More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

SYLLABUS

PART - A

UNIT -1 6 Hours
Machine Architecture: Introduction, System Software and Machine Architecture,
Simplified Instructional Computer (SIC) - SIC Machine Architecture, SIC/XE Machine
Architecture, SIC Programming Examples.

UNIT -2 6 Hours
Assemblers -1: Basic Assembler Function - A Simple SIC Assembler, Assembler Algorithm
and Data Structures, Machine Dependent Assembler Features - Instruction Formats &
Addressing Modes, Program Relocation.

UNIT -3 6 Hours
Assemblers -2: Machine Independent Assembler Features — Literals,Symbol-Definition
Statements, Expression, Program Blocks, Control Sections and Programming Linking,
Assembler Design Operations - One- Pass Assembler, Multi-Pass Assembler,
Implementation Examples — MASM Assembler.

UNIT -4 8 Hours
Loaders and Linkers: Basic Loader Functions - Design of an Absolute Loader, A Simple
Bootstrap Loader, Machine-Dependent Loader Features — Relocation, Program Linking,
Algorithm and Data Structures for a Linking Loader; Machine-Independent Loader Features
- Automatic Library Search, Loader Options, Loader Design Options - Linkage Editor,
Dynamic Linkage, Bootstrap Loaders, Implementation Examples - MS-DOS Linker.

PART -B

UNIT -5 6 Hours
Editors and Debugging Systems: Text Editors - Overview of Editing Process, User
Interface, Editor Structure, Interactive Debugging Systems - Debugging Functions and
Capabilities, Relationship With Other Parts Of The System, User-Interface Criteria

UNIT -6 8 Hours
Macro Processor: Basic Macro Processor Functions - Macro Definitions and Expansion,
Macro Processor Algorithm and Data Structures, Machine- Independent Macro Processor
Features - Concatenation of Macro Parameters, Generation of Unique Labels, Conditional
Macro Expansion, Keyword Macro Parameters, Macro Processor Design Options - Recursive
Macro

Expansion, General-Purpose Macro Processors, Macro Processing Within Language
Translators, Implementation Examples - MASM Macro Processor, ANSI C Macro Processor.

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

UNIT -7 6 Hours
Lex and Yacc — 1: Lex and Yacc - The Simplest Lex Program, Recognizing Words With
LEX, Symbol Tables, Grammars, Parser-Lexer Communication, The Parts of Speech Lexer,
A YACC Parser, The Rules Section, Running LEX and YACC, LEX and Hand- Written
Lexers, Using LEX — Regular Expression, Examples of Regular Expressions, A Word
Counting Program,

Parsing a Command Line.

UNIT -8 6 Hours
Lex and Yacc - 2 : Using YACC — Grammars, Recursive Rules, Shift/Reduce Parsing, What
YACC Cannot Parse, A YACC Parser - The Definition Section, The Rules Section, Symbol
Values and Actions, The LEXER, Compiling and Running a Simple Parser, Arithmetic
Expressions and Ambiguity, Variables and Typed Tokens.

Text Books:
1. Leland.L.Beck: System Software, 3rd Edition, Pearson Education, 1997.
(Chapters 1.1 t0 1.3, 2 (except 2.5.2 and 2.5.3), 3 (except 3.5.2 and 3.5.3), 4 (except 4.4.3))

2. John.R.Levine, Tony Mason and Doug Brown: Lex and Yacc, O'Reilly, SPD, 1998.
(Chapters 1, 2 (Page 2-42), 3 (Page 51-65))

Reference Books:
1. D.M.Dhamdhere: System Programming and Operating Systems, 2" Edition, Tata McGraw
- Hill, 1999.

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
TABLE OF CONTENTS
1. Machine Architecture

1.1 Introduction. 01

1.2 System Software and Machine Architecture. 01

1.3 Simplified Instructional Computer (SIC). 02

1.3.1 SIC Machine Architecture. 02

1.3.2 SIC Programming Examples. 05

1.3.3 SIC/XE Machine Architecture. 08

1.4 Recommended Questions 14

2. Assemblers -1

2.1 Basic Assembler Function 15
2.1.1 A Simple SIC Assembler 20
2.1.2Assembler Algorithm and Data Structures 22

2.2 Machine Dependent Assembler Features 30
2.2.1 Instruction Formats & Addressing Modes 30
22.2. Program Relocation. 36

2.3 Recommended Questions 39

3. Assemblers -2

3.1 Machine Independent Assembler Features 40
3.1.1 Literals 40
3.1.2 Symbol-Definition Statements 42
3.1.3 Expression, Program Blocks 47
3.1.4 Control Sections and Programming Linking 48
3.2 Assembler Design Operations 59
3.2.1 One-Pass Assembler 60
3.2.2 Multi-Pass Assembler 64
3.3 Implementation Examples — MASM Assembler. 66
3.4 Recommended Questions 67

4. Loaders and Linkers

4.1 Basic Loader Functions 68
4.1.1 Design of an Absolute Loader 70
4.1.2 A Simple Bootstrap Loader 73
4.2 Machine-Dependent Loader Features 74
4.2.1Relocation 75
4.2.2Program Linking 77
4.2.3 Algorithm and Data Structures for a Linking Loader 87
4.3 Machine-Independent Loader Features 92
4.3.1 Automatic Library Search 92

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
4.3.2 Loader Options 92

4.4 Loader Design Options 93
4.4.1 Linkage Editor 94

4.4.2 Dynamic Linkage 95
4.4.3Bootstrap Loaders 96
4.5Implementation Examples 96
4.5.1 MS-DOS Linker. 96

4.6 Recommended Questions 97

5. Editors and Debugging Systems

5.1 Text Editors 98
5.1.1 Overview of Editing Process 98
5.2.2 User Interface 99
5.2.3 Editor Structure 100

5.2 Interactive Debugging Systems 103
5.2.1Debugging Functions and Capabilities 103
5.2.2 Relationship with Other Parts of the System 105
5.2.3User-Interface Criteria 106

5.3 Recommended Questions

6. Macro Processor

6.1 Basic Macro Processor Functions 108
6.1.1 Macro Definitions and Expansion 108
6.1.2 Macro Processor Algorithm and Data Structures 111
6.2 Machines-Independent Macro Processor Features 118
6.2.1 Concatenation of Macro Parameters 118
6.2.2 Generation of Unique Labels 120
6.2.3 Conditional Macro Expansion 122
6.2.4 Keyword Macro Parameters 127
6.3 Macro Processor Design Options 129
6.3.1 Recursive Macro Expansion 129
6.3.2 General-Purpose Macro Processors 132
6.3.3 Macro Processing Within Language Translators 132
6.4 Implementation Examples 133
6.5 Recommended Questions 134

7. Lex and Yacc -1

7.1 Lex and Yacc 135
7.2 A YACC Parser 136
7.3 Using LEX 142
7.4 Recommended Questions 157

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

8. Lex and Yacc — 2

8.1 Using YACC 158
8.2 A YACC Parser 160
8.3 The LEXER 164
8.4 Compiling and Running a Simple Parser 166
8.5 Arithmetic Expressions and Ambiguity 168
8.6 Variables and Typed Tokens 173
8.7 Recommended Questions 201

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

UNIT -1
MACHINE ARCHITECTURE

1.1 Introduction:

The Software is set of instructions or programs written to carry out certain task on
digital computers. It is classified into system software and application software. System
software consists of a variety of programs that support the operation of a computer.
Application software focuses on an application or problem to be solved. System software

consists of a variety of programs that support the operation of a computer.

Examples for system software are Operating system, compiler, assembler, macro
processor, loader or linker, debugger, text editor, database management systems (some of
them) and, software engineering tools. These software’s make it possible for the user to focus
on an application or other problem to be solved, without needing to know the details of how

the machine works internally.
1.2 System Software and Machine Architecture:

One characteristic in which most system software differs from application software is
machine dependency.

System software supports operation and use of computer. Application software
provides solution to a problem. Assembler translates mnemonic instructions into machine
code. The instruction formats, addressing modes etc., are of direct concern in assembler

design. Similarly,

Compilers must generate machine language code, taking into account such
hardware characteristics as the number and type of registers and the machine instructions
available. Operating systems are directly concerned with the management of nearly all of the

resources of a computing system.

Dept. of ISE, SIBIT 1

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

There are aspects of system software that do not directly depend upon the type of
computing system, general design and logic of an assembler, general design and logic of a
compiler and code optimization techniques, which are independent of target machines.
Likewise, the process of linking together independently assembled subprograms does not

usually depend on the computer being used.

1.3 The Simplified Instructional Computer (SIC):

Simplified Instructional Computer (SIC) is a hypothetical computer that includes the
hardware features most often found on real machines. There are two versions of SIC, they
are, standard model (SIC), and, extension version (SIC/XE) (extra equipment or extra

expensive).
1.3.1 SIC Machine Architecture:

We discuss here the SIC machine architecture with respect to its Memory and
Registers, Data Formats, Instruction Formats, Addressing Modes, Instruction Set, Input and
Output

e Memory:

There are 2% bytes in the computer memory, that is 32,768 bytes. It uses Little
Endian format to store the numbers, 3 consecutive bytes form a word , each location in

memory contains 8-bit bytes.
e Registers:

There are five registers, each 24 bits in length. Their mnemonic, number and use are

given in the following table.

Dept. of ISE, SIBIT 2

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Mnemonic Number Use

A 0 Accumulator; used for arithmetic operations
X 1 Index register; used for addressing

L 2 Linkage register; JSUB

PC 8 Program counter

SW 9 Status word, including CC

e Data Formats:

Integers are stored as 24-bit binary numbers. 2’s complement representation is used
for negative values, characters are stored using their 8-bit ASCII codes.No floating-point

hardware on the standard version of SIC.
e Instruction Formats:
Opcode(8) x Address (15)

All machine instructions on the standard version of SIC have the 24-bit format as

shown above

e Addressing Modes:

Mode Indication | Target address calculation
Direct x=0 TA = address
Indexed x=1 TA = address + (x)

Dept. of ISE, SIBIT 3

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

There are two addressing modes available, which are as shown in the above table.

Parentheses are used to indicate the contents of a register or a memory location.
e Instruction Set :

1. SIC provides, load and store instructions (LDA, LDX, STA, STX, etc.). Integer
arithmetic operations: (ADD, SUB, MUL, DIV, etc.).

2. All arithmetic operations involve register A and a word in memory, with the result
being left in the register. Two instructions are provided for subroutine linkage.

3. COMP compares the value in register A with a word in memory, this instruction sets
a condition code CC to indicate the result. There are conditional jump instructions:
(JLT, JEQ, JGT), these instructions test the setting of CC and jump accordingly.

4. JSUB jumps to the subroutine placing the return address in register L, RSUB returns

by jumping to the address contained in register L.

e Input and Output:

Input and Output are performed by transferring 1 byte at a time to or from the
rightmost 8 bits of register A (accumulator). The Test Device (TD) instruction tests whether
the addressed device is ready to send or receive a byte of data. Read Data (RD), Write Data

(WD) are used for reading or writing the data.
e Data movement and Storage Definition

LDA, STA, LDL, STL, LDX, STX (A- Accumulator, L — Linkage Register, X -
Index Register), all uses3-byte word. LDCH, STCH associated with characters uses 1-byte.

There are no memory-memory move instructions.
Storage definitions are

e WORD - ONE-WORD CONSTANT
e RESW - ONE-WORD VARIABLE
e BYTE - ONE-BYTE CONSTANT
e RESB - ONE-BYTE VARIABLE

Dept. of ISE, SIBIT 4

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

1.3.2Example Programs (SIC):

Example 1: Simple data and character movement operation

LDA FIVE
STA ALPHA
LDCH CHARZ
STCH C1
ALPHA RESW 1
FIVE WORD 5
CHARZ BYTE CZ’
C1 RESB 1

Example 2: Arithmetic operations

LDA ALPHA
ADD INCR
SUB ONE
STA BETA
ONE WORD 1
ALPHA RESW 1
BEETA RESW 1
INCR RESW 1

Dept. of ISE, SIBIT 5

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Example 3: Looping and Indexing operation

LDX ZERO ; X=0
MOVECH LDCH STR1, X ; LOAD A FROM STR1
STCH STR2, X ; STORE ATO STR2
TIX ELEVEN ; ADD1TO X, TEST

JLT MOVECH

STRI1 BYTE C ‘HELLO WORLD’
STR2 RESB 11
ZERO WORD 0

ELEVEN WORD 11

Example 4: Input and Output operation

INLOOP TD INDEV : TEST INPUT DEVICE
JEQ INLOOP : LOOP UNTIL DEVICE IS READY
RD INDEV : READ ONE BYTE INTO A
STCH DATA : STORE A TO DATA

OuTLP TD OUTDEV : TEST OUTPUT DEVICE

Dept. of ISE, SIBIT 6

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
JEQ OUTLP : LOOP UNTIL DEVICE IS READY
LDCH DATA : LOAD DATA INTO A

WD OUTDEV : WRITE A TO OUTPUT DEVICE

INDEV BYTE X Fy : INPUT DEVICE NUMBER
OUTDEV BYTE X ‘08’ : OUTPUT DEVICE NUMBER
DATA RESB 1: ONE-BYTE VARIABLE
Example 5: To transfer two hundred bytes of data from input device to memory
LDX ZERO
CLOOP TD INDEV
JEQ CLOOP
RD INDEV
STCH RECORD, X
TIX B200

JLT CLOOP

INDEV BYTE X‘FS
RECORD RESB 200
ZERO WORD 0

B200 WORD 200

Dept. of ISE, SIBIT 7

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

1.3.3SIC/XE Machine Architecture:
e Memory
Maximum memory available on a SIC/XE system is 1 Megabyte (2% bytes).
e Registers

Additional B, S, T, and F registers are provided by SIC/XE, in addition to the
registers of SIC.

[Mnemonic Number Special use

[B 3 [Base register

S 4 General working register

T 5 General working register

F 6 Floating-point accumulator (48 bits)

e Floating-point data type:

There is a 48-bit floating-point data type, F*2¢1%2%

1 11 36

S exponent [fraction

e Instruction Formats:

The new set of instruction formats fro SIC/XE machine architecture are as follows.

e Format 1 (1 byte): contains only operation code (straight from table).

Dept. of ISE, SIBIT 8

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and
following four for register 2. The numbers for the registers go according to the
numbers indicated at the registers section (ie, register T is replaced by hex 5, F is
replaced by hex 6).

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last
12 bits contain displacement for the address of the operand. Operation code uses only
6 bits, thus the second hex digit will be affected by the values of the first two flags (n
and i). The flags, in order, are: n, i, X, b, p, and e. Its functionality is explained in the
next section. The last flag e indicates the instruction format (0 for 3 and 1 for 4).
Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses

that require more than 12 bits to be represented.

Format 1 (1 byte)

8

op

Format 2 (2 bytes)

8

op

ri r2

Formats 1 and 2 are instructions do not reference memory at all

Format 3 (3 bytes)

6

1 1111112

op

n fi X [bp e [disp

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Format 4 (4 bytes)

6 1 1111120

op n [i |x |blp [e [address

e Addressing modes & Flag Bits
Five possible addressing modes plus the combinations are as follows.

1. Direct (X, b, and p all set to 0): operand address goes as it is. n and i are both set to
the same value, either 0 or 1. While in general that value is 1, if set to 0 for format 3
we can assume that the rest of the flags (x, b, p, and e) are used as a part of the
address of the operand, to make the format compatible to the SIC format.

2. Relative (either b or p equal to 1 and the other one to 0): the address of the operand
should be added to the current value stored at the B register (if b = 1) or to the value
stored at the PC register (if p = 1)

3. Immediate(i = 1, n = 0): The operand value is already enclosed on the instruction
(ie. lies on the last 12/20 bits of the instruction)

4. Indirect(i =0, n =1): The operand value points to an address that holds the address

for the operand value.

5. Indexed (x = 1): value to be added to the value stored at the register x to obtain real
address of the operand. This can be combined with any of the previous modes except

immediate.

The various flag bits used in the above formats have the following meanings

e -> e =0 means format 3, e =1 means format 4

Dept. of ISE, SIBIT 10

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Bits x,b,p : Used to calculate the target address using relative, direct, and indexed addressing
Modes.

Bits i and n: Says, how to use the target address

b and p - both set to 0, disp field from format 3 instruction is taken to be the target address.

For a format 4 bits b and p are normally set to 0, 20 bit address is the target address

X - Xxissetto 1, X register value is added for target address calculation
i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory reference

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken as

the address of the operand value
i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand value

Two new relative addressing modes are available for use with instructions assembled using

format 3.

Mode Indication Target address calculation
TA=(B)+ disp

Base relative b=1,p=0

(0<disp <4095)

Program-counter TA=(PC)+ disp
b=0,p=1

relative (-2048<disp <2047)

e |nstruction Set:

SIC/XE provides all of the instructions that are available on the standard version. In
addition we have, Instructions to load and store the new registers LDB, STB, etc, Floating-
point arithmetic operations, ADDF, SUBF, MULF, DIVF, Register move instruction : RMO,

Dept. of ISE, SIBIT 11

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Register-to-register arithmetic operations, ADDR, SUBR, MULR, DIVR and, Supervisor call
instruction : SVC.

e Input and Output:

There are 1/0 channels that can be used to perform input and output while the CPU is
executing other instructions. Allows overlap of computing and 1/O, resulting in more
efficient system operation. The instructions SIO, TIO, and HIO are used to start, test and halt

the operation of 1/0 channels.
Example Programs (SIC/XE)

Example 1: Simple data and character movement operation

LDA #5
STA ALPHA
LDA #90
STCH C1

ALPHA RESW 1

C1 RESB 1

Example 2: Arithmetic operations

LDS INCR

LDA ALPHA

Dept. of ISE, SIBIT 12

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

ADD SA
SUB #1

STA BETA

ALPHA RESW 1
BETA RESW 1

INCR RESW 1

Example 3: Looping and Indexing operation

LDT #11
LDX #0 : X=0
MOVECH LDCH STR1, X : LOAD A FROM STR1

STCH STR2,X : STOREATO STR2
TIXR T : ADD1TO X, TEST (T)

JLT MOVECH

STRI BYTE C ‘HELLO WORLD’

STR2 RESB 11

Dept. of ISE, SIBIT 13

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

RECOMMENDED QUESTIONS:

1.
2.
3.

Bring out the differences b/w System software and Application software.(5)

Give the SIC machine architecture with all options? (10)

Suppose alpha is an array of 100 words. Write a sequence of instructions for SIC\XE
to setall 100 elements to 0. (6)

Write a sequence of instructions for SIC to clear a 20 byte string to all blanks.(6)
Give the machine architecture of SIC/XE? (10)

With an example, explain simple /O operation of SIC/XE? (5)

Dept. of ISE, SIBIT 14

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

CHAPTER -2

ASSEMBLERS-1

2.1 Basic Assembler Functions:
The basic assembler functions are:

e Translating mnemonic language code to its equivalent object code.

e Assigning machine addresses to symbolic labels.

