[RO+ _a] R2=R2+M[R3]
R1=RI+1 R3I=R3+4
L18: R1=RI1+1
NZ=R1-R4 L18:
i NZ <0 goto L19 NZ=R1-R4
if NZ <0 goto L19
* Induction variable elimination: can induce value from another variable.
Example:
R2=0 R2=0
Rl=0 R4=M[ n] <<2
R4 =M 5] R3=_a
R3= a GOTOL18
GOTOL18 L19:
L19: R2 = R2+MJR3]
R2 =R24M[R3] R3=R3+4
R3=R3+4 L18:
Rl =RI1+1 NZ=R3-R4
L1s: if NZ <0 goto L19
NZ=R1-R4
if'NZ <0 goto L19

« Common sub-expression elimination: an expression was previously calculated
and the variables in the expression have not changed. Can avoid re-computing the

expression.
* Example:
- b
. b _ R1 =MJ[RI1+ b]
R2 = M[R13+1] <= 2: R2 = R1

R2 = M[R2+ b]

ALGEBRAIC TRANSFORMATION

Countless algebraic transformations can be used to change the set of
expressions computed by a basic block into an algebraically equivalent set. The useful
ones are those that simplify expressions or replace expensive operations by cheaper ones.
For example, statements

such as

X =x 10
Or

X =x*1

can be eliminated from a basic block without changing the set of expressions it
computes. The exponentiation operator in the statements

X =y **2
usually requires a function call to implement. Using an algebraic transformation, this
statement can be replaced by cheaper, but equivalent statement

X = y*y
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FLOW GRAPHS
We can add the flow-of —control information to the set of basic blocks making
up a program by constructing a directed graph called a flow graph. The nodes of the flow
graph are the basic blocks. One node is distinguished as initial; it is the block whose
leader is the first statement. There is a directed edge from block B1 to block B2can be
immediately follow Blin some execution sequence; that is, if
1. there is a conditional or unconditional jump from the last statement of B2, or

2. B2 immediately follow Blin the order of the program, and B1 does not end in the

unconditional jump
B1 is a predecessor of B2, and B2is a successor of B1.
Example 4:The flow graph of the program of fig. 7 is shown in fig. 9, B1 is the initial
node.

B1 Prod :=0
I:=1 L

B2 tl:=4*i
t2:=atl]
t3:=4%i
t4:=b[t3]
t5:=t2*t4
t6:= prod + t5
Hg—

if I <= 20 goto B2

Fig .9 flow graph for program

REPRESENTATION OF BASIC BLOCKS

Basic Blocks are represented by variety of data structures. For example, after
partitioning the three address statements by Algorithm 1, each basic block can be
represented by a record consisting of a count of number of quadruples in the block,
followed by a pointer to the leader of the block, and by the list of predecessors and
successors of the block. For example the block B2 running from the statement (3)
through (12) in the intermediate code of figure 2 were moved elsewhere in the quadruples
array or were shrunk, the (3) in if i<=20 goto(3) would have to be changed.

LOOPS
Loop is a collection of nodes in a flow graph such that

1. All nodes in the collection are strongly connected; from any node in the loop to any
other, there is path of length one or more, wholly within the loop, and
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2. The collection of nodes has a unique entry, a node in the loop such that is, a node in
the loop such that the only way to reach a node of the loop from a node outside the loop
is to first go through the entry.
A loop that contains no other loops is called an inner loop.

REDUNTANT LOADS AND STORES
If we see the instructions sequence

(1) MOV RO,a

(2) MOV a,R0
-we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the
value of a is already in register RO.If (2) had a label we could not be sure that (1) was
always executed immediately before (2) and so we could not remove (2).
UNREACHABLE CODE

Another opportunity for peephole optimizations is the removal of

unreachable instructions. An unlabeled instruction immediately following an
unconditional jump may be removed. This operation can be repeated to eliminate a
sequence of instructions. For example, for debugging purposes, a large program may
have within it certain segments that are executed only if a variable debug is 1.In C, the
source code might look like:

#define debug 0

If (debug ) {
Print debugging information
}
In the intermediate representations the if-statement may be translated as:
If debug =1 goto L2
Goto L2
L1: print debugging information
57/ (a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter
what the value of debug, (a) can be replaced by:

If debug #1 goto L2

Print debugging information

L2: e (b)
As the argument of the statement of (b) evaluates to a constant true it can be replaced by
If debug #0 goto L2
Print debugging information
577 (©)

As the argument of the first statement of (c) evaluates to a constant true, it can be
replaced by goto L2. Then all the statement that print debugging aids are manifestly
unreachable and can be eliminated one at a time.

FLOW-OF-CONTROL OPTIMIZATIONS
The unnecessary jumps can be eliminated in either the intermediate code or the
target code by the following types of peephole optimizations. We can replace the jump
sequence
goto L2
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L1 : gotoL2
by the sequence
goto L2

L1 : goto L2
If there are now no jumps to L1, then it may be possible to eliminate the statement
L1:goto L2 provided it is preceded by an unconditional jump .Similarly, the sequence
if a<b goto L1

L1 : goto L2
can be replaced by
ifa<b goto L2

L1 : goto L2
Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional
goto. Then the sequence
goto L1
L1:if a<b goto L2
L3: e 1
may be replaced by
if a<b goto L2
goto L3
L3: e ?2)
While the number of instructions in (1) and (2) is the same, we sometimes skip the
unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

ALGEBRAIC SIMPLIFICATION

There is no end to the amount of algebraic simplification that can be attempted
through peephole optimization. Only a few algebraic identities occur frequently enough
that it is worth considering implementing them .For example, statements such as

x :=x+0
Or
X =x*1

are often produced by straightforward intermediate code-generation algorithms, and they
can be eliminated easily through peephole optimization.

ELIMINATION OF COMMON SUBEXPRESSIONS

Common sub expressions need not be computed over and over again. Instead they can
be computed once and kept in store from where its referenced when encountered again —
of course providing the variable values in the expression still remain constant.
ELIMINATION OF DEAD CODE

Its possible that a large amount of dead(useless) code may exist in the program. This
might be especially caused when introducing variables and procedures as part of
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construction or error-correction of a program — once declared and defined, one forgets to
remove them in case they serve no purpose. Eliminating these will definitely optimize the
code
REDUCTION IN STRENGTH

Reduction in strength replaces expensive operations by equivalent cheaper ones
on the target machine. Certain machine instructions are considerably cheaper than others
and can often be used as special cases of more expensive operators. For example, x* is
invariably cheaper to implement as x*x than as a call to an exponentiation routine. Fixed-
point multiplication or division by a power of two is cheaper to implement as a shift.
Floating-point division by a constant can be implemented as multiplication by a constant,
which may be cheaper.

USE OF MACHINE IDIOMS

The target machine may have hardware instructions to implement certain
specific operations efficiently. Detecting situations that permit the use of these
instructions can reduce execution time significantly. For example, some machines have
auto-increment and
auto-decrement addressing modes. These add or subtract one from an operand before or
after using its value. The use of these modes greatly improves the quality of code when
pushing or popping a stack, as in parameter passing. These modes can also be used in
code for statements like 1 : =i+1.
Getting Better Performance
Dramatic improvements in the running time of a program-such as cutting the running
time form a few hours to a few seconds-are usually obtained by improving the program at
all levels, from the source level to the target level, as suggested by fig. At each level, the
available options fall between the two extremes of finding a better algorithm and of
implementing a given algorithm so that fewer operations are performed.
Algorithmic transformations occasionally produce spectacular improvements in running
time. For example, Bentley relates that the running time of a program for sorting N
elements dropped from 2.02N"2 microseconds to 12Nlog2N microseconds then a
carefully coded "insertion sort" was replaced by "quicksort".
THE PRINCIPAL SOURCES OF OPTIMIZATION
Here we introduce some of the most useful code-improving transformations. Techniques
for implementing these transformations are presented in subsequent sections. A
transformation of a program is called local if it can be performed by looking only at the
statements in a bas9ic block; otherwise, it is called global. Many transformations can be
performed at both the local and global levels. Local transformations are usually
performed first.
Function-Preserving Transformations
There are a number of ways in which a compiler can improve a program without
changing the function it computes. Common subexpression elimination, copy
propagation, dead-code elimination, and constant folding are common examples of such
function-preserving transformations. The other transformations come up primarily when
global optimizations are performed.
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Frequently, a program will include several calculations of the same value, such as an
offset in an array. Some of these duplicate calculations cannot be avoided by the
programmer because they lie below the level of detail accessible within the source
language. For example, block B5 shown in fig recalculates 4*i and 4*].