SOURCE ASSEMBLER OBIJECT CODE
PROGRAM

A 4
A 4

* The design of assembler can be to perform the following:
— Scanning (tokenizing)
— Parsing (validating the instructions)
— Creating the symbol table
— Resolving the forward references

— Converting into the machine language

e SIC Assembler Directive:
— START: Specify name & starting address.
— END: End of the program, specify the first execution instruction.
— BYTE, WORD, RESB, RESW
— End of record: a null char(00)

End of file: a zero length record

* The design of assembler in other words:

— Convert mnemonic operation codes to their machine language equivalents

Dept. of ISE, SIBIT 15

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

— Convert symbolic operands to their equivalent machine addresses
— Decide the proper instruction format Convert the data constants to internal machine
representations

— Write the object program and the assembly listing

So for the design of the assembler we need to concentrate on the machine architecture of the
SIC/XE machine. We need to identify the algorithms and the various data structures to be
used. According to the above required steps for assembling the assembler also has to handle
assembler directives, these do not generate the object code but directs the assembler to

perform certain operation. These directives are:
The assembler design can be done:

e Single pass assembler

e Multi-pass assembler

Single-pass Assembler:

In this case the whole process of scanning, parsing, and object code conversion is
done in single pass. The only problem with this method is resolving forward reference. This

is shown with an example below:

10 1000 FIRST STL RETADR 141033

95 1033 RETADR RESW 1

Dept. of ISE, SIBIT 16

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

In the above example in line number 10 the instruction STL will store the linkage
register with the contents of RETADR. But during the processing of this instruction the value
of this symbol is not known as it is defined at the line number 95. Since | single-pass
assembler the scanning, parsing and object code conversion happens simultaneously. The
instruction is fetched; it is scanned for tokens, parsed for syntax and semantic validity. If it
valid then it has to be converted to its equivalent object code. For this the object code is
generated for the opcode STL and the value for the symbol RETADR need to be added,

which is not available.

Due to this reason usually the design is done in two passes. So a multi-pass assembler
resolves the forward references and then converts into the object code. Hence the process of

the multi-pass assembler can be as follows:
Pass-1

e Assign addresses to all the statements

e Save the addresses assigned to all labels to be used in Pass-2

e Perform some processing of assembler directives such as RESW, RESB to find the
length of data areas for assigning the address values.

e Defines the symbols in the symbol table(generate the symbol table)

Pass-2

e Assemble the instructions (translating operation codes and looking up addresses).
e Generate data values defined by BYTE, WORD etc.
e Perform the processing of the assembler directives not done during pass-1.

e Write the object program and assembler listing.

Assembler Design:

The most important things which need to be concentrated is the generation of Symbol

table and resolving forward references.

Dept. of ISE, SIBIT 17

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

« Symbol Table:
— This is created during pass 1
— All the labels of the instructions are symbols
— Table has entry for symbol name, address value.
» Forward reference:
— Symbols that are defined in the later part of the program are called forward
referencing.
— There will not be any address value for such symbols in the symbol table in

pass 1.

Example Program:
The example program considered here has a main module, two subroutines

« Purpose of example program

- Reads records from input device (code F1)

- Copies them to output device (code 05)

- At the end of the file, writes EOF on the output device, then RSUB to the
operating system

» Data transfer (RD, WD)

-A buffer is used to store record

-Buffering is necessary for different 1/0O rates

-The end of each record is marked with a null character (00)16
-The end of the file is indicated by a zero-length record

e Subroutines (JSUB, RSUB)
-RDREC, WRREC

-Save link register first before nested jump

Dept. of ISE, SIBIT 18

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The first column shows the line number for that instruction, second column shows the
addresses allocated to each instruction. The third column indicates the labels given to the

statement, and is followed by the instruction consisting of opcode and operand. The last
column gives the equivalent object code.

The object code later will be loaded into memory for execution. The simple object
program we use contains three types of records:

» Header record
-Col.1H

- Col. 2~7 Program name
- Col. 8~13 Starting address of object program (hex)

- Col. 14~19 Length of object program in bytes (hex)

» Text record
-Col. 1T

- Col. 2~7 Starting address for object code in this record (hex)

Dept. of ISE, SIBIT 19

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

- Col. 8~9 Length of object code in this record in bytes (hex)
- Col. 10~69 Object code, represented in hex (2 col. per byte)

» End record
-Col.l E

A

- Col.2~7 Address of first executable instruction in object program (hex) is only for

separation only

2.1.1 Simple SIC Assembler

The program below is shown with the object code generated. The column named LOC gives
the machine addresses of each part of the assembled program (assuming the program is
starting at location 1000). The translation of the source program to the object program

requires us to accomplish the following functions:

1. Convert the mnemonic operation codes to their machine language equivalent.

2. Convert symbolic operands to their equivalent machine addresses.

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their internal
machine representations in the proper format.

5. Write the object program and assembly listing.

All these steps except the second can be performed by sequential processing of the source

program, one line at a time. Consider the instruction
10 1000 LDA ALPHA 00-----

This instruction contains the forward reference, i.e. the symbol ALPHA is used is not
yet defined. If the program is processed (scanning and parsing and object code conversion)
is done line-by-line, we will be unable to resolve the address of this symbol. Due to this

problem most of the assemblers are designed to process the program in two passes.

Dept. of ISE, SIBIT 20

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

In addition to the translation to object program, the assembler has to take care of
handling assembler directive. These directives do not have object conversion but gives
direction to the assembler to perform some function. Examples of directives are the
statements like BYTE and WORD, which directs the assembler to reserve memory locations
without generating data values. The other directives are START which indicates the

beginning of the program and END indicating the end of the program.

The assembled program will be loaded into memory for execution. The simple object
program contains three types of records: Header record, Text record and end record. The
header record contains the starting address and length. Text record contains the translated
instructions and data of the program, together with an indication of the addresses where these
are to be loaded. The end record marks the end of the object program and specifies the

address where the execution is to begin.
The format of each record is as given below.

Header record:

Col 1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)
Col 14-19 Length of object program in bytes (hexadecimal)

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)
Col 8-9 Length off object code in this record in bytes (hexadecimal)
Col 10-69 Object code, represented in hexadecimal (2 columns per byte of

object code)

Dept. of ISE, SIBIT 21

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
End record:
Col. 1 E
Col 2-7 Address of first executable instruction in object program

(hexadecimal)

The assembler can be designed either as a single pass assembler or as a two pass

assembler. The general description of both passes is as given below:

» Pass 1 (define symbols)
— Assign addresses to all statements in the program
— Save the addresses assigned to all labels for use in Pass 2
— Perform assembler directives, including those for address assignment, such as
BYTE and RESW

« Pass 2 (assemble instructions and generate object program)

Assemble instructions (generate opcode and look up addresses)
— Generate data values defined by BYTE, WORD
Perform processing of assembler directives not done during Pass 1

Write the object program and the assemblylisting

2.1.2. Algorithms and Data structure

The simple assembler uses two major internal data structures: the operation Code
Table (OPTAB) and the Symbol Table (SYMTAB).

OPTAB:

e It is used to lookup mnemonic operation codes and translates them to their machine
language equivalents. In more complex assemblers the table also contains

information about instruction format and length.

Dept. of ISE, SIBIT 22

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

In pass 1 the OPTAB is used to look up and validate the operation code in the source
program. In pass 2, it is used to translate the operation codes to machine language. In
simple SIC machine this process can be performed in either in pass 1 or in pass 2.
But for machine like SIC/XE that has instructions of different lengths, we must
search OPTAB in the first pass to find the instruction length for incrementing
LOCCTR.

In pass 2 we take the information from OPTAB to tell us which instruction format to

use in assembling the instruction, and any peculiarities of the object code instruction.

OPTAB is usually organized as a hash table, with mnemonic operation code as the
key. The hash table organization is particularly appropriate, since it provides fast
retrieval with a minimum of searching. Most of the cases the OPTAB is a static
table- that is, entries are not normally added to or deleted from it. In such cases it is
possible to design a special hashing function or other data structure to give optimum

performance for the particular set of keys being stored.

SYMTAB:

This table includes the name and value for each label in the source program, together
with flags to indicate the error conditions (e.g., if a symbol is defined in two different
places).

During Pass 1: labels are entered into the symbol table along with their assigned
address value as they are encountered. All the symbols address value should get
resolved at the pass 1.

During Pass 2: Symbols used as operands are looked up the symbol table to obtain the
address value to be inserted in the assembled instructions.

SYMTAB is usually organized as a hash table for efficiency of insertion and retrieval.
Since entries are rarely deleted, efficiency of deletion is the important criteria for

optimization.

Dept. of ISE, SIBIT 23

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e Both pass 1 and pass 2 require reading the source program. Apart from this an
intermediate file is created by pass 1 that contains each source statement together
with its assigned address, error indicators, etc. This file is one of the inputs to the pass
2.

e A copy of the source program is also an input to the pass 2, which is used to retain the
operations that may be performed during pass 1 (such as scanning the operation field
for symbols and addressing flags), so that these need not be performed during pass 2.
Similarly, pointers into OPTAB and SYMTAB is retained for each operation code

and symbol used. This avoids need to repeat many of the table-searching operations.

LOCCTR:

Apart from the SYMTAB and OPTAB, this is another important variable which helps in the
assignment of the addresses. LOCCTR is initialized to the beginning address mentioned in
the START statement of the program. After each statement is processed, the length of the
assembled instruction is added to the LOCCTR to make it point to the next instruction.
Whenever a label is encountered in an instruction the LOCCTR value gives the address to be

associated with that label.
The Algorithm for Pass 1:
Begin
read first input line
if OPCODE = ‘START’ then begin
save #[Operand] as starting addr
initialize LOCCTR to starting address
write line to intermediate file
read next line

end(if START)

Dept. of ISE, SIBIT 24

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

else
initialize LOCCTR to O
While OPCODE != ‘END’ do
begin
iIf this is not a comment line then
begin
if there is a symbol in the LABEL field then
begin
search SYMTAB for LABEL
if found then
set error flag (duplicate symbol)
else
(if symbol)
search OPTAB for OPCODE
if found then
add 3 (instr length) to LOCCTR
else if OPCODE = ‘WORD’ then
add 3to LOCCTR
else if OPCODE = ‘RESW’ then
add 3 * #{OPERAND] to LOCCTR

else if OPCODE = ‘RESB’ then

Dept. of ISE, SIBIT 25

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

add #{OPERAND] to LOCCTR
else if OPCODE = ‘BYTE’ then
begin
find length of constant in bytes
add length to LOCCTR
end
else
set error flag (invalid operation code)
end (if not a comment)
write line to intermediate file
read next input line
end { while not END}
write last line to intermediate file
Save (LOCCTR - starting address) as program length
End {pass 1}

e The algorithm scans the first statement START and saves the operand field (the
address) as the starting address of the program. Initializes the LOCCTR value to this
address. This line is written to the intermediate line.

e If no operand is mentioned the LOCCTR is initialized to zero. If a label is
encountered, the symbol has to be entered in the symbol table along with its
associated address value.

e If the symbol already exists that indicates an entry of the same symbol already exists.

So an error flag is set indicating a duplication of the symbol.

Dept. of ISE, SIBIT 26

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e It next checks for the mnemonic code, it searches for this code in the OPTAB. If
found then the length of the instruction is added to the LOCCTR to make it point to
the next instruction.

e If the opcode is the directive WORD it adds a value 3 to the LOCCTR. If it is RESW,
it needs to add the number of data word to the LOCCTR. If it is BYTE it adds a value
one to the LOCCTR, if RESB it adds number of bytes.

e |If it is END directive then it is the end of the program it finds the length of the
program by evaluating current LOCCTR - the starting address mentioned in the
operand field of the END directive. Each processed line is written to the intermediate

file.

The Algorithm for Pass 2:
Begin
read 1st input line
if OPCODE = ‘START’ then
begin
write listing line
read next input line
end
write Header record to object program
initialize 1st Text record
while OPCODE != ‘END’ do
begin
if this is not comment line then

begin
Dept. of ISE, SIBIT 27

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

search OPTAB for OPCODE
if found then
begin
if there is a symbol in OPERAND field then
begin
search SYMTAB for OPERAND field then
if found then
begin
store symbol value as operand address
else
begin
store 0 as operand address
set error flag (undefined symbol)
end
end (if symbol)
else store 0 as operand address
assemble the object code instruction
else if OPCODE = ‘BYTE’ or “‘WORD” then
convert constant to object code
if object code doesn’t fit into current Text record then

begin

Dept. of ISE, SIBIT 28

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Write text record to object code

initialize new Text record

end
add object code to Text record
end {if not comment}
write listing line
read next input line
end
write listing line
read next input line
write last listing line
End {Pass 2}

Here the first input line is read from the intermediate file. If the opcode is START, then this
line is directly written to the list file. A header record is written in the object program which
gives the starting address and the length of the program (which is calculated during pass 1).
Then the first text record is initialized. Comment lines are ignored. In the instruction, for the
opcode the OPTAB is searched to find the object code.

If a symbol is there in the operand field, the symbol table is searched to get the
address value for this which gets added to the object code of the opcode. If the address not
found then zero value is stored as operands address. An error flag is set indicating it as
undefined. If symbol itself is not found then store 0 as operand address and the object code

instruction is assembled.

Dept. of ISE, SIBIT 29

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

If the opcode is BYTE or WORD, then the constant value is converted to its
equivalent object code(for example, for character EOF, its equivalent hexadecimal value
‘454146’ is stored). If the object code cannot fit into the current text record, a new text record
is created and the rest of the instructions object code is listed. The text records are written to
the object program. Once the whole program is assemble and when the END directive is

encountered, the End record is written.
Design and Implementation Issues

Some of the features in the program depend on the architecture of the machine. If the
program is for SIC machine, then we have only limited instruction formats and hence limited
addressing modes. We have only single operand instructions. The operand is always a
memory reference. Anything to be fetched from memory requires more time. Hence the
improved version of SIC/XE machine provides more instruction formats and hence more
addressing modes. The moment we change the machine architecture the availability of
number of instruction formats and the addressing modes changes. Therefore the design
usually requires considering two things: Machine-dependent features and Machine-

independent features.

2.2. Machine-Dependent Assembler Features:

e Instruction formats and addressing modes

e Program relocation.

2.2.1 .Instruction formats and Addressing Modes

The instruction formats depend on the memory organization and the size of the memory.
In SIC machine the memory is byte addressable. Word size is 3 bytes. So the size of the
memory is 2*2 bytes. Accordingly it supports only one instruction format. It has only two
registers: register A and Index register. Therefore the addressing modes supported by this
architecture are direct, indirect, and indexed. Whereas the memory of a SIC/XE machine is

2% bytes (1 MB). This supports four different types of instruction types, they are:

Dept. of ISE, SIBIT 30

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

= 1 byte instruction
= 2 byte instruction
= 3 byte instruction
= 4 byte instruction

 Instructions can be:
— Instructions involving register to register
— Instructions with one operand in memory, the other in Accumulator (Single
operand instruction)
— Extended instruction format
« Addressing Modes are:
— Index Addressing(SIC): Opcode m, x
— Indirect Addressing: Opcode @m
— PC-relative: Opcode m
— Base relative: Opcode m

— Immediate addressing: Opcode #c
1. Translations for the Instruction involving Register-Register addressing mode:

During pass 1 the registers can be entered as part of the symbol table itself. The value for
these registers is their equivalent numeric codes. During pass2, these values are assembled
along with the mnemonics object code. If required a separate table can be created with the

register names and their equivalent numeric values.

2. Translation involving Register-Memory instructions:

In SIC/XE machine there are four instruction formats and five addressing modes. For formats

and addressing modes

Among the instruction formats, format -3 and format-4 instructions are Register-Memory
type of instruction. One of the operand is always in a register and the other operand is in the
Dept. of ISE, SIBIT 31

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52

memory. The addressing mode tells us the way in which the operand from the memory is to
be fetched.

There are two ways: Program-counter relative and Base-relative. This addressing mode
can be represented by either using format-3 type or format-4 type of instruction format. In
format-3, the instruction has the opcode followed by a 12-bit displacement value in the
address field. Where as in format-4 the instruction contains the mnemonic code followed by

a 20-bit displacement value in the address field.

Program-Counter Relative:
In this usually format-3 instruction format is used. The instruction contains the opcode

followed by a 12-bit displacement value.

The range of displacement values are from 0 -2048. This displacement (should be small
enough to fit in a 12-bit field) value is added to the current contents of the program counter to

get the target address of the operand required by the instruction.

This is relative way of calculating the address of the operand relative to the program
counter. Hence the displacement of the operand is relative to the current program counter

value. The following example shows how the address is calculated:

10 o000 FIRET STL FEETADE

RETADR is at address (0030,
After the SIC fetches this instruction, (PC) = (0003,
TA = (PC) + disp = disp = TA — (PC) = 0030 — 0003 = (02D),,

=)= n ixhkbp = = =]
[booi1o1 1 1] o 1 o] DZD = 17Z02D

Dept. of ISE, SIBIT 32

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

40

o017 J CLOOFP

CLOOP is at address (0006),,
After the SIC fetches this instruction, (PC) = (001A),,

TA = (PC) + disp — disp = TA — (PC) = 0006 — 001LA = (1
f=1=] nixbhbpe disp 12-bits
[oo1121 1 1]o o 1 o FEC® =— 3F2FEC
70 00z=2h J @RETADER
t —TIndirect addressing

CLOOP is at address (00307),,
After the SIC fetches this instruction, (PC) = (002D,

TA = (PC) + disp = disp = TA — (PC) = 0030 — 002D = (0003),,
o n i xhkps= disp
[bo111a 1 ol o o 1 o 003 — 3IE2003

Base-Relative Addressing Mode:

In this mode the base register is used to mention the displacement value. Therefore the target

address is

TA = (base) + displacement value

This addressing mode is used when the range of displacement value is not sufficient.

Hence the operand is not relative to the instruction as in PC-relative addressing mode.

Whenever this mode is used it is indicated by using a directive BASE.

The moment the assembler encounters this directive the next instruction uses base-

relative addressing mode to calculate the target address of the operand.
When NOBASE directive is used then it indicates the base register is ho more used
to calculate the target address of the operand. Assembler first chooses PC-relative,

when the displacement field is not enough it uses Base-relative.

LDB #LENGTH (instruction)

BASE LENGTH (directive)

NOBASE

Dept. of ISE, SIBIT 33

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
For example:
12 0003 LDB #LENGTH 69202D
13 BASE LENGTH
100 0033 LENGTH RESW 1
105 0036 BUFFER RESB 4096
160 104E STCH BUFFER, X 57C003
165 1051 TIXR T B850

In the above example the use of directive BASE indicates that Base-relative addressing
mode is to be used to calculate the target address. PC-relative is no longer used. The value of
the LENGTH is stored in the base register. If PC-relative is used then the target address

calculated is:

e The LDB instruction loads the value of length in the base register which 0033.
BASE directive explicitly tells the assembler that it has the value of LENGTH.

BUFFER is at location (0036)16
(B) = (0033)16

disp = 0036 — 0033 = (0003)16

op nixbpe disp
010101 1 11 1 0 0] 003 — E57C003
20 OO00A LDA LENGTH 032026

Dept. of ISE, SIBIT 34

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

175 1056 EXIT STX LENGTH 134000

Consider Line 175. If we use PC-relative

Disp = TA — (PC) = 0033 —1059 = EFDA

PC relative is no longer applicable, so we try to use BASE relative addressing mode.

Immediate Addressing Mode

In this mode no memory reference is involved. If immediate mode is used the target address
is the operand itself.