EBS

tE:= 4"
< 6= 4"
& :1}_5] x = afts]
] = 4%
e = 4 t3:= at8]
19:= aft3] atE] =9
A7) =t3 altB] = x
0= 4% goto B2
aft10)k= =
goto B2
Before After

Local common subexpression elimination

Common Subexpressions

An occurrence of an expression E is called a common subexpression if E was previously
computed, and the values of variables in E have not changed since the previous
computation. We can avoid recomputing the expression if we can use the previously
computed value. For example, the assignments to t7 and t10 have the common
subexpressions 4*1 and 4%, respectively, on the right side in Fig. They have been
eliminated in Fig by using t6 instead of t7 and t8 instead of t10. This change is what
would result if we reconstructed the intermediate code from the dag for the basic block.
Example: Fig shows the result of eliminating both global and local common
subexpressions from blocks B5 and B6 in the flow graph of Fig. We first discuss the
transformation of B5 and then mention some subtleties involving arrays.

Ea= altz]

dF t3<w goto B2

=11

b= 4%

t5:= aftd]

if tB>w goto B3

if iz=j gogo BE
=13
t14:= aftl]
a[t2]:=1t14
altl ==

B5 and B6 after common sub-expression elimination
After local common sub-expressions are eliminated BS still evaluates 4*i and 4*j, as
shown in the earlier fig. Both are common sub-expressions; in particular, the three
statements
t8:= 4*j; t9:= a[t[8]; a[t8]:=x
in B5 can be replaced by
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t9:= a[t4]; a[t4:= x using t4 computed in block B3. In Fig. observe that as control passes
from the evaluation of 4*j in B3 to BS5, there is no change in j, so t4 can be used if 4*j is
needed.

Another common sub-expression comes to light in B5 after t4 replaces t8. The new
expression a[t4] corresponds to the value of a[j] at the source level. Not only does j retain
its value as control leaves b3 and then enters BS5, but a[j], a value computed into a
temporary t5, does too because there are no assignments to elements of the array a in the
interim. The statement

t9:= a[t4]; a[t6]:=t9

in B5 can therefore be replaced by

a[t6]:=1t5

The expression in blocks B1 and B6 is not considered a common subexpression although
t1 can be used in both places.After control leaves B1 and before it reaches B6,it can go
through B5,where there are assignments to a.Hence, a[t]] may not have the same value
on reaching B6 as it did in leaving B1, and it is not safe to treat a[tl] as a common
subexpression.

Copy Propagation

Block B5 in Fig. can be further improved by eliminating X using two new
transformations. One concerns assignments of the form fi=g called copy statements, or
copies for short. Had we gone into more detail in Example 10.2, copies would have arisen
much sooner, because the algorithm for eliminating common subexpressions introduces
them, as do several other algorithms. For example, when the common subexpression in
c:=d+e is eliminated in Fig., the algorithm uses a new variable t to hold the value of d+e.
Since control may reach c:=d+e either after the assignment to a or after the assignment to
b, it would be incorrect to replace c:=d+e by either c:=a or by c:=b.

The idea behind the copy-propagation transformation is to use g for f, wherever possible
after the copy statement fi=g. For example, the assignment x:=t3 in block B5 of Fig. is a
copy. Copy propagation applied to BS yields:

x:=t3

a[t2]:=t5

a[t4]:=t3

goto B2

| bi=d+e ‘ tb=d+e bi=d+e

ax=t b=t
! ./

Copies introduced during common subexpression

elimination.