55 0020 LDA #3
TA = (0003),. L Immediate operand
op nixbpe disp
oooooo 0 1o 0 0 0] 003 = 010003
133 103C +LDT #4096 | |
TA = (01000),. Extended instruction format
op nixbpe disp (20 bits)
‘Olll@l 0 1‘ |O 00 l‘ 01000 = 75101000

If the symbol is referred in the instruction as the immediate operand then it is immediate with
PC-relative mode as shown in the example below:

12 0003 LDB #LENGTH

LENGTH is at address 0033

TA = (PC) + disp = disp = 0033 — 0006 = (002D),,
op nixbhbbpe disp

011010 O 1j{0 0 1 O 02D — 69202D

Dept. of ISE, SIBIT 35

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Indirect and PC-relative mode:

In this type of instruction the symbol used in the instruction is the address of the location
which contains the address of the operand. The address of this is found using PC-relative

addressing mode. For example:

70 O02A J @RETADR

RETADR is at address 0030
TA = (PC) + disp = disp = 0030 — 002D = (0003),.
op n i x b p e disp
|OO]_111 1 O| |O o 1 O| 003 — 3E2003

The instruction jumps the control to the address location RETADR which in turn has the
address of the operand. If address of RETADR is 0030, the target address is then 0003 as
calculated above.

2.2.2Program Relocation

Sometimes it is required to load and run several programs at the same time. The system must
be able to load these programs wherever there is place in the memory. Therefore the exact

starting is not known until the load time.
Absolute Program

In this the address is mentioned during assembling itself. This is called Absolute Assembly.

Consider the instruction:
55 101B LDA THREE 00102D

e This statement says that the register A is loaded with the value stored at location
102D. Suppose it is decided to load and execute the program at location 2000
instead of location 1000.

e Then at address 102D the required value which needs to be loaded in the register

A is no more available. The address also gets changed relative to the displacement

Dept. of ISE, SIBIT 36

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

of the program. Hence we need to make some changes in the address portion of
the instruction so that we can load and execute the program at location 2000.

e Apart from the instruction which will undergo a change in their operand address
value as the program load address changes. There exist some parts in the program
which will remain same regardless of where the program is being loaded.

e Since assembler will not know actual location where the program will get loaded,
it cannot make the necessary changes in the addresses used in the program.
However, the assembler identifies for the loader those parts of the program which
need modification.

e An object program that has the information necessary to perform this kind of

modification is called the relocatable program.

0ooo
0006 | 4B101036 | (+JSUB RDREC)
1026“| B410 «+— RDREC

1076

5000
5006 |4B106036 | (+JSUB RDREC)

6036 “| B410 <+ RDREC

7420
6076

7426 | 4B108456 | (+JSUB RDREC)
8456" | B410 l«— RDREC

8496

e The above diagram shows the concept of relocation. Initially the program is loaded at
location 0000. The instruction JSUB is loaded at location 0006.

e The address field of this instruction contains 01036, which is the address of the
instruction labeled RDREC. The second figure shows that if the program is to be

loaded at new location 5000.

Dept. of ISE, SIBIT 37

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e The address of the instruction JSUB gets modified to new location 6036. Likewise
the third figure shows that if the program is relocated at location 7420, the JSUB
instruction would need to be changed to 4B108456 that correspond to the new
address of RDREC.

e The only part of the program that require modification at load time are those that
specify direct addresses. The rest of the instructions need not be modified. The
instructions which doesn’t require modification are the ones that is not a memory
address (immediate addressing) and PC-relative, Base-relative instructions.

e From the object program, it is not possible to distinguish the address and constant The
assembler must keep some information to tell the loader.The object program that
contains the modification record is called a relocatable program.

e For an address label, its address is assigned relative to the start of the program
(START 0). The assembler produces a Modification recordto store the starting
location and the length of the address field to be modified. The command for the
loader must also be a part of the object program. The Modification has the following

format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the
beginning of the program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored in
half-bytes (4 bits) The starting location is the location of the byte containing the leftmost bits
of the address field to be modified. If the field contains an odd number of half-bytes, the
starting location begins in the middle of the first byte.

Dept. of ISE, SIBIT 38

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

HCOPY 000000001017 5haﬁ{nﬁeg

TOUOUOOIDl72L2D69202D48101036U3202b 9000033200748 JQ010503F2FEC032010
TOUOOID]30F2016OIOOO3OF°OOD&BIﬂ!ﬂE'JEZUUB&S&{&6
TOUIC361DB4108&0086&075101“00;32019332F1ADBZOl3ADUA33200857C0038850

TU010531D3BZF£A1BAOOOqFOOOQI{BL10774UOUh320l1332FFA53C003D}200888)0
TOOlO7UO73BZFLE4fOOQOu5

MUOUOO7OJ _/g?”

MO000T405"

&poooiios

EA() 00000

In the above object code the red boxes indicate the addresses that need modifications. The
object code lines at the end are the descriptions of the modification records for those
instructions which need change if relocation occurs. M00000705 is the modification
suggested for the statement at location 0007 and requires modification 5-half bytes. Similarly

the remaining instructions indicate.
RECOMMENDED QUESTIONS:

1. What are the fundamental functions of assembler? With an example, give the list of
assembler directives?(6)
2. Explain the data structures used in Assemblers (8).
3. what is program relocation? Explain the problem associated with it and solutions? (6)
4. Give the format of the following (8)
a. Header record
b. Text record
c. End record
d. Modification record
5. Explain the function of each pass of an 2 pass assembler.(5)
6. Explain the following (8)

a. SYMTAB
b. LOCCTR
c. OPTAB

7. Give the algorithm for passl of an 2 pass assembler. (8)

8. Give the algorithm for pass2 of an 2 pass assembler (8)

Dept. of ISE, SIBIT 39

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

CHAPTER -3
Assembler-2

3.1 Machine-Independent features:

These are the features which do not depend on the architecture of the machine. These are:

Literals

Expressions

Program blocks

Control sections

3.1.1 Literals:
A literal is defined with a prefix = followed by a specification of the literal value.

Example:

45 001A ENDFIL LDA =CEOF’ 032010

93 LTORG
002D * =C’EOF’ 454F46

The example above shows a 3-byte operand whose value is a character string EOF.
The object code for the instruction is also mentioned. It shows the relative displacement
value of the location where this value is stored. In the example the value is at location (002D)
and hence the displacement value is (010). As another example the given statement below

shows a 1-byte literal with the hexadecimal value ‘05°.

215 1062 WLOOP D =X"0%° E32011

Dept. of ISE, SIBIT 40

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

It is important to understand the difference between a constant defined as a literal and
a constant defined as an immediate operand. In case of literals the assembler generates the
specified value as a constant at some other memory location In immediate mode the operand
value is assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more
literal pools. This is usually placed at the end of the program. The assembly listing of a
program containing literals usually includes a listing of this literal pool, which shows the
assigned addresses and the generated data values. In some cases it is placed at some other
location in the object program. An assembler directive LTORG is used. Whenever the
LTORG is encountered, it creates a literal pool that contains all the literal operands used
since the beginning of the program. The literal pool definition is done after LTORG is

encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal
table contains the literal name, operand value and length. The literal table is usually created
as a hash table on the literal name.

Implementation of Literals:
During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists, no
action is taken; if it is not present, the literal is added to the LITTAB and for the address
value it waits till it encounters LTORG for literal definition. When Pass 1 encounters a
LTORG statement or the end of the program, the assembler makes a scan of the literal table.
At this time each literal currently in the table is assigned an address. As addresses are
assigned, the location counter is updated to reflect the number of bytes occupied by each

literal.

Dept. of ISE, SIBIT 41

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction
and replaces it with its equivalent value as if these values are generated by BYTE or WORD.
If a literal represents an address in the program, the assembler must generate a modification
relocation for, if it all it gets affected due to relocation. The following figure shows the
difference between the SYMTAB and LITTAB

SYMTAB Hams Value LITTAR
OOPY 4]
FIRET [a] Litsral Hax Length | Addr=as
CLOOF & Value
ENDFIL 1= ZfEOF* 4E54F4 6 3 (W ke]
RETADE 20 x-05° os 1 1078
LENETH 33
BIOFFER 3 &
BITFEND 1l02&
MEXTLEMN 100D
ROEEC 1l02&
RLOOFE 1040
EXIT los&
IMPFTT 1o05C
WREC 105
WLOOR losz

3.1.2 Symbol-Defining Statements:
e EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to define
symbols and specify their values. The directive used for this EQU (Equate). The general
form of the statement is

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to it
the value specified. The value can be a constant or an expression involving constants and any
other symbol which is already defined. One common usage is to define symbolic names that

can be used to improve readability in place of numeric values. For example

+LDT #4096

Dept. of ISE, SIBIT 42

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

This loads the register T with immediate value 4096, this does not clearly what exactly this

value indicates. If a statement is included as:
MAXLEN EQU 4096 and then
+L.DT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length value.
When the assembler encounters EQU statement, it enters the symbol MAXLEN along with
its value in the symbol table. During LDT the assembler searches the SYMTAB for its entry
and its equivalent value as the operand in the instruction. The object code generated is the
same for both the options discussed, but is easier to understand. If the maximum length is
changed from 4096 to 1024, it is difficult to change if it is mentioned as an immediate value
wherever required in the instructions. We have to scan the whole program and make changes
wherever 4096 is used. If we mention this value in the instruction through the symbol defined
by EQU, we may not have to search the whole program but change only the value of
MAXLENGTH in the EQU statement (only once).

Another common usage of EQU statement is for defining values for the general-
purpose registers. The assembler can use the mnemonics for register usage like a-register A ,
X —index register and so on. But there are some instructions which requires numbers in place
of names in the instructions. For example in the instruction RMO 0,1 instead of RMO A X.

The programmer can assign the numerical values to these registers using EQU directive.
A EQU 0
X EQU 1 and soon

These statements will cause the symbols A, X, L... to be entered into the symbol
table with their respective values. An instruction RMO A, X would then be allowed. As
another usage if in a machine that has many general purpose registers named as R1, R2,...,
some may be used as base register, some may be used as accumulator. Their usage may
change from one program to another. In this case we can define these requirement using
EQU statements.

BASE EQU R1
Dept. of ISE, SIBIT 43

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
INDEX EQU R2
COUNT EQU R3

One restriction with the usage of EQU is whatever symbol occurs in the right hand side of

the EQU should be predefined. For example, the following statement is not valid:
BETA EQU ALPHA
ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is not

known.

¢ ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive is

usually called ORG (for origin). Its general format is:
ORG value

Where value is a constant or an expression involving constants and previously defined
symbols. When this statement is encountered during assembly of a program, the assembler
resets its location counter (LOCCTR) to the specified value. Since the values of symbols
used as labels are taken from LOCCTR, the ORG statement will affect the values of all labels
defined until the next ORG is encountered. ORG is used to control assignment storage in the

object program. Sometimes altering the values may result in incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table with

the following structure:
SYMBOL 6 Bytes
VALUE 3 Bytes
FLAG 2 Bytes

The table looks like the one given below.

Dept. of ISE, SIBIT 44

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

SYMBOL VALUE FLAGS

STAB
(100 entries)

1

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word
representation of the value assigned to the symbol; FLAG is a 2-byte field specifies symbol

type and other information. The space for the ttable can be reserved by the statement:
STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the
offset value of the desired entry from the beginning of the table in the index register. To refer
to the fields SYMBOL, VALUE, and FLAGS individually, we need to assign the values first

as shown below:

SYMBOL EQU STAB
VALUE EQU STAB+6
FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a

statement:
LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

Dept. of ISE, SIBIT 45

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
STAB RESB 1100
ORG STAB
SYMBOL RESB 6
VALUE RESW 1
FLAG RESB 2
ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In the
second statement the ORG statement initializes the location counter to the value of STAB.
Now the LOCCTR points to STAB. The next three lines assign appropriate memory storage
to each of SYMBOL, VALUE and FLAG symbols. The last ORG statement reinitializes the
LOCCTR to a new value after skipping the required number of memory for the table STAB
(i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is
required in EQU statement. For example for the sequence of statements below:

ORG ALPHA
BYTE1 RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ALPHA RESB 1

The sequence could not be processed as the symbol used to assign the new location
counter value is not defined. In first pass, as the assembler would not know what value to
assign to ALPHA, the other symbol in the next lines also could not be defined in the symbol

table. This is a kind of problem of the forward reference.

Dept. of ISE, SIBIT 46

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

3.1.3 .Expressions:

Assemblers also allow use of expressions in place of operands in the instruction. Each
such expression must be evaluated to generate a single operand value or address. Assemblers
generally arithmetic expressions formed according to the normal rules using arithmetic
operators +, - *, /. Division is usually defined to produce an integer result. Individual terms
may be constants, user-defined symbols, or special terms. The only special term used is * (
the current value of location counter) which indicates the value of the next unassigned

memory location. Thus the statement
BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the
buffer area. Some values in the object program are relative to the beginning of the program
and some are absolute (independent of the program location, like constants). Hence,
expressions are classified as either absolute expression or relative expressions depending on

the type of value they produce.

e Absolute Expressions: The expression that uses only absolute terms is absolute
expression. Absolute expression may contain relative term provided the relative terms

occur in pairs with opposite signs for each pair. Example:
MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not
depend on the location of the program and hence gives an absolute immaterial o the

relocation of the program. The expression can have only absolute terms. Example:
MAXLEN EQU 1000

e Relative Expressions: All the relative terms except one can be paired as described in

“absolute”. The remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND — BUFFER)

Dept. of ISE, SIBIT 47

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52

e Handling the type of expressions: to find the type of expression, we must keep track
the type of symbols used. This can be achieved by defining the type in the symbol

table against each of the symbol as shown in the table below:

Swmkbo Type Walus
RETADR R 0030
BLUFFER R 0038
BUFEND R 1038
P =L EM A 1000

3.1.4 Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the object
program in a different order by Separating blocks for storing code, data, stack, and larger

data block.
Assembler Directive USE:
USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no
USE statements are included, the entire program belongs to this single block. Each program
block may actually contain several separate segments of the source program. Assemblers
rearrange these segments to gather together the pieces of each block and assign address.
Separate the program into blocks in a particular order.Large buffer area is moved to the end
of the object program. Program readability is betterif data areas are placed in the source

program close to the statements that reference them.
In the example below three blocks are used :
Default: executable instructions
CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

Dept. of ISE, SIBIT 48

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

CDATA

CBLKS

Example Code

(default) block - Block number
7 10000/ 0* COPY START 0

0000 0 FIRST STL RETADR 172063
0003 0 CLOOP JSUB RDREC 482021
0006 0 LDA LENGTH 032060
0009 0 COMP #0 290000
000C 0 JEQ ENDFIL 332006
000F 0 JSUB WRREC 4B203B
0012 0 J CLOOP 3F2FEE
0015 0 ENDFIL LDA =C’EOF’ 032055
0018 0 STA BUFFER 0F2056
001B 0 LDA #3 010003
001E 0 STA LENGTH 0F2048
0021 0 JSUB WRREC 482029
0024 0 J @RETADR 3E203F
10000 | 1 USE CDATA 4 CDATA block

= 0000 1 RETADR RESW 1
0003 1 LENGTH RESW 1
10000 | 2 USE CBLKS +—— CBLKS block
0000 2 BUFFER RESB 4096
1000 2 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER

Dept. of ISE, SIBIT 49

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
PR (default) block
| 0027! 0 RDREC USE
o027y 0 CLEAR X B410
0025 0 CLEAR A B400
0026 0 CLEAR S B440
ooz2D 0 + OT #MAXLEN 75101000
0031 0 RLOOPF TD INFUT E32038
0034 0 JEQ RLOOP S32FFA
0037 0 RD INFUT DBEZ2032
0034 0 COMPR AS AD04
0o3c 0 JEQ EXIT 332008
D03F 0 STCH BUFFER. X ETAQDZE
0042 0 TIXR T B&50
0044 0 JLT RLOOF 3B2FEA
0047 0 EXIT STX LEMGTH 13201F
I_[_:'E_]_-’-L_ﬂ_. 0 RSUB 4F0000
 looosl 1 USE CDATA* —CDATA block
000G 1 INFPUT BYTE XE1 F1
(default) block
mmmmmq 4
004Dy 0 —USE_
004D 0 WEREC CLEAR X B410
004F 0 LDT LEMNGTH 72017
0os2 0 WLOOP TD =X'05 E3201B
0055 0 JEQ WLOOP 332FFA
0058 0 LDCH BUFFER, X H3A016
0058 0 WD =X'08 DF2012
005E 0 TIXR T B850
0060 0 JLT WLOOP JB2FEF
0063 0 RSUB 4F0000
0007 1 —USE_ CDATA < CDATA block
LTORG
ooov 1 * =C'EOF 454F46
0004 1 * =X'08 05
END FIRST

Arranging code into program blocks:

Pass 1

e A separate location counter for each program block is maintained.
e Save and restore LOCCTR when switching between blocks.
e At the beginning of a block, LOCCTR is setto 0.

e Assign each label an address relative to the start of the block.

Dept. of ISE, SIBIT 50

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e Store the block name or number in the SYMTAB along with the assigned relative
address of the label

e Indicate the block length as the latest value of LOCCTR for each block at the end of
Pass1

e Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

e Calculate the address for each symbol relative to the start of the object program by
adding
» The location of the symbol relative to the start of its block
» The starting address of this block

Control Sections:

A control section is a part of the program that maintains its identity after assembly; each
control section can be loaded and relocated independently of the others. Different control
sections are most often used for subroutines or other logical subdivisions. The programmer

can assemble, load, and manipulate each of these control sections separately.

Because of this, there should be some means for linking control sections together. For
example, instructions in one control section may refer to the data or instructions of other
control sections. Since control sections are independently loaded and relocated, the assembler
is unable to process these references in the usual way. Such references between different

control sections are called external references.

The assembler generates the information about each of the external references that
will allow the loader to perform the required linking. When a program is written using
multiple control sections, the beginning of each of the control section is indicated by an

assembler directive

— assembler directive;: CSECT

Dept. of ISE, SIBIT 51

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The syntax
secname CSECT

— separate location counter for each control section
Control sections differ from program blocks in that they are handled separately by the
assembler. Symbols that are defined in one control section may not be used directly another
control section; they must be identified as external reference for the loader to handle. The

external references are indicated by two assembler directives:

e EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this section
but may be used by other control sections. Control section names do not need to be named in

the EXTREF as they are automatically considered as external symbols.

e EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other control

section.

The order in which these symbols are listed is not significant. The assembler must include
proper information about the external references in the object program that will cause the

loader to insert the proper value where they are required.

Dept. of ISE, SIBIT 52

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

_-Implicitly defined as an external symbol

___first control section

.
COPY START4 0
EXTDEF ___ BUFFER,BUFEND,LENGTH
EXTREF RDREC,WRREC
FIRST STL RETADR
CLOOP [+#ISUB RDREC
LDA LENGTH
COMP #0
JEQ ENDFIL
[+hsuB WRREC
) CLOOP
ENDFIL LDA =C'EOF’
STA BUFFER
LDA #3
STA LENGTH
[+hsuB WRREC
) @RETADR
RETADR RESW 1
LENGTH RESW 1
LTORG
BUFFER RESB 4096
BUFEND EQU *
MAXLEN EQU BUFFEND-BUFFER
Implicitly defined as an external symbol
rpice csect . second control section
SUBROUTINE TO READ RECORD INTO BUFFER
EXTREF BUFFER,LENGTH,BUFFEND
CLEAR X
CLEAR A
CLEAR S
LDT MAXLEN
RLOOP D INPUT
JEQ RLOOP
RD INPUT
COMPR AS
JEQ EXIT
+5TCH _BUFFER,X
TIXR T
T RLOOP
EXIT +STX LENGTH
RSUB
INPUT BYTE XF1’
MAXLEN WORD BUFFEND-BUFFER

COPY FILE FROM INPUT TO OUTPUT

SAVE RETURN ADDRESS
READ INPUT RECORD
TEST FOR EOF (LENGTH=0)

EXIT IF EOF FOUND

WRITE OUTPUT RECORD
LOOP

INSERT END OF FILE MARKER

SET LENGTH = 3

WRITE EOF
RETURN TO CALLER

LENGTH OF RECORD

4096-BYTE BUFFER AREA

CLEAR LOOP COUNTER
CLEAR A TO ZERO
CLEAR S TO ZERO

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REGISTER A

TEST FOR END OF RECORD (X'007)

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAX LENGTH HAS
BEEN REACHED

SAVE RECORD LENGTH

RETURN TO CALLER

CODE FOR INPUT DEVICE

Dept. of ISE, SIBIT

53

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Implicitly defined as an external symbol
X __— third control section
WRREC CSECT o

SUBROUTINE TO WRITE RECORD FROM BUFFER

[EXTREF LENGTH,BUFFER

CLEAR X CLEAR LOOP COUNTER

+LDT LENGTH

WLOOP 1D =X'05" TEST OUTPUT DEVICE

JEQ WLOOP LOOP UNTIL READY

+LDCH BUFFER, X GET CHARACTER FROM BUFFER
WD =X'05" WRITE CHARACTER
TIXR T LOOP UNTIL ALL CHARACTERS HAVE
LT WLOOP BEEN WRITTEN
RSUB RETURM TO CALLER
END FIRST

Handling External Reference
Case 1
15 0003 CLOOP +JSUB RDREC 4B100000

e The operand RDREC is an external reference.
o The assembler has no idea where RDREC is
o inserts an address of zero
o can only use extended formatto provide enough room (that is, relative
addressing for external reference is invalid)
e The assembler generates information for each external reference that will allow the

loaderto perform the required linking.