This may not appear to be an improvement, but as we shall see, it gives us the
opportunity to eliminate the assignment to x.

Dead-Code Eliminations

A variable is live at a point in a program if its value can be used subsequently; otherwise,
it is dead at that point. A related idea is dead or useless code, statements that compute
values that never get used. While the programmer is unlikely to introduce any dead code
intentionally, it may appear as the result of previous transformations. For example, we
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discussed the use of debug that is set to true or false at various points in the program, and
used in statements like

If (debug) print ...
By a data-flow analysis, it may be possible to deduce that each time the program reaches
this statement, the value of debug is false. Usually, it is because there is one particular
statement

Debug :=false
That we can deduce to be the last assignment to debug prior to the test no matter what
sequence of branches the program actually takes. If copy propagation replaces debug by
false, then the print statement is dead because it cannot be reached. We can eliminate
both the test and printing from the o9bject code. More generally, deducing at compile
time that the value of an expression is a co9nstant and using the constant instead is
known as constant folding.
One advantage of copy propagation is that it often turns the copy statement into dead
code. For example, copy propagation followed by dead-code elimination removes the
assignment to x and transforms 1.1 into

aft2]:=t5
a[t4] =13
goto B2

Loop Optimizations

We now give a brief introduction to a very important place for optimizations, namely
loops, especially the inner loops where programs tend to spend the bulk of their time. The
running time of a program may be improved if we decrease the number of instructions in
an inner loop, even if we increase the amount of code outside that loop. Three techniques
are important for loop optimization: code motion, which moves code outside a loop;
induction-variable elimination, which we apply to eliminate I and j from the inner loops
B2 and B3 and, reduction in strength, which replaces and expensive operation by a
cheaper one, such as a multiplication by an addition.

Code Motion

An important modification that decreases the amount of code in a loop is code motion.
This transformation takes an expression that yields the same result independent of the
number of times a loop is executed ( a loop-invariant computation) and places the
expression before the loop. Note that the notion “before the loop” assumes the existence
of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant
computation in the following while-statement:

While (i<= limit-2 )
Code motion will result in the equivalent of

t= limit-2;
while (i<=t)

Induction Variables and Reduction in Strength

While code motion is not applicable to the quicksort example we have been considering
the other two transformations are.Loops are usually processed inside out.For example
consider the loop around B3.
Note that the values of j and t4 remain in lock-step;every time the value of j decreases by
1 ,that of t4 decreases by 4 because 4*j is assigned to t4.Such identifiers are called
induction variables.
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When there are two or more induction variables in a loop, iit may be possible to get rid
of all but one, by the process of induction-variable elimination.For the inner loop around
B3 in Fig. we cannot ger rid of either j or t4 completely.; t4 is used in B3 and j in B4.
However, we can illustrate reduction in strength and illustrate a part of the process of
induction-variable elimination. Eventually j will be eliminated when the outer loop of B2
- B5 is considered.

Example: As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig.
and t4 is not changed elsewhere in the inner loop around B3, it follows that just after the
statement j:=j-1 the relationship t4:= 4*j-4 must hold. We may therefore replace the
assignment t4:= 4*j by t4:= t4-4. The only problem is that t4 does not have a value when
we enter block B3 for the first time. Since we must maintain the relationship t4=4*j on
entry to the block B3, we place an intializations\ of t4 at the end of the blcok where j
itself is initialized, shown by the dashed addt\ition to block B1 in second Fig.

The replacement of a multiplication by a subtraction will speed up the object code if
multiplication takes more time than addition or subtraction, as is the case on many
machines.

=1 Bl i=m-1 B1
[=n i=n
H:= 4% t1:= d*n
vi= a[t] wi=a[t1]
[ A ;
. 1 B2 s 2 1 BZ
A

=1 =i
= 45 B3 = t4-4 B3
t5:= atd] th:= aftd]
if 5z gota B3 | it the v gota B3

I‘J.l T .

if i+=j goto BG B4 | if iz=j gota BE B4
ES
BR BE
Before After

strength reduction applied to 4*j in block B3
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