Case 2
190 0028 MAXLEN WORD BUFEND-BUFFER 000000

e There are two external references in the expression, BUFEND and BUFFER.
e The assembler inserts a value of zero

e passes information to the loader

Dept. of ISE, SIBIT 54

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

Case 3

Add to this data area the address of BUFEND
Subtract from this data area the address of BUFFER

On line 107, BUFEND and BUFFER are defined in the same control section and the
expression can be calculated immediately.

107

1000 MAXLEN

EQU

Object Code for the example program:

BUFEND-BUFFER

0000 COPY START 0

EXTDEF BUFFER,BUFFEND,LENGTH

EXTREF RDREC,WRREC
0000 FIRST STL RETADR 172027
0003 CLOOP +1SUB RDREC 48100000 Case 1
o007 LDA LENGTH 032023
000A COMP #0 290000
noaD JEQ ENDFIL 332007
0010 +1SUB WRREC 48100000
0014] CLOOP 3F2FEC
o017 ENDFIL LDA =C'EQOF 032016
0014 STA BUFFER OF2016
001D LDA #3 010003
0020 STA LENGTH OF200A
0023 +]SUB WRREC 48100000
onz7] @RETADR JE2000
0024 RETADR RESW 1
0ozD LEMGTH RESW 1

LTORG
0030 # =C'EQOF 454F46
0033 BUFFER RESB 40196
1033 BUFEND EQU *
1000 MAXLEN EQU BUFEND-BUFFER

Dept. of ISE, SIBIT

55

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

0000 RDREC CSECT

SUBROUTINE TO READ RECORD INTO BUFFER

EXTREF BUFFER,LENGTH,BUFEND

0000 CLEAR X B410
0002 CLEAR A B400
non4 CLEAR S B440
0006 LDT MAXLEN J7201F
0009 RLOOP TD INPUT E3201B
0nooc JEQ RLOOP 332FFA
DO0OF RD INPUT DB2015
0012 COMPR AS AD04
0014 JEQ EXIT 332009
0017 +5TCH BUFFER,X 57900000
0018 TIXR T B850
001D LT RLOOP 3B2FE9
0020 EXIT +5TX LENGTH 13100000
0024 RSUB 4F0D000
0027 INPUT BYTE X'F1° F1

0028 MAXLEN WORD BUFFEND-BUFFER Case 2
0000 WRREC CSECT

SUBROUTINE TO WRITE RECORD FROM BUFFER

EXTREF LENGTH,BUFFER

0000 CLEAR X B410
0002 +LDT LENGTH 77100000 |
0006 WLOOP TD =X"05 E32012
nong JEQ WLOOP 332FFA
0ooc +LDCH BUFFER, X 53400000
0010 WD =X05 DF2008
0013 TIXR T B&50
0015 LT WLOOP 3B2FEE
0018 RSUB 4FD000
END FIRST
001B * =X05° 05

The assembler must also include information in the object program that will cause the loader
to insert the proper value where they are required. The assembler maintains two new record

in the object code and a changed version of modification record.

Define record (EXTDEF)
Dept. of ISE, SIBIT 56

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
e Col.1 D
e Col. 2-7 Name of external symbol defined in this control section
e Col.8-13 Relative address within this control section (hexadecimal)

e Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

e Col. 1 R
e Col. 2-7 Name of external symbol referred to in this control section
e Col.8-73 Name of other external reference symbols

Modification record

e Col.1 M

e Col. 2-7 Starting address of the field to be modified (hexadecimal)

e Col. 89 Length of the field to be modified, in half-bytes (hexadecimal)

e Col.11-16 External symbol whose value is to be added to or subtracted from
the indicated field

A define record gives information about the external symbols that are defined in this control
section, i.e., symbols named by EXTDEF.A refer record lists the symbols that are used as

external references by the control section, i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:
adding or subtracting the value of some external symbol. The symbol used for modification

may be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each of
the control sections. In the Define Record and refer record the symbols named in EXTDEF
and EXTREF are included.

Dept. of ISE, SIBIT 57

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

In the case of Define, the record also indicates the relative address of each external
symbol within the control section.For EXTREF symbols, no address information is available.

These symbols are simply named in the Refer record.

COPY
HCOPY 000000001033
DBUFFER000033BUFEND001033L ENGTHO0002D |
RRDREC WRREC|
T000000]D] 7202748100000032023290000332007481000003F 2FEG0320160F2016
100001DODO100030F200A4B1000003E2000
T00003003454F 46
M00000405+RDREC
M00001105+WRREC
M00002405+WRREC

RDREC
HRDREC (0000000002B

RBUFFERLENGTHBUFEND'
T000000] DB410B400B44077201FE3201B332FFADB2015A00433200957900000B850

T00001DOE3B2FEY] 31000004F000QF 1000000
M00001805+BUFFER
MO0002105+LENGTH
M00002806+BUFEND
M00002806—BUFFER
E

WRREC

HWRREC 00000000001C

RLENGTHBUFFER |
T000000] CB41077100000E3201232FFA53900000DF 2008B8503B2F EEAF 000005

MO0000305+LENGTH
MO0000DOSHBUFFER
E

- BUFEND - BUFFER

Handling Expressions in Multiple Control Sections:

The existence of multiple control sections that can be relocated independently of one
another makes the handling of expressions complicated. It is required that in an expression

that all the relative terms be paired (for absolute expression), or that all except one be paired

(for relative expressions).

Dept. of ISE, SIBIT 58

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

When it comes in a program having multiple control sections then we have an

extended restriction that:

e Both terms in each pair of an expression must be within the same control section
o If two terms represent relative locations within the same control section , their
difference is an absolute value (regardless of where the control section is
located.
e Legal: BUFEND-BUFFER (both are in the same control section)

o If the terms are located in different control sections, their difference has a
value that is unpredictable.

e lllegal: RDREC-COPY (both are of different control section) it is the

difference in the load addresses of the two control sections. This value

depends on the way run-time storage is allocated; it is unlikely to be of

any use.

e How to enforce this restriction
o When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.
o The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.

o The loader checks the expression for errors and finishes the evaluation.

3.2 ASSEMBLER DESIGN OPTIONS

Here we are discussing

o The structure and logic of one-pass assembler. These assemblers are used when it is
necessary or desirable to avoid a second pass over the source program.
o Notion of a multi-pass assembler, an extension of two-pass assembler that allows an

assembler to handle forward references during symbol definition.

Dept. of ISE, SIBIT 59

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

3.2.1. One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

e Eliminating forward reference to data items, by defining all the storage reservation
statements at the beginning of the program rather at the end.

e Unfortunately, forward reference to labels on the instructions cannot be avoided.
(forward jumping)

e To provide some provision for handling forward references by prohibiting forward

references to data items.

There are two types of one-pass assemblers:

e One that produces object code directly in memory for immediate execution (Load-

and-go assemblers).

e The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

e Load-and-go assembler generates their object code in memory for immediate
execution.
e No object program is written out, no loader is needed.
e Itis useful in a system with frequent program development and testing
o The efficiency of the assembly process is an important consideration.

e Programs are re-assembled nearly every time they are run; efficiency of the assembly

process is an important consideration.

Dept. of ISE, SIBIT 60

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE

10CS52

Line Loc Source statement Object code
1000 ‘OPY STAR (

1 1000 EOF BYTE EOF 154F4¢
10 THREE WORD U00C
100¢ ZER(JORD Of
100! RETADR RESW

5 ' LENGTH

6 100F BUFFER SB 40¢

1 200F IRST STL ETA 14100
1t 20172 CLOOP JSUI DREX(4)
2l 2015 DA LENGTH 10100(

. 2018 COMP ZER(281006
201F JEQ ENDFT 302024

5 201! TSUE WRRE 48 ¢

2021 CL{((
A ' A ‘ 5 = 1
x aclaé I EOF 00100C¢
2 027 T BUFFI OC F
5 02A LDA) 001(
A 2D STA ()¢ 0
65 2030 JSU 4820
"’T _ 3 L‘AL ORK
45 RSUB 1C(

110

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a forward

reference is encountered :

e Omits the operand address if the symbol has not yet been defined

e Enters this undefined symbol into SYMTAB and indicates that it is undefined

e Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry

e When the definition for the symbol is encountered, scans the reference list and inserts

the address.

e At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

e For Load-and-Go assembler

o Search SYMTAB for the symbol named in the END statement and jumps to

this location to begin execution if there is no error

Dept. of ISE, SIBIT

61

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

After Scanning line 40 of the program:
40 2021 J CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013,
ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in the

symbol table.
Memory
address Contents Symbol Value
1000 454F4600 00030000 OOXXXXXX XXXXXXXX LENGTH | 100C
1010 XXXXXXXX XXXXXXXX KXXXXXXX XXXXXXXX RDREC * P l | 2013 0]
* THREE |[1003
2000 XXXXXX XXXKXXXX XXXXXXXX XXXXXx14 ZERO 1006
2010 100945{% —Joolooc 28100630 [——Jas—], e T P I
2020 [3c2012] >
2 EOF 1000
> ENDFIL | * | o 201C | 0

RETADR | 1009

BUFFER | 100F

CLOOP |2012

FIRST 200F

The status after scanning line 160, which has encountered the definition of RDREC and

ENDFIL is as given below:

Dept. of ISE, SIBIT 62

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

Memory
address Contents
1000 454F4600 00030000 OOXXXXXX XXXXXXXX
1010 XXXXXAXX XXXAXXXX XXXXXXXX XXXAXXKX
.
-
. Te
2000 XXXXXXXX ~XEXMRXK XXXXXXXX xxxxxx14d
2010 10094820 3B00100C 28100630 2025451@4
2020 [3c2012 0010000C 100F0010 0¥E1a08
2030 45-——J#8— 1009400 O0F10010 00041006 ——
2040 O01006E0 20393020 43082039 28100630
2050 [gao0 or

If One-Pass needs to generate object code:

record to the object program.

10CS52

§ Symbol Value

LENGTH | 100C

RDREC | 203D
TAREE | 1003

ZERO | 1006

_WRREC 4[*—»{20144—»{2031]0]

EOF 1000

'ENDFIL___| 2024

RETADR | 1009

BUFFER | 100F

CLOOP | 2012

FIRST | 200F

MAXLEN | 203A

INPUT 2039

EXIT # | o n

RLOOP | 2043

If the operand contains an undefined symbol, use 0 as the address and write the Text

Forward references are entered into lists as in the load-and-go assembler.

e When the definition of a symbol is encountered, the assembler generates another Text

record with the correct operand address of each entry in the reference list.

e When loaded, the incorrect address O will be updated by the latter Text record

containing the symbol definition.

Object Code Generated by One-Pass Assembler:

Dept. of ISE, SIBIT

63

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

HCOPY 001000001074
T00100009454F46000003000000
T00200F1514100948000000100G2810063000004800003€2012
[T00201C022024 |

1000
T002024190010000C100E0010030C100C4800000810094C0000F100
(1002013022030 |

4

T00203D1EQ41006001006E02039302043D8203928100630000054900F2C2034382043
T002050022058
T00205B0710100C4C000005
T00201E022062
T002031022062
T00206218041006E0206130206550900EDC20612C100C3820654C0000
EQ0200F

3.2.2 Multi_Pass Assembler:

e For atwo pass assembler, forward references in symbol definition are not allowed:
ALPHA EQU BETA

BETA EQU DELTA
DELTA RESW 1

o Symbol definition must be completed in pass 1.
e Prohibiting forward references in symbol definition is not a serious inconvenience.

o Forward references tend to create difficulty for a person reading the program.

Implementation Issues for Modified Two-Pass Assembler:

Implementation Isuues when forward referencing is encountered in Symbol Defining

statements :

e For aforward reference in symbol definition, we store in the SYMTAB:
o The symbol name
o The defining expression

o The number of undefined symbols in the defining expression

Dept. of ISE, SIBIT 64

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e The undefined symbol (marked with a flag *) associated with a list of symbols depend
on this undefined symbol.

e When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

of undefined symbols in the 1 HALFSZ BQU MAXLEN/
defining expression : MAXLEN EQU BUFENI '—:.;.t;y FER
The defining expression EREVET EQU BUEFER=L
BUFFER RESB 4096
A 4 I 5 BUFENL EQI
HALFSZ lml MAXLEN/2 0

Depending list

[waien |« [l —s[rairsz [o]
]

Undefined symbol

Multi-Pass Assembler : Example for forward reference in Symbol Defining Statements:

soreo s aureno [I:—’{ 0
acrez [wasiene : [airsz [sr]wamenz s
= [surren E
surren | [o] surren [+ T swasien [F—s{rrever o]
2 MAXLEN EQU BUFEND-BUFFER 3 PREVBT EQU BUFFER-1

Dept. of ISE, SIBIT 65

More notes & papers: www.VTUplanet.com

_SYSTEMSOFTWARE __ 1locss2

| —
BUFEND L* [o——»{ MAXLEN [0 I BUFEND l 2034 lo |

HALFSZ [&![MAXLEN 2 To HALTEE EOO Io

PREVBT | 1033 0 | PREVBT [‘033 o

MAXLEN l&1‘8UFEND-BUFFEH [o——»lﬁfrrsrzrj;] MAXLEN I 1000 7_J‘L

BUFFER 11034 To BUFFER | 1034 Io

L
4 BUFFER RESB 4096 5 BUFEND EQU

3.3 MASM Assembler

The Microsoft Macro Assembler is an X86 architecture assembler for MS-DOS and
Microsoft Windows. While the name MASM has earlier usage as the Unisys OS 1100 Meta-
Assembler, it is commonly understood in more recent years to refer to the Microsoft Macro
Assembler. It is an archetypal MACRO assembler for the x86 PC market that is owned and
maintained by a major operating system vendor and since the introduction of MASM version
6.0 in 1991 has had a powerful preprocessor that supports pseudo high level emulation of
variety of high level constructions including loop code, conditional testing and has a semi-
automated system of procedure creation and management available if required. Version
6.11d was 32 bit object module capable using a specialised linker available in the WinNT 3.5
SDK but with the introduction of binary patches that upgraded version 6.11d, all later
versions were 32 bit Portable Executable console mode application that produced both OMF
and COFF object modules for 32 bit code.

Dept. of ISE, SIBIT 66

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

RECOMMENDED QUESTIONS

1) Explain the following: Literals, Symbol defining statements, Expressions (8)
2) Explain program blocks with an example. (10)
3) Explain control section and program linking. (8)
4) Explain the following (8)

a) Define record

b) Refer record

¢) Modification record(revised)
5) Explain one pass assembler. (6)
6) Explain multipass assembler. (8)
7) Write shortnotes on (8)

a) MASM assembler

b) SPARC assembler

Dept. of ISE, SIBIT 67

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

UNIT-4

LOADERS AND LINKERS

Introduction

The Source Program written in assembly language or high level language will be
converted to object program, which is in the machine language form for execution. This
conversion either from assembler or from compiler, contains translated instructions and data
values from the source program, or specifies addresses in primary memory where these items

are to be loaded for execution.
This contains the following three processes, and they are,

e Loading - which allocates memory location and brings the object program into
memory for execution - (Loader)

e Linking- which combines two or more separate object programs and supplies the
information needed to allow references between them - (Linker)

¢ Relocation - which modifies the object program so that it can be loaded at an address

different from the location originally specified - (Linking Loader)
4.1 Basic Loader Functions:

A loader is a system program that performs the loading function. It brings object program
into memory and starts its execution. The role of loader is as shown in the figure 4.1.
Translator may be assembler/complier, which generates the object program and later loaded
to the memory by the loader for execution. In figure 4.2 the translator is specifically an
assembler, which generates the object loaded, which becomes input to the loader. The

figure4.3 shows the role of both loader and linker.

Dept. of ISE, SIBIT 68

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Source i
Object
Program Translator Program U :

program
ready for
execution
MEMmory
Figure 4.1 : The Role of Loader
Source Object
—>»
Assembler Object
Program Program
program
ready for
execution
Memory

Dept. of ISE, SIBIT 69

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Figure 4.2: The Role of Loader with Assembler

Object
Source
Assembler
Program
Program object
program
Executable ready for
execution
Codge
Loader
Memory

Figure 4.3: The Role of both Loader and Linker
Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating loader
(relative loader), and, direct linking loader. The following sections discuss the functions and

design of all these types of loaders.

4.1.1Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to specified
locations in the memory. At the end the loader jumps to the specified address to begin

execution of the loaded program. The role of absolute loader is as shown in the figure 4.4.

Dept. of ISE, SIBIT 70

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The advantage of absolute loader is simple and efficient. But the disadvantages are, the need

for programmer to specify the actual address, and, difficult to use subroutine libraries.

Obi 1000
ject Absolute
Program 1Aadar Object
program
ready for
execution
2000
Memory

Figure 4.4: The Role of Absolute Loader

The algorithm for this type of loader is given here. The object program and, the object
program loaded into memory by the absolute loader are also shown. Each byte of
assembled code is given using its hexadecimal representation in character form. Easy to read
by human beings. Each byte of object code is stored as a single byte. Most machine store
object programs in a binary form, and we must be sure that our file and device conventions

do not cause some of the program bytes to be interpreted as control characters.
Begin
read Header record

verify program name and length

Dept. of ISE, SIBIT 71

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

read first Text record
while record type is <> ‘E’ do
begin
{if object code is in character form, convert into internal representation}
move object code to specified location in memory
read next object program record
end
jump to address specified in End record

end

HA(.IUP\' .‘,PCIOGOQO(}IUM
TUUIUUU]1’1141(,‘334826.'59[]!1103628!{)3()3()1015482[]613(:‘.Ul]B{]Ol02{‘1.,9C1039.NUU102D
TOOlOlEIﬁOClO?Mﬁ?LélG&l(}334('00Oui;Sl.}'isbb(.OO(}J(J(}UUU[)
T0040391LU41\."3ODul SUEOZPSHUZUH\718703D2810303820575&9[)392(205E38203F
'1}(002(}5?&1(:{.1O.IL,H?ﬁ&(‘.UOOl]I\Fl.‘,\OO[000}5}&1‘ 39‘}:020?%3020&&50903‘{_‘[‘}(,2019!.."61036
35)020?%,.951\382064&4CDDO(?AQS

E0ULOGO
h (a) Object program

Dept. of ISE, SIBIT 72

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
Memory
address Contents

a0Go EARRXKEKX RXEXXXXX REXMNXXXE HEXXXXXXX

oulo XRXAXNHENE XXXK¥XEUAX KAXXXAKX XXHXXXAX

» » » L] a

» ®] [] a

- L L] * [
OFFO0 KEEXHEXRE NURXKUEEX XXAXXXXX AXXKHXEXXEX
000 4103348 20380010 36281030 30301548
1010 200613C10 0300102A 0C103%900 10200C1H0
1026 36482061 081G334C Q0004541 4600CCU3
1030 DOOCOU0XEE XXY¥XXXXN HXXXXXXR xxxxxxxx [COPY

] » [] » []

L] » [] » *

* » [] |] ®
2030 REKAKAXXEX RXXXXXX® xx041030 GO1030E0
2040 20503020 3FDEzZOSL 28103036 20575490
205G 39ZC204F 38203F10 10384000 DOGRIOCIC
2000 00041030 EG207930 206450906 38DC2079
207G |2€103638 20644C50 OODSRXXR XXXXXXXX
2080 KXKXXLAXKE AXXXXXXX XXXKRXXX XNXKXXXXX

] ® [] & []

L] L] L] a »

] L L - L]

{b) Program loaded in memory

4.1.2 A Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader, called

bootstrap loader is executed. This bootstrap loads the first program to be run by the computer

-- usually an operating system. The bootstrap itself begins at address 0. It loads the OS

starting address 0x80. No header record or control information, the object code is

consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

Dept. of ISE, SIBIT

73

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

A«GETC (and convert it from the ASCII character
code to the value of the hexadecimal digit)
save the value in the high-order 4 bits of S
A<GETC
combine the value to form one byte A« (A+S)
store the value (in A) to the address in register X
XeX+1
End
It uses a subroutine GETC, which is
GETC A<—read one character
if A=0x04 then jump to 0x80
if A<48 then GETC
A « A-48 (0x30)
if A<10 then return
A« A-7
return
4.2. Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential disadvantages One of
the most disadvantage is the programmer has to specify the actual starting address, from
where the program to be loaded. This does not create difficulty, if one program to run, but

not for several programs. Further it is difficult to use subroutine libraries efficiently.

Dept. of ISE, SIBIT 74

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

This needs the design and implementation of a more complex loader. The loader must

provide program relocation and linking, as well as simple loading functions.
4.2.1 Relocation

The concept of program relocation is, the execution of the object program using any part of
the available and sufficient memory. The object program is loaded into memory wherever
there is room for it. The actual starting address of the object program is not known until load
time. Relocation provides the efficient sharing of the machine with larger memory and when
several independent programs are to be run together. It also supports the use of subroutine
libraries efficiently. Loaders that allow for program relocation are called relocating loaders or

relative loaders.
Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available for
specifying relocation. In the case of modification record, a modification record M is used in
the object program to specify any relocation. In the case of use of relocation bit, each
instruction is associated with one relocation bit and, these relocation bits in a Text record is

gathered into bit masks.

Modification records are used in complex machines and is also called Relocation and
Linkage Directory (RLD) specification. The format of the modification record (M) is as

follows. The object program with relocation by Modification records is also shown here.

Modification record

col 1: M

col 2-7: relocation address
col 8-9: length (halfbyte)
col 10: flag (+/-)

col 11-17: segment name

Dept. of ISE, SIBIT 75

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

HACOPY ,000000 001077

TA000000 ,1DA17202DA69202D,48101036,...,04B105D,3F2FEC,032010
TA00001D»13,0F2016,010003,0F200D,4B10105D,3E2003,454F46
TA001035 ,1D,B410,B400,B440,751010004...4332008,57C003,B850
TA001053,1D,3B2FEAA134000,4F00004F14..453C003,DF2008,B850
TA00070,07,3B2FEF,4F0000,05

M4000007,05+COPY

M,000014,05+COPY

M4000027,05+COPY

EA000000

The relocation bit method is used for simple machines. Relocation bit is 0: no
modification is necessary, and is 1: modification is needed. This is specified in the columns

10-12 of text record (T), the format of text record, along with relocation bits is as follows.
Text record:
col1: T
col 2-7: starting address
col 8-9: length (byte)
col 10-12: relocation bits
col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 — relocation bits), since each

text record contains less than 12 words, unused words are set to 0, and, any value that is to be

Dept. of ISE, SIBIT 76

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

modified during relocation must coincide with one of these 3-byte segments. For absolute
loader, there are no relocation bits column 10-69 contains object code. The object program
with relocation by bit mask is as shown below. Observe FFC - means all ten words are to be

modified and, EOO - means first three records are to be modified.
H,COPY ,000000 00107A
T,000000,1E,FFC,140033,481039,000036,280030,300015,...,3C0003 4 ...
TA00001E,15,E00,0C0036,481061,080033,4C0000,...,000003,000000
T,001039,1E,FFC,040030,000030,...,30103F,D8105D,280030,...
T,001057,0A,800,100036,4C0000,F1,001000
T,001061,19,FE0,040030,E01079,...,508039,DC1079,2C0036,...
EA000000

4.2.2 Program Linking

The Goal of program linking is to resolve the problems with external references
(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section
names symbols, called external symbols, that are defined in this (present) control section and

may be used by other sections.
ex: EXTDEF BUFFER, BUFFEND, LENGTH
EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used in

this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC
EXTREF LISTB, ENDB, LISTC, ENDC

How to implement EXTDEF and EXTREF

Dept. of ISE, SIBIT 77

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The assembler must include information in the object program that will cause the loader to
insert proper values where they are required — in the form of Define record (D) and, Refer
record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section
Col. 8-13 Relative address within this control section (hexadecimal)
Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records

D LISTA 000040 ENDA 000054
D LISTB 000060 ENDB 000070
Refer record

The format of the Refer record (R) along with examples is as shown here.

Col. 1 R
Col. 2-7 Name of external symbol referred to in this control section
Col. 8-73 Name of other external reference symbols

Example records
RLISTB ENDB LISTC ENDC
R LISTA ENDA LISTC ENDC

RLISTA ENDA LISTB ENDB

Dept. of ISE, SIBIT 78

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

Here are the three programs named as PROGA, PROGB and PROGC, which are

separately assembled and each of which consists of a single control section. LISTA, ENDA
in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are external
definitions in each of the control sections. Similarly LISTB, ENDB, LISTC, ENDC in
PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA, LISTB, ENDB in

PROGC, are external references. These sample programs given here are used to illustrate

linking and relocation. The following figures give the sample programs and their

corresponding object programs. Observe the object programs, which contain D and R records

along with other records.

0000 PROGA

0020

0023

0027

0040

0054

0054

0057

REF1

REF2

REF3

LISTA

ENDA

REF4

REF5

START
EXTDEF

EXTREF

LDA
+LDT

LDX

EQU

EQU

WORD

WORD

LISTA, ENDA

LISTB, ENDB, LISTC, ENDC

LISTA
LISTB+4

#ENDA-LISTA

ENDA-LISTA+LISTC

ENDC-LISTC-10

03201D

77100004

050014

000014

FFFFF6

Dept. of ISE, SIBIT

79

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
005A REF6 WORD ENDC-LISTC+LISTA-1 00003F
005D REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000014
0060 REFS WORD LISTB-LISTA FFFFCO
END REF1
0000 PROGB START 0
EXTDEF LISTB, ENDB
EXTREF LISTA, ENDA, LISTC, ENDC
0036 REF1 +LDA LISTA 03100000
003A REF2 LDT LISTB+4 772027
003D REF3 +LDX #ENDA-LISTA 05100000
0060 LISTB EQU *
0070 ENDB EQU *
0070 REF4 WORD ENDA-LISTA+LISTC 000000
0073 REF5 WORD ENDC-LISTC-10 FFFFF6
0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF

Dept. of ISE, SIBIT

80

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
0079 REF7 WORD ENDA-LISTA-(ENDB-LISTB) FFFFFO
007C REF8 WORD LISTB-LISTA 000060

END
0000 PROGC START 0

0018

001C

0020

0030

0042

0042

0045

0045

004B

REF1

REF2

REF3

LISTC

ENDC

REF4

REF5

REF6

REF7

EXTDEF LISTC, ENDC

EXTREF LISTA, ENDA, LISTB, ENDB

+LDA LISTA 03100000
+LDT LISTB+4 77100004
+LDX #ENDA-LISTA 05100000
EQU *

EQU *

WORD ENDA-LISTA+LISTC 000030
WORD ENDC-LISTC-10 000008
WORD ENDC-LISTC+LISTA-1 000011
WORD ENDA-LISTA-(ENDB-LISTB) 000000

Dept. of ISE, SIBIT

81

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
004E REF8 WORD LISTB-LISTA 000000
END

H PROGA 000000 000063

D LISTA 000040 ENDA 000054

RLISTB ENDB LISTC ENDC

T 000020 OA 03201D 77100004 050014

T 000054 OF 000014 FFFF6 00003F 000014 FFFFCO

MO000024 05+LISTB

MO000054 06+LISTC

MO000057 06+ENDC

MO000057 06 -LISTC

MOOOO05A06+ENDC

MOOO05A06 -LISTC

MOO005A06+PROGA

MO00005D06-ENDB

MO00005D06+LISTB

Dept. of ISE, SIBIT 82

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

MO00006006+LISTB

MO00006006-PROGA

E000020

H PROGB 000000 00007F

D LISTB 000060 ENDB 000070

RLISTA ENDA LISTC ENDC

T 000036 0B 03100000 772027 05100000

T 000007 OF 000000 FFFFF6 FFFFFF FFFFFO 000060

MO000037 05+LISTA

MOOOO3E 06+ENDA

MOOOO3E 06 -LISTA

MO000070 06 +ENDA

MO000070 06 -LISTA

MO000070 06 +LISTC

MO000073 06 +ENDC

MO000073 06 -LISTC

MO000073 06 +ENDC

MO000076 06 -LISTC

Dept. of ISE, SIBIT 83

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

MO000076 06+LISTA

MO000079 06+ENDA

MO000079 06 -LISTA

MO00007C 06+PROGB

MO00007C 06-LISTA

E

H PROGC 000000 000051

D LISTC 000030 ENDC 000042

RLISTA ENDA LISTB ENDB

T 000018 0C 03100000 77100004 05100000

T 000042 OF 000030 000008 000011 000000 000000

MO000019 05+LISTA

MO00001D 06+LISTB

MO000021 06+ENDA

MO000021 06 -LISTA

MO000042 06+ENDA

MO000042 06 -LISTA

MO000042 06+PROGC

MO000048 06+LISTA

Dept. of ISE, SIBIT 84

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

MO00004B 06+ENDA

MO00004B 006-LISTA

MO00004B 06-ENDB

MO00004B 06+LISTB

MOOOO4E 06+LISTB

MOOOO4E 06-LISTA

E

The following figure shows these three programs as they might appear in memory
after loading and linking. PROGA has been loaded starting at address 4000, with PROGB
and PROGC immediately following.

Memory
address Contents
Qoan AAXKRERXKX XEXXXXKX XKXEXNKXHNX HERXRERAXXE
L 3 - ® L J
L] - L 3 ® :
3FFC AAEXAXRXEX EAAXXXXRX MEXANTAX EXXRXXKK
&OOU P L --t e A oA v - 8 4 & 8 a0 " *» % P 2w
4010 * - 8 & 4 LI & 4 F 2 4 » a v > PP erEmm Aamm Al
4020 03201077 1040C705 Q018 aiend svwewn- « [4—PROGA
4030 * 4 1 4 48 4+ B aP AT EIY Wt swsme= “ = % 2 A s oA
4040 - - > - v - & = & 4 4 2 > 4 & 4 v roesn L L L
4G50 AN e Q412600 Q0080G40 51000004
I}cbo 00008310 “ 8 > 8 4 > v P TR rAam meaam b Aras
4{)70 - v T o & =« A& 4 s = = - & B 4 & 4 ' & vy a £ » 9 v
4080 llllllllllllllllllllllll - 4 r ah L
4090 - - e o A 8+ » 4 2 000310a0 40??202? l
40&0 05].'0001“‘ ara +rveer P " m s m - e A s> PROGB
GOB0 | cacaasad ecosasaca e s a4 e1 e s wpeweeas
QOCD . & " ¥ > L LI I L e 4 & 5 + » 4 »
G0N0 [.ae. ... oG 4126000Q. 0800d051 COGN0400
4OEU 0082..0. LI R B N DR B) " " 8 ¢ Fr v v - & & s &
SAFN: [Fas et e wr iwseea:s — PO 6 1 1 &0607?10
4100 AQGTOS1CG Q0% 4. .o oon-. & vausssaens 4—PROGC
&1‘0 L L R R - = o A A > & 8 ¢ ¢ % 8¢ 9V " & g s =
4120 e A see 00412600 QOORBC0N40 51000004
4130 000083hx EEXXXXXXX XERHXHEXX HXXEXALXKXX
5140 KEXKXENXEA XYXYXXXE XXXKAXKXXX EXFXFALXXXX
* - - » -
» - - - -

Dept. of ISE, SIBIT

85

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

For example, the value for REF4 in PROGA is located at address 4054 (the beginning
address of PROGA plus 0054, the relative address of REF4 within PROGA). The following
figure shows the details of how this value is computed.

Object programs Memory contents
PRAOGA | HPROGA ass« 0000
. (REF4) :
0008307000014+ ++] (REF4)

000tuoooo'QQgﬁZG]aoo--coocuoo
@s{s@

— ——
f _—-—-'
/ DISTCP00020 {Actual address
// = of LISTC)

!

l’ Load addresses

{ PROGA 004000

\\ PROGB 004063

N

The initial value from the Text record

T0000540F000014FFFFF600003F000014FFFFCO is 000014. To this is added the
address assigned to LISTC, which is 4112 (the beginning address of PROGC plus 30). The
result is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:
PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of these

references are the same in each of the three programs.

Dept. of ISE, SIBIT 86

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

4.3.3 Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than the absolute loader
program, which is already given. The concept given in the program linking section is used
for developing the algorithm for linking loader. The modification records are used for
relocation so that the linking and relocation functions are performed using the same

mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main

data structure for a linking loader.
Pass 1: Assign addresses to all external symbols
Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and
PROGC) given is as shown below. The ESTAB has four entries in it; they are name of the
control section, the symbol appearing in the control section, its address and length of the

control section.

Control section Symbol Address Length

PROGA 4000 63
LISTA 4040
ENDA 4054

PROGB 4063 7F
LISTB 40C3
ENDB 40D3

PROGC [40E2 51
LISTC 4112
ENDC 4124

Program Logic for Pass 1
Dept. of ISE, SIBIT 87

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Pass 1 assign addresses to all external symbols. The variables & Data structures used during
pass 1 are, PROGADDR (program load address) from OS, CSADDR (control section
address), CSLTH (control section length) and ESTAB. The pass 1 processes the Define

Record. The algorithm for Pass 1 of Linking Loader is given below.

FPass 1:

hagin
get PROCADDR irom opécaling systsm
it U'S8DDR 1o PROGADDRE | for first cnatrel assctioc
while not esnd of 1nput do
bagin
read next input record {Header racord for upulral zection}
set 081.7H Lo control section lenglh
agarch ESTAE for conirol secticn nane
1f tpuo:d then
aet srror flag !duplicats sxteronl synol:
alga
anter coalrol zection nams woto ESTAB with vales CRADDR
while record iype (p 'E” do
begin
read nexl ikput record
if record ype = "0 then
for cack symbol in Lhe record do
hagin
sesran KETAR for symbol name
i1 fcun¢ them
el coror flag {duplicats axtoreal symdel)
elre
cnter symbol inta ESTAB «ith value
(USALDR 1| iadicated address:
emd {‘or}
end {while (¥ 'E"}
add C5LTH Lo OSADDR {starting addreus for next contral section
amd {whilc not EOF|
end {®2s5 1!

Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses
modification record and lookup the symbol in ESTAB to obtain its address. Finally it uses
end record of a main program to obtain transfer address, which is a starting address needed
for the execution of the program. The pass 2 process Text record and Modification record of

the object programs. The algorithm for Pass 2 of Linking Loader is given below.

Dept. of ISE, SIBIT 88

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Pass 2:

begin
set CSADNR o PROGANDR
se+ REXECADDR to TROGALUR
while not ¢nd of wnout 40
begin
road next input resord {Header record!
sel USLTH 1o conzrol section length
while rccord type {3 'E’ A
begin
read rext input record
if record type — ‘T them
bedgin
{if okject code is 1n chavasler form, voavert
intc inic-nal repreosentation}
mova zbject ende from record to Tacialicn
(C34NDR + specified address)
end {1f 'T" !
else if rvecord “ype - 'M° them
begin
zgarch ESTAB tor mcdilylnZ symhol Game
it found then .
nad or snbtract symbol walue sl legation
- iCSADDR + spenilied address)
alge
set error [lag [wndelived sexteroal symboll
end (if W'}
ema {wxhile {(} 'E'}
1f an address is spacitied [in End record} thenm
sot EXECADDR to {CSADDR | spacified address]
add CSIL.TH to CSADDR
end {ahils nnt ECT}
inmp to loeation_giver by EXECANDLDR {to ﬁtqil_gigggggqg,ﬁ’ paded progral

How to improve Efficiency?

The question here is can we improve the efficiency of the linking loader. Also observe that,
even though we have defined Refer record (R), we haven’t made use of it. The efficiency can
be improved by the use of local searching instead of multiple searches of ESTAB for the
same symbol. For implementing this we assign a reference number to each external symbol
in the Refer record. Then this reference number is used in Modification records instead of
external symbols.01 is assigned to control section name, and other numbers for external

reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with above

modification to Refer record (Observe R records).

Dept. of ISE, SIBIT 89

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

HPROGB OO000Q00007F
g;lsra 00006CENDB pOOO?o
RUZLISTA O3ENDA Q4LTETC OSENDC

UUUJbORPBlUUUUU?iZUZJUSIUUOUU

.o>,.g nn

T00007 NOEOCOO00FEFFEBFEFFFEFFFFFOM00Q60
MBU0D37,054+02
MI0003E05+03
MPOQO3EDS-02
MDOO07 006+03
MPUUUTQP6 -02
MDOOO7 006404
MOUOU7306+05
MOC007306-0%
000U7606+05
éb0007606-0a
MDO0Q7 606402
MOUUO7206+03
MO0007906-02
MDOODT P +01
mpoquy

HJ’RL(m 000600000063
DLISTA OGOO&OEI\DA PN0G54
RU".II"-I'R l;3INDB 04LIST(. G5ENDL

THOGO240403202D771000040500]

TO00GOS 401-0&%014?1’1"" PGU(}UUJI-UL"UOMI‘FFFCO
I’[|0b02405+0?
ynouomnama
MLULUD?UG*HJ.‘J
MEGOOST06~04

Dept. of ISE, SIBIT 90

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

I-;{RO(:C ﬂ0000000005l
ISTC Ooooadgnvc 000042
RO2LISTA QIENDA Q4LISTB OSENDE

.
*

TH000180C031000007710000405100000

T0000420£000030000008000011000000000000
MO0001905+02
590001D05+ua
M00002105+03
qpooozgos -02
HO0004206+03
K00004206-02
H00006206+G1
MO0004E06+02
npoooagpa+03
MO0004E06-02
M00004B06-05
MOUDU4BO64TE
H00004806+04

0000430& 02
K

Symbol and Addresses in PROGA, PROGB and PROGC are as shown below. These
are the entries of ESTAB. The main advantage of reference number mechanism is that it

avoids multiple searches of ESTAB for the same symbol during the loading of a control

section

Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 4112
5 ENDC 4124

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040
3 ENDA 4054
4 LISTC 4112
5 ENDC 4124

Dept. of ISE, SIBIT 91

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
Ref No. Symbol Address
1 PROGC 4063
2 LISTA 4040
3 ENDA 4054
4 LISTB 40C3
5 ENDB 40D3

4.3. Machine-independent Loader Features

Here we discuss some loader features that are not directly related to machine architecture and
design. Automatic Library Search and Loader Options are such Machine-independent Loader

Features.
4.3.1Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly including
them in the program to be loaded. The routines are automatically retrieved from a library as
they are needed during linking. This allows programmer to use subroutines from one or more
libraries. The subroutines called by the program being loaded are automatically fetched from
the library, linked with the main program and loaded. The loader searches the library or
libraries specified for routines that contain the definitions of these symbols in the main

program.
4.3.2Loader Options

Loader options allow the user to specify options that modify the standard processing. The
options may be specified in three different ways. They are, specified using a command
language, specified as a part of job control language that is processed by the operating

system, and an be specified using loader control statements in the source program.
Here are the some examples of how option can be specified.

e INCLUDE program-name (library-name) - read the designated object program from
a library
Dept. of ISE, SIBIT 92

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e DELETE csect-name — delete the named control section from the set pf programs
being loaded
e CHANGE namel, name2 - external symbol namel to be changed to name2

wherever it appears in the object programs
LIBRARY MYLIB — search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL — no loading and linking of unneeded

routines

Here is one more example giving, how commands can be specified as a part of object

file, and the respective changes are carried out by the loader.
LIBRARY UTLIB
INCLUDE READ (UTLIB)
INCLUDE WRITE (UTLIB)
DELETE RDREC, WRREC
CHANGE RDREC, READ
CHANGE WRREC, WRITE
NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE
control sections from the library, delete the control sections RDREC and WRREC from the
load, the change command causes all external references to the symbol RDREC to be
changed to the symbol READ, similarly references to WRREC is changed to WRITE,
finally, no call to the functions SQRT, PLOT, if they are used in the program.

4.4 Loader Design Options

There are some common alternatives for organizing the loading functions, including

relocation and linking. Linking Loaders — Perform all linking and relocation at load time. The

Dept. of ISE, SIBIT 93

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Other Alternatives are Linkage editors, which perform linking prior to load time and,

dynamic linking, in which linking function is performed at execution time

Linking Loaders

Object
Program(s)

Y
] v

Linking loader

A 4

Library

Memory

The above diagram shows the processing of an object program using Linking Loader.
The source program is first assembled or compiled, producing an object program. A linking
loader performs all linking and loading operations, and loads the program into memory for

execution.
4.4.1 Linkage Editors

The figure below shows the processing of an object program using Linkage editor. A linkage
editor produces a linked version of the program — often called a load module or an executable
image — which is written to a file or library for later execution. The linked program produced
is generally in a form that is suitable for processing by a relocating loader.

Dept. of ISE, SIBIT 94

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Some useful functions of Linkage editor are, an absolute object program can be
created, if starting address is already known. New versions of the library can be included
without changing the source program. Linkage editors can also be used to build packages of
subroutines or other control sections that are generally used together. Linkage editors often
allow the user to specify that external references are not to be resolved by automatic library
search — linking will be done later by linking loader — linkage editor + linking loader —

savings in space

Object
Program(s)
/\
v A 4
Library —» Linkage Editor
v

Linked

program

Relocating loader

Memory

4.4.2Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is loaded and
linked to the rest of the program when it is first called — usually called dynamic linking,
dynamic loading or load on call. The advantages of dynamic linking are, it allow several

executing programs to share one copy of a subroutine or library. In an object oriented system,

Dept. of ISE, SIBIT 95

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

dynamic linking makes it possible for one object to be shared by several programs. Dynamic
linking provides the ability to load the routines only when (and if) they are needed. The

actual loading and linking can be accomplished using operating system service request.
4.4.3 Bootstrap Loaders

If the question, how is the loader itself loaded into the memory? is asked, then the answer is,
when computer is started — with no program in memory, a program present in ROM (
absolute address) can be made executed — may be OS itself or A Bootstrap loader, which in
turn loads OS and prepares it for execution. The first record (or records) is generally referred
to as a bootstrap loader — makes the OS to be loaded. Such a loader is added to the beginning

of all object programs that are to be loaded into an empty and idle system.
4.5 Implementation Examples

This section contains brief description of loaders and linkers for actual computers. They are,
MS-DOS Linker - Pentium architecture, SunOS Linkers - SPARC architecture, and, Cray
MPP Linkers — T3E architecture.

4.5.1MS-DOS Linker

This explains some of the features of Microsoft MS-DOS linker, which is a linker for
Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM) produce
object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage editor that
combines one or more object modules to produce a complete executable program - .EXE file;

this file is later executed for results.

The following table illustrates the typical MS-DOS object module
Record Types Description
THEADR Translator Header
TYPDEF,PUBDEF, EXTDEF External symbols and references

LNAMES, SEGDEF, GRPDEF Segment definition and grouping

Dept. of ISE, SIBIT 96

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
LEDATA, LIDATA Translated instructions and data
FIXUPP Relocation and linking information
MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end of
the module. PUBDEF contains list of the external symbols (called public names). EXTDEF
contains list of external symbols referred in this module, but defined elsewhere. TYPDEF the
data types are defined here. SEGDEF describes segments in the object module (includes
name, length, and alignment). GRPDEF includes how segments are combined into groups.
LNAMES contains all segment and class names. LEDATA contains translated instructions
and data. LIDATA has above in repeating pattern. Finally, FIXUPP is used to resolve

external references.
RECOMMENDED QUESTIONS:

1) Write an algorithm for an absolute loader (7)
2) Explain bootstrap loaders. (6)
3) Write an algorithm for Bootstrap loader. (7)
4) Explain relocation w.r.t. loader. (8)
5) Explain bitmask with an example.(5)
6) Explain program linking with an example. (7)
7) Write the algorithm for pass 1 of an linking loader. (8)
8) Write the algorithm for pass 2 of an linking loader. (8)
9) Explain CSADDR, PROGADDR, ESTAB.(6)
10) Explain linkage editors. (8)
11) Explain dynamic linking. (8)
12) Write shortnotes on (10)
a. MS-DOS Linker
b. Sun OS linker

Dept. of ISE, SIBIT 97

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Chapter 5

EDITORS AND DEBUGGING SYSTEMS

An Interactive text editor has become an important part of almost any computing
environment. Text editor acts as a primary interface to the computer for all type of
“knowledge workers” as they compose, organize, study, and manipulate computer-based

information.

An interactive debugging system provides programmers with facilities that aid in
testing and debugging of programs. Many such systems are available during these days. Our
discussion is broad in scope, giving the overview of interactive debugging systems — not

specific to any particular existing system.
5.1 Text Editors:

e An Interactive text editor has become an important part of almost any computing
environment. Text editor acts as a primary interface to the computer for all type of
“knowledge workers” as they compose, organize, study, and manipulate computer-
based information.

e A text editor allows you to edit a text file (create, modify etc...). For example the
Interactive text editors on Windows OS - Notepad, WordPad, Microsoft Word, and
text editors on UNIX OS -vi, emacs, jed, pico.

e Normally, the common editing features associated with text editors are, Moving the
cursor, Deleting, Replacing, Pasting, Searching, Searching and replacing, Saving and

loading, and, Miscellaneous(e.g. quitting).

5.1.1 Overview of the editing process

An interactive editor is a computer program that allows a user to create and revise a target
document. Document includes objects such as computer diagrams, text, equations tables,
diagrams, line art, and photographs. In text editors, character strings are the primary elements
of the target text.

Dept. of ISE, SIBIT 98

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Document-editing process in an interactive user-computer dialogue has four tasks:
- Select the part of the target document to be viewed and manipulated
- Determine how to format this view on-line and how to display it
- Specify and execute operations that modify the target document
- Update the view appropriately

The above task involves traveling, filtering and formatting. Editing phase involves — insert,
delete, replace, move, copy, cut, paste, etc...

o Traveling — locate the area of interest
o Filtering - extracting the relevant subset

o Formatting — visible representation on a display screen

There are two types of editors. Manuscript-oriented editor and program oriented
editors. Manuscript-oriented editor is associated with characters, words, lines, sentences and
paragraphs. Program-oriented editors are associated with identifiers, keywords, statements.
User wish — what he wants — formatted.

5.1.2 User Interface:

Conceptual model of the editing system provides an easily understood abstraction of the
target document and its elements. For example, Line editors — simulated the world of the key
punch — 80 characters, single line or an integral number of lines, Screen editors — Document

is represented as a quarter-plane of text lines, unbounded both down and to the right.

The user interface is concerned with, the input devices, the output devices and, the
interaction language. The input devices are used to enter elements of text being edited, to
enter commands. The output devices, lets the user view the elements being edited and the
results of the editing operations and, the interaction language provides communication with
the editor.

Input Devices are divided into three categories:
Dept. of ISE, SIBIT 99

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

o text devices
o button devices

o Locator devices.

1. Text Devices are keyboard. Button Devices are special function keys,
symbols on the screen. Locator Devices are mouse, data tablet. There are
voice input devices which translates spoken words to their textual
equivalents.

2. Output Devices are Teletypewriters(first output devices), Glass teletypes
(Cathode ray tube (CRT) technology), Advanced CRT terminals, TFT
Monitors and Printers (Hard-copy).

3. The interaction language could be, typing oriented or text command oriented
and menu-oriented user interface. Typing oriented or text command oriented
interaction was with oldest editors, in the form of use of commands, use of
function keys, control keys etc.

4. Menu-oriented user interface has menu with a multiple choice set of text
strings or icons. Display area for text is limited. Menus can be turned on or
off.

5.1.3 Editor Structure:

Most text editors have a structure similar to that shown in the following figure. That is most
text editors have a structure similar to shown in the figure regardless of features and the

computers

Command language Processor accepts command, uses semantic routines — performs
functions such as editing and viewing. The semantic routines involve traveling, editing,

viewing and display functions.

Dept. of ISE, SIBIT 100

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
Editing > Edi]f;”q -
component [~ qu o Editing l
] .
i L | filter <
/
// Travelng [———————— < Main
N component ———————— > memory
/
input | Command —_————— e —— — >
— | language |_ ' Viewing
processor| ™ Viewing Viewing | filter [*
component buffer
\
\ .
\ aging
\ Routines. i T
Output _
_devices Display P File
D component | system
———————— Control
Data Typical Editor Structure

e Editing operations are specified explicitly by the user and display operations are
specified implicitly by the editor. Traveling and viewing operations may be invoked
either explicitly by the user or implicitly by the editing operations.

e In editing a document, the start of the area to be edited is determined by the current
editing pointer maintained by the editing component. Editing component is a
collection of modules dealing with editing tasks. Current editing pointer can be set or
reset due to next paragraph, next screen, cut paragraph, paste paragraph etc..,.

e When editing command is issued, editing component invokes the editing filter —
generates a new editing buffer — contains part of the document to be edited from
current editing pointer. Filtering and editing may be interleaved, with no explicit
editor buffer being created.

¢ Inviewing a document, the start of the area to be viewed is determined by the current
viewing pointer maintained by the viewing component. Viewing component is a
collection of modules responsible for determining the next view. Current viewing

pointer can be set or reset as a result of previous editing operation.

Dept. of ISE, SIBIT 101

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

When display needs to be updated, viewing component invokes the viewing filter —
generates a new viewing buffer — contains part of the document to be viewed from
current viewing pointer. In case of line editors — viewing buffer may contain the
current line, Screen editors - viewing buffer contains a rectangular cutout of the
quarter plane of the text.

Viewing buffer is then passed to the display component of the editor, which produces
a display by mapping the buffer to a rectangular subset of the screen — called a
window. Identical — user edits the text directly on the screen. Disjoint — Find and
Replace (For example, there are 150 lines of text, user is in 100th line, decides to
change all occurrences of ‘text editor’ with ‘editor”’).

The editing and viewing buffers can also be partially overlapped, or one may be
completely contained in the other. Windows typically cover entire screen or a
rectangular portion of it. May show different portions of the same file or portions of
different file. Inter-file editing operations are possible.

The components of the editor deal with a user document on two levels: In main
memory and in the disk file system. Loading an entire document into main memory
may be infeasible — only part is loaded — demand paging is used — uses editor paging
routines.

Documents may not be stored sequentially as a string of characters. Uses separate
editor data structure that allows addition, deletion, and modification with a minimum
of 1/0 and character movement.

Types of editors based on computing environment

Editors function in three basic types of computing environments:

1. Time sharing
2. Stand-alone
3. Distributed.

Each type of environment imposes some constraints on the design of an editor.

Dept. of ISE, SIBIT 102

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e In time sharing environment, editor must function swiftly within the context of the
load on the computer’s processor, memory and I/O devices.

e In stand-alone environment, editors on stand-alone system are built with all the
functions to carry out editing and viewing operations — The help of the OS may also
be taken to carry out some tasks like demand paging.

e In distributed environment, editor has both functions of stand-alone editor; to run
independently on each user’s machine and like a time sharing editor, contend for

shared resources such as files.

5.2 Interactive Debugging Systems:

An interactive debugging system provides programmers with facilities that aid in testing and
debugging of programs. Many such systems are available during these days. Our discussion
is broad in scope, giving the overview of interactive debugging systems — not specific to any

particular existing system.

Here we discuss
- Introducing important functions and capabilities of IDS
- Relationship of IDS to other parts of the system
- The nature of the user interface for IDS

5.2.1. Debugging Functions and Capabilities:

One important requirement of any IDS is the observation and control of the flow of program
execution. Setting break points — execution is suspended, use debugging commands to
analyze the progress of the program, résumé execution of the program. Setting some
conditional expressions, evaluated during the debugging session, program execution is

suspended, when conditions are met, analysis is made, later execution is resumed.

A Debugging system should also provide functions such as tracing and trace back.

Dept. of ISE, SIBIT 103

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e Tracing can be used to track the flow of execution logic and data modifications. The
control flow can be traced at different levels of detail — procedure, branch, individual
instruction, and so on...

e Trace back can show the path by which the current statement in the program was
reached. It can also show which statements have modified a given variable or

parameter. The statements are displayed rather than as hexadecimal displacements

Program-Display capabilities
A debugger should have good program-display capabilities.

e Program being debugged should be displayed completely with statement numbers.

e The program may be displayed as originally written or with macro expansion.

e Keeping track of any changes made to the programs during the debugging session.
Support for symbolically displaying or modifying the contents of any of the variables

and constants in the program. Resume execution — after these changes.

To provide these functions, a debugger should consider the language in which the
program being debugged is written. A single debugger — many programming languages —
language independent. The debugger- a specific programming language— language
dependent. The debugger must be sensitive to the specific language being debugged.

The context being used has many different effects on the debugging interaction. The

statements are different depending on the language
Cobol - MOVE 6.5 TO X
Fortran- X =6.5

C - X=65

Examples of assignment statements

Dept. of ISE, SIBIT 104

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Similarly, the condition that X be unequal to Z may be expressed as
COBOL- IF X NOT EQUAL TO Z
FORTRAN- IF(X.NE.Z)
C - IF(X<> 2)
Similar differences exist with respect to the form of statement labels, keywords and so on

The notation used to specify certain debugging functions varies according to the
language of the program being debugged. Sometimes the language translator itself has
debugger interface modules that can respond to the request for debugging by the user. The
source code may be displayed by the debugger in the standard form or as specified by the

user or translator.

It is also important that a debugging system be able to deal with optimized code.
Many optimizations like

- Invariant expressions can be removed from loops
- Separate loops can be combined into a single loop
- Redundant expression may be eliminated

- Elimination of unnecessary branch instructions

Leads to rearrangement of segments of code in the program. All these optimizations

create problems for the debugger, and should be handled carefully.
5.2.2 Relationship with Other Parts of the System:

e The important requirement for an interactive debugger is that it always be available.
Must appear as part of the run-time environment and an integral part of the system.

e When an error is discovered, immediate debugging must be possible. The debugger
must communicate and cooperate with other operating system components such as

interactive subsystems.

Dept. of ISE, SIBIT 105

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

5.2.3

Debugging is more important at production time than it is at application-development
time. When an application fails during a production run, work dependent on that
application stops.
The debugger must also exist in a way that is consistent with the security and
integrity components of the system.

The debugger must coordinate its activities with those of existing and future

language compilers and interpreters.

. User-Interface Criteria:

Debugging systems should be simple in its organization and familiar in its language,
closely reflect common user tasks.
The simple organization contribute greatly to ease of training and ease of use.

The user interaction should make use of full-screen displays and windowing-systems

as much as possible.
With menus and full-screen editors, the user has far less information to enter and

remember. There should be complete functional equivalence between commands and

menus — user where unable to use full-screen IDSs may use commands.

The command language should have a clear, logical and simple syntax.

command formats should be as flexible as possible.
Any good IDSs should have an on-line HELP facility. HELP should be accessible

from any state of the debugging session.

RECOMMENDED QUESTIONS:

o ~ w0 e

List out the four tasks to be accomplished by an interactive editor process. (4)
Explain user interface. (6)

With a diagram explain the structure of an editor. (10)

Explain user interface criteria. (6)

Explain debugging functions and its capabilities. (8)

Dept. of ISE, SIBIT 106

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Chapter 6

MACRO PROCESSOR

A Macro represents a commonly used group of statements in the source programming

language.

e A macro instruction (macro) is a notational convenience for the programmer
o It allows the programmer to write shorthand version of a program (module
programming)
e The macro processor replaces each macro instruction with the corresponding group of
source language statements (expanding)
o Normally, it performs no analysis of the text it handles.
o It does not concern the meaning of the involved statements during macro
expansion.
e The design of a macro processor generally is machine independent!
e Two new assembler directives are used in macro definition
o MACRO: identify the beginning of a macro definition
o MEND: identify the end of a macro definition
e Prototype for the macro
o [Each parameter begins with ‘&’

= pame MACRO parameters

body

MEND

o Body: the statements that will be generated as the expansion of the macro.

Dept. of ISE, SIBIT 107

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

6.1. Basic Macro Processor Functions:

e Macro Definition and Expansion

e Macro Processor Algorithms and Data structures

6.1.1Macro Definition and Expansion:

Figure shows the MACRO expansion. The left block shows the MACRO definition
and the right block shows the expanded macro replacing the MACRO call with its block of
executable instruction.

M1 is a macro with two parameters D1 and D2. The MACRO stores the contents of
register A in D1 and the contents of register B in D2. Later M1 is invoked with the
parameters DATAL and DATAZ2, Second time with DATA4 and DATAS3. Every call of
MACRO is expended with the executable statements.

Source Expanded source
M1 MACRO &D1, &D2
STA &D1
sSTB &D2 :
MEND STA DATAA

. STB DATAZ
M1 DATA1, DATAZ

; STA DATA4
M1 DATA4, DATAS3 STB DATA3

Fig 6.1: macro call

The statement M1 DATAIL, DATAZ2 is a macro invocation statements that gives the name of
the macro instruction being invoked and the arguments (M1 and M2) to be used in

expanding. A macro invocation is referred as a Macro Call or Invocation.

Dept. of ISE, SIBIT 108

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Macro Expansion:

The program with macros is supplied to the macro processor. Each macro invocation
statement will be expanded into the statement s that form the body of the macro, with the
arguments from the macro invocation substituted for the parameters in the macro prototype.
During the expansion, the macro definition statements are deleted since they are no longer

needed.

The arguments and the parameters are associated with one another according to their
positions. The first argument in the macro matches with the first parameter in the macro

prototype and so on.

After macro processing the expanded file can become the input for the Assembler.
The Macro Invocation statement is considered as comments and the statement generated
from expansion is treated exactly as though they had been written directly by the

programmer.

he difference between Macros and Subroutines is that the statement s from the body
of the Macro is expanded the number of times the macro invocation is encountered, whereas
the statement of the subroutine appears only once no matter how many times the subroutine

is called. Macro instructions will be written so that the body of the macro contains no labels.

e Problem of the label in the body of macro:
o If the same macro is expanded multiple times at different places in the
program ...
o There will be duplicate labels, which will be treated as errors by the
assembler.
e Solutions:
o Do not use labels in the body of macro.
o Explicitly use PC-relative addressing instead.
e EX, in RDBUFF and WRBUFF macros,
o JEQ *+11
o JLT *-14

e Itisinconvenient and error-prone.

Dept. of ISE, SIBIT 109

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

The following program shows the concept of Macro Invocation and Macro

Expansion.
170 MAIM PROGRAM
175
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
195 LDA LENGTH TEST FOR END OF FILE
200 CoMP #0)
205 JEQ ENDFIL EXIT IF EQOF FOUND
210 WRBUFF 05,BUFFER,LENGTH WRITE OUTPUT RECORD
215] CLOOP LOOP
220 ENDFIL ~ WRBUFF 05,EOF, THREE INSERT EOF MARKER
225] @RETADR
230 EQF BYTE C'EOF
235 THREE WORD 3
240 RETADR RESW 1
245 LEMNGTH RESW 1 LENGTH OF RECORD
250 BUFFER RESB 40986 4096-BYTE BUFFER AREA
255 END FIRST
5 COPY START 0 COPY FILE FROM INPUT TO OUTPUT
180 FIRST STL RETADR SAVE RETURN ADDRESS
190 .CLOOP RDBUFF F1,BUFFER,LENGTH READ RECORD INTO BUFFER
190a CLOOP CLEAR X CLEAR LOOP COUNTER
190b CLEAR A
190¢ CLEAR S
190d +L0T #4096 SET MAXIMUN RECORD LENGTH
190e TD =X"F1~ TEST INPUT DEVICE
190f JEQ 3 LOOP UNTIL READY
190g RD =XF1° TEST FOR END OF RECORD
190h COMPR A, S TEST FOR END OF RECORD
190i JEQ 411 EXIT LOOP IF EOR
1905 STCH BUFFER, X STORE CHARACTER IN BUFFER
190k TIXR T LOOP UNLESS MAXIMUN LENGTH
1901 T *-19 HAS BEEN REACHED
190M STX LENGTH SAVE RECORD LENGTH

Fig 6.2: concept of Macro Invocation and Macro Expansion.

Dept. of ISE, SIBIT

110

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

6.1.2 Macro Processor Algorithm and Data Structure:

Design can be done as two-pass or a one-pass macro. In case of two-pass assembler.

Two-pass macro processor

You may design a two-pass macro processor
o Pass1:
= Process all macro definitions
o Pass2:
= Expand all macro invocation statements
However, one-pass may be enough
o Because all macros would have to be defined during the first pass before any
macro invocations were expanded.
= The definition of a macro must appear before any statements that
invoke that macro.
Moreover, the body of one macro can contain definitions of the other macro
Consider the example of a Macro defining another Macro.
In the example below, the body of the first Macro (MACROS) contains statement that
define RDBUFF, WRBUFF and other macro instructions for SIC machine.
The body of the second Macro (MACROX) defines the se same macros for SIC/XE
machine.
A proper invocation would make the same program to perform macro invocation to
run on either SIC or SIC/XEmachine.

Dept. of ISE, SIBIT 111

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

MACROS for SIC machine

| MACROS MACOR {Defines 5IC standard version macros}
o2 ROBUFF MACRO &INDEV, BBUFADR, BRECLTH

{SIC standard version}

3 MEND {End of RDBUFF}
© 4 WRBUFF MACRO &OUTDEV, &BUFADR,RRECLTH

{SIC standard version}

5 MEND {End of WRBUFF}
B MEND {End of MACROS}
L
Fig 4.3(a)

MACROX for SIC/XE Machine

ol MACROX MACRO {Defines SIC/XE macros}
- 2 ROBUFF MACRO &INDEV, &BUFADR,&RECLTH

{SIC/XE version}

-3 MEND {End of RDBUFF}
-4 WRBUFF MACRO ROUTDEV,&BUFADR,&RECLTH

{SIC/XE version}

.5 MEND {End of WRBUFF}
6 MEND {End of MACROX]}
Fig 4.3(b)

Dept. of ISE, SIBIT 112

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e A program that is to be run on SIC system could invoke MACROS whereas a
program to be run on SIC/XE can invoke MACROX.

e However, defining MACROS or MACROX does not define RDBUFF and WRBUFF.

e These definitions are processed only when an invocation of MACROS or MACROX

IS expanded.

One-Pass Macro Processor:

e A one-pass macro processor that alternate between macro definition and macro

expansion in a recursive way is able to handle recursive macro definition.

e Restriction
o The definition of a macro must appear in the source program before any
statements that invoke that macro.

o This restriction does not create any real inconvenience.

The design considered is for one-pass assembler. The data structures required are:

e DEFTAB (Definition Table)
o Stores the macro definition including macro prototype and macro body
o Comment lines are omitted.
o References to the macro instruction parameters are converted to a positional

notation for efficiency in substituting arguments.

e NAMTAB (Name Table)
o Stores macro names
o Serves as an index to DEFTAB
= Pointers to the beginning and the end of the macro definition (DEFTAB)

Dept. of ISE, SIBIT 113

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e ARGTAB (Argument Table)
o Stores the arguments according to their positions in the argument list.
o As the macro is expanded the arguments from the Argument table are
substituted for the corresponding parameters in the macro body.
o The figure below shows the different data structures described and their

relationship.

LDT #4094

(a)

Fig 6.4: data structures and their relationship.

e The above figure shows the portion of the contents of the table during the processing of the
program in page no. 3. In fig 4.4(a) definition of RDBUFF is stored in DEFTAB, with an
entry in NAMTAB having the pointers to the beginning and the end of the definition. The
arguments referred by the instructions are denoted by the their positional notations. For
example,

TD =X"?1"

e The above instruction is to test the availability of the device whose number is given by the

parameter &INDEV. In the instruction this is replaced by its positional value? 1.

Dept. of ISE, SIBIT 114

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

o Figure 4.4(b) shows the ARTAB as it would appear during expansion of the RDBUFF

statement as given below:

CLOOP RDBUFF F1, BUFFER, LENGTH

e For the invocation of the macro RDBUFF, the first parameter is F1 (input device code),
second is BUFFER (indicating the address where the characters read are stored), and the third
is LENGTH (which indicates total length of the record to be read). When the ?n notation is
encountered in a line fro DEFTAB, a simple indexing operation supplies the proper argument
from ARGTAB.

e The algorithm of the Macro processor is given below. This has the procedure DEFINE to
make the entry of macro name in the NAMTAB, Macro Prototype in DEFTAB. EXPAND is
called to set up the argument values in ARGTAB and expand a Macro Invocation statement.
Procedure GETLINE is called to get the next line to be processed either from the DEFTAB or
from the file itself.

¢ When a macro definition is encountered it is entered in the DEFTAB. The normal approach is
to continue entering till MEND is encountered. If there is a program having a Macro defined
within another Macro.

e While defining in the DEFTAB the very first MEND is taken as the end of the Macro
definition. This does not complete the definition as there is another outer Macro which
completes the definition of Macro as a whole. Therefore the DEFINE procedure keeps a
counter variable LEVEL.

Every time a Macro directive is encountered this counter is incremented by 1. The
moment the innermost Macro ends indicated by the directive MEND it starts decreasing the
value of the counter variable by one. The last MEND should make the counter value set to
zero. So when LEVEL becomes zero, the MEND corresponds to the original MACRO

directive.

Most macro processors allow thr definitions of the commonly used instructions to
appear in a standard system library, rather than in the source program. This makes the use of
macros convenient; definitions are retrieved from the library as they are needed during macro

processing.

Dept. of ISE, SIBIT 115

More notes & papers: www.VTUplanet.com

10CS52

SYSTEM SOFTWARE

Procedure GETLINE
ITEXPANDING then
get the next Line to De processed from DEFTAB

Else
v, read next line from input file
MAIN program
- Iterations of
* GETLINE
« PROCESSLINE ~—* Procedure PROCESSLINE
"+ DEFINE
* EXPAND
* Output source line
o
Procedure EXPAND 4

Set up the argument values in ARGTAB
Expand a macro invocation statement (like in
MAIN procedure)
- Tterations of

* GETLINE

* PROCESSLINE

Fig 6.5: Macro library

Algorithms

begin {macro processor}
EXPANDINF := FALSE
while OPCODE + ‘END” do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

Procedure PROCESSLIMNE
begin
search MAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = ‘MACRO" then
DEFINE
else write source line to expanded file
end {PRCOESSOR}

Procedure DEFINE
Make appropriate entries in
DEFTAB and NAMTAB

116

Dept. of ISE, SIBIT

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :-1
while LEVEL > do
begin
GETLINE
if this is not a comment line then
begin

substitute positional notation for parameters

enter line into DEFTAB

if OPCODE = *MACRO’ then

LEVEL := LEVEL +1
else if OPCODE = ‘MEND" then
LEVEL := LEVEL -1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition
end {DEFINE}

Procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB
set up arguments from macro invocation in ARGTAB
while macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

Procedure GETLINE
begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else
read next line from input file
end {GETLINE}

Dept. of ISE, SIBIT 117

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Comparison of Macro Processor Design

e One-pass algorithm

o Every macro must be defined before it is called

o One-pass processor can alternate between macro definition and macro

expansion

o Nested macro definitions are allowed but nested calls are not allowed.
e Two-pass algorithm

o Passl: Recognize macro definitions

o Pass2: Recognize macro calls

o Nested macro definitions are not allowed

6.2. Machine-independent Macro-Processor Features.

The design of macro processor doesn’t depend on the architecture of the machine. We will be

studying some extended feature for this macro processor. These features are:

e Concatenation of Macro Parameters
e Generation of unique labels
e Conditional Macro Expansion

e Keyword Macro Parameters

6.2.1. Concatenation of unique labels:

e Most macro processor allows parameters to be concatenated with other character
strings. Suppose that a program contains a series of variables named by the symbols
XA1l, XA2, XA3,..., another series of variables named XB1, XB2, XB3,..., etc. If
similar processing is to be performed on each series of labels, the programmer might
put this as a macro instruction.

e The parameter to such a macro instruction could specify the series of variables to be
operated on (A, B, etc.). The macro processor would use this parameter to construct

the symbols required in the macro expansion (XAl, Xbl, etc.).

Dept. of ISE, SIBIT 118

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e Suppose that the parameter to such a macro instruction is named &ID. The body of
the macro definition might contain a statement like
= LDA X&ID1

TOTAL MACRO &ID

LAD X&ID1 LAD XLl
ADD X&1D2 TOTAL A ADD XL2
STA X&ID3 STA XAL3
MEND

& is the starting character of the macro instruction; but the end of the parameter is not
marked. So in the case of &ID1, the macro processor could deduce the meaning that was

intended.

e |If the macro definition contains contain &ID and &ID1 as parameters, the situation
would be unavoidably ambiguous.

e Most of the macro processors deal with this problem by providing a special
concatenation operator. In the SIC macro language, this operator is the character —.
Thus the statement LDA X&ID1 can be written as

LDA X&ID—>

ID122 MACRO &ID
LAD X&ID—1
ADD X&ID—2
STA X&ID—3
MEND

Dept. of ISE, SIBIT 119

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

SUM

LDA
ADD
ADD
STA

XAl
XAZ
XA3
XAS

sSUM MACRO &ID

LDA X&ID— 1
ADD X&ID— 2
ADD X&ID— 3
STA X&ID— S
MEND
SUM
|
LDA
ADD
ADD
STA

BETA

XBEATA1L
XBEATAZ
XBEATAS
XBEATAS

The above figure shows a macro definition that uses the concatenation operator as

previously described. The statement SUM A and SUM BETA shows the invocation

statements and the corresponding macro expansion.

6.2.2. Generation of Unique Labels

e it is not possible to use labels for the instructions in the macro definition, since

every expansion of macro would include the label repeatedly which is not

allowed by the assembler.

e This in turn forces us to use relative addressing in the jump instructions.

Instead we can use the technique of generating unique labels for every macro

invocation and expansion.

e During macro expansion each $ will be replaced with $XX, where xx is a two-

character alphanumeric counter of the number of macro instructions

expansion.

For example,

XX = AA, AB, AC...

Dept. of ISE, SIBIT

120

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

This allows 1296 macro expansions in a single program.

The following program shows the macro definition with labels to the instruction.

25
30
35
40
45
50
55
60
65
70
75
80
90

RDBUFF MACRO

CLEAR X

CLEAR A

CLEAR 5

+LDT #4096

SLOOP TD =X &INDEV’

JEQ $LOOP

RD =X &INDEWV

COMPR AS

JEQ $EXIT

STCH &BUFADR, X

TIXR $LOOP
S$EXIT _ STX &RECLTH

MEMND

&INDEV, &BUFADR, &RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
HAS BEEN REACHED

SAVE RECORD LENGTH

The following figure shows the macro invocation and expansion first time.

30
35
40
45
50
55
60
65
70
75
80
85
90

RDBUFF

CLEAR

CLEAR

CLEAR
+LDT

$AALOOP TD

JEQ
RD
COMPR
JEQ
STCH
TIXR
T

SAAEXIT STX

F1, BUFFER, LENGTH

X
A
s
#4096
=X'F1°
$AALOOP
=X'F1’
A S
SAAEXTT
BUFFER, X
;
$AALOOP
LENGTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH
TEST IMPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UMLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Dept. of ISE, SIBIT

121

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

If the macro is invoked second time the labels may be expanded as $ABLOOP
$SABEXIT.

6.2.3. Conditional Macro Expansion

There are applications of macro processors that are not related to assemblers or assembler

programming.
Conditional assembly depends on parameters provides
MACRO &COND
IF (&COND NE ©’)
part |
ELSE
part 11
ENDIF
ENDM

Part | is expanded if condition part is true, otherwise part Il is expanded. Compare operators:
NE, EQ, LE, GT.

Macro-Time Variables:

Macro-time variables (often called as SET Symbol) can be used to store working
values during the macro expansion. Any symbol that begins with symbol & and not a macro
instruction parameter is considered as macro-time variable. All such variables are initialized

to zero.

Dept. of ISE, SIBIT 122

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

25 RDBUFF MACRO
26 IF (&EOR NE * *)
27 &FORCK SET 1

28 - ENDIF

30 CLEAR X

35 CLEAR A

38 IF (RFORCK EQ 1)
40 Macro-time LDCH =X"®&EOR’

42 variable RMO A, S

43 ENDIF

44 IF (BMAXLTH EQ *)
45 +LDT #4096

46 ELSE

a7 +LDT H#EMAXLTH

48 ENDIF

50 SLOOP D =X‘&INDEV’

55 JEQ SLOOP

60 RD =X'&INDEV’

63 IF (RFORCK EQ 1)
65 COMPR A, S

70 JEQ SEXIT

73 ENDIF

75 STCH &BUFADR, X
80 TIXR T

85 T $LO0P

90 SEXIT STX &RECLTH

95 MEND

&INDEV, &BUFADR, &RECLTH, £FOR._&MAXI TH

CLEAR LOOP COUNTER

SET EOR COUNTER

SET MAX LENGTH = 4096

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE
LOOP UNTIL READY
READ CHARACTER INTI REG A

TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUN LENGTH
HAS BEEM REACHED

SAVE RECORD LENGTH

Figure 4.5(a) gives the definition of the macro RDBUFF with the parameters

&INDEV, &BUFADR, &RECLTH, &EOR, &MAXLTH. According to the above program
if &EOR has any value, then &EORCK is set to 1 by using the directive SET, otherwise it

retains its default value 0.

30
35
40
42
47
50
55
60
65
70
75
80
85
90

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTE IN BUFFER
LOOP UMLESS MAXIMUM LENGTH
HAS BEEN REACHED

RDBUFF F31 BUF, RECL, 04, 2048
CLEAR X
CLEAR A
LDCH =X'04°
RMO A, S
+LDT #2048
$AALOOP TD =X'F3°
JEQ $AALOOP
RD =X'F3’
COMPR A, S
JEQ $AAEXIT
STCH BUF, X
TIXR T
LT $AALOOP
$AAEXIT STX RECL

SAVE RECORD LEMGTH

Fig 6.9(b): Use of Macro-Time Variable with EOF being NOT NULL

Dept. of ISE, SIBIT

123

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

30
35
47
50
55
60
75
80
87
a0

30
33
40
42
43
50
53
60
63
70
73
30
83
90

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER IN REG A
STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

RDBUFF OE, BUFFER, LENGTH, , 80
CLEAR X
CLEAR A
+LDT #80
$ABLOOP TD =X0F"
JEQ $ABLOOP
RD =X0F’
STCH BUFFER, X
TIXR T
LT $ABLOOP
SABEXIT STX LENGTH

SAVE RECORD LENGTH

Fig 6.9(c) Use of Macro-Time conditional statement with EOF being NULL

RDBUFF F1. BUFF, ELENG, 04
CLEAR X
CLEAR A
LDCH =X'04"
RMO AS
+LDT #4096
$ACLOOP TD =XF1°
JEQ $ACLOOP
RD =XF1°
COMPR AS
JEQ $ACEXIT
STCH BUFF X
TIXR T
T $ACLOOP
SACEXIT STX RLENG

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUM LENGTH
HAS LOOP REACHED

SAVE RECORD LENGTH

Fig 6.9(d) Use of Time-variable with EOF NOT NULL and MAXLENGTH being NULL

Dept. of ISE, SIBIT

124

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The above programs show the expansion of Macro invocation statements with different
values for the time variables. In figure 4.9(b) the &EOF value is NULL. When the macro
invocation is done, IF statement is executed, if it is true EORCK is set to 1, otherwise normal

execution of the other part of the program is continued.

The macro processor must maintain a symbol table that contains the value of all
macro-time variables used. Entries in this table are modified when SET statements are
processed. The table is used to look up the current value of the macro-time variable whenever

it is required.

When an IF statement is encountered during the expansion of a macro, the specified

Boolean expression is evaluated.
If the value of this expression TRUE,

e The macro processor continues to process lines from the DEFTAB until it encounters
the ELSE or ENDIF statement.
e If an ELSE is found, macro processor skips lines in DEFTAB until the next ENDIF.

e Once it reaches ENDIF, it resumes expanding the macro in the usual way.

If the value of the expression is FALSE,

e The macro processor skips ahead in DEFTAB until it encounters next ELSE or
ENDIF statement.

e The macro processor then resumes normal macro expansion.
The macro-time IF-ELSE-ENDIF structure provides a mechanism for either generating(once)
or skipping selected statements in the macro body. There is another construct WHILE
statement which specifies that the following line until the next ENDW statement, are to be
generated repeatedly as long as a particular condition is true. The testing of this condition,
and the looping are done during the macro is under expansion. The example shown below

shows the usage of Macro-Time Looping statement.

Dept. of ISE, SIBIT 125

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

WHILE-ENDW structure

25
27
30
35
45
50
55
60
63
64
65
70
71
73
75
80
85
a0
100

When an WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

TRUE

o The macro processor continues to process lines from DEFTAB until it

encounters the next ENDW statement.

o When ENDW is encountered, the macro processor returns to the preceding

WHILE, re-evaluates the Boolean expression, and takes action based on

the new value.

FALSE

o The macro processor skips ahead in DEFTAB until it finds the next ENDW

statement and then resumes normal macro expansion.

RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &FOR
&EORCT SET 9%NITEMS (&EOR) +— — — Macro processor function
CLEAR X CLEAR LOOP COUNTER
CLEAR A
+LDT #4096 SET MAX LENGTH = 4096
$LOOP TD =X"&INDEV" TEST INPUT DEVICE
JEQ $LOOP LOOP UNTIL READY
RD =X"&INDEV’ READ CHARACTER INTO REG A
&CTR SET 1
WHILE (&CTR LE &EORCT)
COMPR =X0000&EOR[&CTR] «+—— List index
JEQ $EXIT
&CTR SET &CTR+1
ENDW
STCH &BUFADR, X STORE CHARACTER TN BUFFER
TIXR T LOOP UNLESS MAXIMUM LENGTH
T $LOOP HAS BEEN REACHED
SEXIT STX &RECLTH SAVE RECORTD LENGTH
MEND

Dept. of ISE, SIBIT

126

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

30
35
45
50
55
60
65
70
65
70
65
70
75
80
85
a0

RDBUFF

CLEAR

CLEAR
+LDT

$AALOOP TD
JEQ
RD
COMP
JEQ
COMP
JEQ
COMP
JEQ
STCH
TIXR
LT

SAAEXIT STX

F2, BUFFER, LENGTH, (00, 03, 04)

X
A
#4096
=X'F2°
$AALOOP
=X’F2’
=X"000000°
SAAEXIT
=X"000003"
SAAEXIT
=X"000004
SAAEXIT
BUFFER, X
T
$AALOOP
LENGTH

6.2.4 Keyword Macro Parameters

Ex:

-

List
CLEAR LOOP COUNTER

SET MAX LENGTH = 4096
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

e All the macro instruction definitions used positional parameters. Parameters

and arguments are matched according to their positions in the macro prototype

and the macro invocation statement.

e The programmer needs to be careful while specifying the arguments. If an

argument is to be omitted the macro invocation statement must contain a null

argument mentioned with two commas.

e Positional parameters are suitable for the macro invocation. But if the macro

invocation has large number of parameters, and if only few of the values need

to be used in a typical invocation, a different type of parameter specification is

required

XXX MACRO &P1, &P2,, &P20,

XXX Al’ A29’9’9’9’9" o

,A20,.....

Null arguments

Dept. of ISE, SIBIT

127

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE

10CS52

Keyword parameters

25
26
27
23
30
35
38
40
42
43
47
50
55
60
63
65
70
73
75
80
85
a0
a5

30
35
40
42
47
50
55
B0
65
70
75
80
85
an

Each argument value is written with a keyword that names the corresponding

parameter.

Arguments may appear in any order.
Null arguments no longer need to be used.
Ex: XXX P1=Al, P2=A2, P20=A20.

It is easier to read and much less error-prone than the positional method.

RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04, &MAXLTH=4096

F (&EOR NE * *)
&EORCK SET 1

ENDIF

CLEAR X

CLEAR A

F (&EORCK EQ 1)

LDCH =X'&EOR’

RMO A S

ENDIF

+LDT #MAXLTH

$LOOP ™ =X"&INDEV"

JEQ $LO0OP

RD =X'&INDEV"

F (&EORCK EQ 1)

COMPR A, S

JEQ $EXTT

ENDIF

STCH $BUFADR, X

TIXR T

T $Lo0OP
SEXIT STX &RECLTH

MEND

RDBUFF

Parameters with default value
CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LENGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A

TEST FOR END OF RECORD
EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

BUFADR=BUFFER, RECLTH-LENGTH

CLEAR
CLEAR
LDCH
RMO
+LDT
$AALOOP TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
LT
$AMEXUT STX

X
A
=X'04
A, S
#4096
=X"F1-
$AALOOP
=XF1’
A, S
$AAEXIT
BUFFER, X
T
$AALOOP
LENGTH

CLEAR LOOP COUMNTER

SET EOR CHARACTER

SET MAXIMUM RECORD LEMNGTH
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTI REG A
TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER
LOOP UMLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Dept. of ISE, SIBIT

128

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
1 . RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3
30 CLEAR * CLEAR LOOP COUNTER
35 CLEAR A
47 +LDT #4096 SET MAXIMUM RECORD LENGTH
50 $ABLOOP TD =X"F3 TEST INPUT DEVICE
55 JEQ $ABLOOP LOOP UNTIL READY
60 RD =X'F3 READ CHARACTER INTO REG A
75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 LT $ABLOOP HAS BEEN REACHED
90 SABEXIT STX LENGTH SAVE RECORD LENGTH

Fig 6.10 Example showing the usage of Keyword Parameter

6.3 Macro Processor Design Options

6.3.1 Recursive Macro Expansion

We have seen an example of the definition of one macro instruction by another. But we have
not dealt with the invocation of one macro by another. The following example shows the

invocation of one macro by another macro.

Dept. of ISE, SIBIT 129

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

10
15
20
23
30
35
40
45
50
63
70
75
80
85
90
95

5

10
15
20
25
30
35
40

RDBUFF

$LOOP

$EXIT

RDCHAR

MACRO BBUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER.

CLEAR X CLEAR LOOP COUNTER
CLEAR. A
CLEAR 5

+LDT #4096 SET MAXIMUN RECORD LENGTH
RDCHAR. &INDEV READ CHARACTER INTO REG A
COMPR A5 TEST FOR END OF RECORD
JEQ SEXIT EXIT LOOP IF EOR
S5TCH BBUFADR, X STORE CHARACTER IN BUFFER
TIXR T LOOP UNLESS MAXIMUN LENGTH
LT $LOOP HAS BEEN REACHED
5TX BRECLTH SAVE RECORD LENGTH
MEND

MACRO &IN

MACROTO READ CHARACTER INTO REGISTER A

™D =X"&IN TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X"&IN’ READ CHARACTER
MEND

Problem of Recursive Expansion

Previous macro processor design cannot handle such kind of recursive macro
invocation and expansion

o The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten.

o The Boolean variable EXPANDING would be set to FALSE when the “inner”

macro expansion is finished, i.e., the macro process would forget that it had

been in the middle of expanding an “outer” macro.

Dept. of ISE, SIBIT

130

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e Solutions
o Write the macro processor in a programming language that allows recursive
calls, thus local variables will be retained.
o If you are writing in a language without recursion support, use a stack to take

care of pushing and popping local variables and return addresses.

The procedure EXPAND would be called when the macro was recognized. The arguments

from the macro invocation would be entered into ARGTAB as follows:

Parameter Value
1 BUFFER
2 LENGTH
3 F1
4 (unused)

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro
invocation statement would begin. The processing would proceed normally until statement
invoking RDCHAR is processed. This time, ARGTAB would look like

Value
Parameter
1 F1
2 (Unused)

At the expansion, when the end of RDCHAR s recognized, EXPANDING would be
set to FALSE. Thus the macro processor would ‘forget’ that it had been in the middle of
expanding a macro when it encountered the RDCHAR statement. In addition, the arguments
from the original macro invocation (RDBUFF) would be lost because the value in ARGTAB

was overwritten with the arguments from the invocation of RDCHAR.

Dept. of ISE, SIBIT 131

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

6.3.2 General-Purpose Macro Processors

e Macro processors that do not dependent on any particular programming language, but
can be used with a variety of different languages
e Pros

o Programmers do not need to learn many macro languages.

o Although its development costs are somewhat greater than those for a
language specific macro processor, this expense does not need to be repeated
for each language, thus save substantial overall cost.

e Cons
o Large number of details must be dealt with in a real programming language
= Situations in which normal macro parameter substitution should not
occur, e.g., comments.
= Facilities for grouping together terms, expressions, or statements
= Tokens, e.g., identifiers, constants, operators, keywords
= Syntax had better be consistent with the source programming language

6.3.3Macro Processing within Language Translators

o The macro processors we discussed are called “Preprocessors”.
o Process macro definitions
o Expand macro invocations
o Produce an expanded version of the source program, which is then used as input
to an assembler or compiler
e You may also combine the macro processing functions with the language translator:
o Line-by-line macro processor

o Integrated macro processor

Dept. of ISE, SIBIT 132

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

6.4 Line-by-Line Macro Processor
o Used as a sort of input routine for the assembler or compiler
o Read source program
o Process macro definitions and expand macro invocations
o Pass output lines to the assembler or compiler
o Benefits
o Avoid making an extra pass over the source program.
o Data structures required by the macro processor and the language translator can
be combined (e.g., OPTAB and NAMTAB)
o Utility subroutines can be used by both macro processor and the language
translator.
= Scanning input lines
= Searching tables
= Data format conversion

o Itis easier to give diagnostic messages related to the source statements

Integrated Macro Processor
e An integrated macro processor can potentially make use of any information about the
source program that is extracted by the language translator.
o Ex (blanks are not significant in FORTRAN)
= DO1001=1,20
e a DO statement
= DO1001=1
e An assignment statement
e DO100I: variable (blanks are not significant in FORTRAN)
e An integrated macro processor can support macro instructions that depend upon the
context in which they occur.

Dept. of ISE, SIBIT 133

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

RECOMMENDED QUESTIONS:
1.explain the data structures of macroprocessors?(8)
2.Explain the following (6)
a. NAMTAB
b. DEFTAB
c. ARGTAB
3. Write the algorithm for a one pass macro processor. (8)
4.Explain the following 8)
a. Conditional macro expansion
b.Concatenation of macro parameters
c.Keyword macro parameters

d.Generation of unique labels.

5.Explain Recursive Macro Expansion. @)
6.Explain general purpose macro processors. (6)
7.Explain the following 8)

a. MASM macro processor

b. ANSI C macro processor

Dept. of ISE, SIBIT 134

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
Unit 7

LEX AND YACC-1

Lex is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem oriented specification for character string matching, and
produces a program in a general purpose language which recognizes regular expressions.The

regular expressions are specified by the user in the source specifications given to Lex.
7.1 Lex and Yacc

The Lex written code recognizes these expressions in an input stream and partitions the
input stream into strings matching the expressions. At the boundaries between strings
program sections provided by the user are executed. The Lex source file associates the
regular expressions and the program fragments. As each expression appears in the input to

the program written by Lex, the corresponding fragment is executed.

Lex turns the user's expressions and actions (called source in this memo) into the host
general-purpose language; the generated program is named yylex. The yylex program will
recognize expressions in a stream (called input in this memo) and perform the specified

actions for each expression as it is detected. See Figure 1.

Dept. of ISE, SIBIT 135

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

7.2 AYACC Parser

The structure of a lex file is intentionally similar to that of a yacc file; files are divided up

into three sections, separated by lines that contain only two percent signs, as follows:

Definition section
%%

Rules section
%%

C code section

« The definition section is the place to define macros and to import header files written
in C. It is also possible to write any C code here, which will be copied verbatim into
the generated source file.

e The rules section is the most important section; it associates patterns with C
statements. Patterns are simply regular expressions. When the lexer sees some text in
the input matching a given pattern, it executes the associated C code. This is the basis
of how lex operates.

e The C code section contains C statements and functions that are copied verbatim to
the generated source file. These statements presumably contain code called by the
rules in the rules section. In large programs it is more convenient to place this code in

a separate file and link it in at compile time.
Example:
[*** Definition section ***/
%{
/* C code to be copied verbatim */
#include <stdio.h>

%}

/* This tells lex to read only one input file */

Dept. of ISE, SIBIT 136

http://en.wikipedia.org/wiki/C_(programming_language)

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%%

[*** Rules section ***/

/* [0-9]+ matches a string of one or more digits */
[0-9]+ {
[* yytext is a string containing the matched text. */
printf("Saw an integer: %s\n", yytext);

}
{ /*Ignore all other characters. */ }

%%

[*** C Code section ***/

int main(void)

{
/* Call the lexer, then quit. */

yylex();
return O;

REGULAR EXPRESSIONS:

Regular expression specifies a set of strings to be matched. It contains text characters and
operator characters The letters of the alphabet and the digits are always text characters; thus
the regular expression integer matches the string integer wherever it appears and the

expression

a57D
looks for the string a57D.

Operators:

The operator characters are

N[22+ (08 {3 % <>

Dept. of ISE, SIBIT 137

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as

text characters.
Thus

XyZ"++"

matches the string xyz++ when it appears.

¢ Note that a part of a string may be quoted. It is harmless but unnecessary to quote an
ordinary text character; the expression
"Xyz++"
is the same as the one above. Thus by quoting every non-alphanumeric character being used
as a text character, the user can avoid remembering the list above of current operator

characters, and is safe should further extensions to Lex lengthen the list.

e An operator character may also be turned into a text character by preceding it with

\asin

Xyz\+\+

which is another, less readable, equivalent of the above expressions.

Another use of the quoting mechanism is to get a blank into an expression; blanks or tabs end

a rule. Any blank character not contained within [Jmust be quoted.

e Several normal C escapes with \ are recognized: \n is newline, \t is tab, and \b is
backspace. To enter \ itself, use \\. Since newline is illegal in an expression, \n must
be used; it is not required to escape tab and backspace. Every character but blank,
tab, newline and the list above is always a text character.

e Character classes. Classes of characters can be specified using the operator pair [].
The construction [abc] matches a single character, which may be a, b, or c. Within

Dept. of ISE, SIBIT 138

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

square brackets, most operator meanings are ignored. Only three characters are

special: these are \ - and . The - character indicates ranges.

For example:

[a-z0-9<>_]indicates the character class containing all the lower case letters, the digits, the

angle brackets, and underline. Ranges may be given in either order.

e Using - between any pair of characters which are not both upper case letters, both
lower case letters, or both digits is implementation dependent and will get a warning
message. If it is desired to include the character - in a character class, it should be first

or last; thus

[-+0-9]

matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer
character set. Thus, [“abc] matches all characters except a, b, or c, including all special

or control characters
or [Ma-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes within

character class brackets.

e Optional expressions.: The operator ? indicates an optional element of an expression.

Thus ab?c

matches either ac or abc.

e Repeated expressions: Repetitions of classes are indicated by the operators * and +.

Ex: a*

Dept. of ISE, SIBIT 139

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

is any number of consecutive a characters, including zero, while a+ is one or more instances

of a.
For example [a-z]+
is all strings of lower case letters.

Defining reqular expressions in Lex :

Character Meaning

A-Z,0-9, a-z Characters and numbers that form part of the pattern.

Matches any character except \n.

- Used to denote range. Example: A-Z implies all characters from A to Z.

[1 A character class. Matches any character in the brackets. If the first
character is ” then it indicates a negation pattern. Example: [abC]
matches either of a, b, and C.

* Match zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

$ Matches end of line as the last character of the pattern.

{} Indicates how many times a pattern can be present. Example: A{1,3}

implies one or three occurrences of A may be present.

\ Used to escape meta characters. Also used to remove the special meaning

of characters as defined in this table.

n Negation.

Logical OR between expressions.

Dept. of ISE, SIBIT 140

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52

""<some symbols>"* Literal meanings of characters. Meta characters hold.

/ Look ahead. Matches the preceding pattern only if followed by the
succeeding expression. Example: A0/1 matches AO only if AO1 is the
input.

() Groups a series of regular expressions.

Examples of regular expressions:

Regular expression Meaning

joke[rs] Matches either jokes or joker.

A{1,2}shis+ Matches AAshis, Ashis, AAshi, Ashi.

(A[b-e]+ Matches zero or one occurrences of A followed by any character from
btoe.

Tokens in Lex are declared like variable names in C. Every token has an associated expression.
(Examples of tokens and expression are given in the following table.) Using the examples in our

tables, we'll build a word-counting program. Our first task will be to show how tokens are declared.

Examples of token declarations

Token Associated expression Meaning

number ([0-9)+ 1 or more occurrences of a digit
chars [A-Za-Z] Any character

blank " A blank space

word (chars)+ 1 or more occurrences of chars
variable (chars)+(number)*(chars)*(number)*

Dept. of ISE, SIBIT 141

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

7.3. USING LEX:

If lex.l is the file containing the lex specification, the C source for the lexical analyzer is

produced by running lex with the following command:

lex lex.l
lex produces a C file called lex.yy.c.
Options

There are several options available with the lex command. If you use one or more of them,

place them between the command name lex and the filename argument.
The -t option sends lex's output to the standard output rather than to the file lex.yy.c.

The -v option prints out a small set of statistics describing the so-called finite automata that

lex produces with the C program lex.yy.c.
WORD COUNTING PROGRAM

In this section we can add C variable declarations. We will declare an integer variable here
for our word-counting program that holds the number of words counted by the program.

We'll also perform token declarations of Lex.

Declarations for the word-counting program

%{

int wordCount = 0;
%}

chars [A-za-z\ \\.\"]
numbers ([0-9])+
delim ["\n\t]
whitespace {delim}+
words {chars}+

%%

Dept. of ISE, SIBIT 142

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

The double percent sign implies the end of this section and the beginning of the second of the

three sections in Lex programming.

Lex rules for matching patterns
Let's look at the Lex rules for describing the token that we want to match. (We'll use C to
define what to do when a token is matched.) Continuing with our word-counting program,

here are the rules for matching tokens.

Lex rules for the word-counting program

{words} { wordCount++; /*

increase the word count by one*/ }
{whitespace} { /* do

nothing™/ }

{numbers} { /* one may

want to add some processing here*/ }
%%

C code
The third and final section of programming in Lex covers C function declarations (and
occasionally the main function) Note that this section has to include the yywrap() function.
Lex has a set of functions and variables that are available to the user. One of them is yywrap.

Typically, yywrap() is defined as shown in the example below.

C code section for the word-counting program

void main()

{
yylex(); /* start the analysis*/
printf(* No of words:
%d\n", wordCount);

}

int yywrap()

{

return 1;

¥

Dept. of ISE, SIBIT 143

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

LEXER

lexical analysis is the process of converting a sequence of characters into a sequence of
tokens. A program or function which performs lexical analysis is called a lexical analyzer,
lexer or scanner. A lexer often exists as a single function which is called by a parser or

another function
Token

A token is a string of characters, categorized according to the rules as a symbol (e.g.
IDENTIFIER, NUMBER, COMMA, etc.). The process of forming tokens from an input
stream of characters is called tokenization and the lexer categorizes them according to a
symbol type. A token can look like anything that is useful for processing an input text stream

or text file.

A lexical analyzer generally does nothing with combinations of tokens, a task left for a parser.
For example, a typical lexical analyzer recognizes parenthesis as tokens, but does nothing to

ensure that each '(" is matched with a)",

Consider this expression in the C programming language:
sum=3+2;

Tokenized in the following table:

lexeme token type

sum Identifier

= Assignment operator

3 Number
+ Addition operator
2 Number

Dept. of ISE, SIBIT 144

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

; End of statement

Tokens are frequently defined by regular expressions, which are understood by a lexical
analyzer generator such as lex. The lexical analyzer (either generated automatically by a tool
like lex, or hand-crafted) reads in a stream of characters, identifies the lexemes in the stream,
and categorizes them into tokens. This is called "tokenizing." If the lexer finds an invalid

token, it will report an error.

Following tokenizing is parsing. From there, the interpreted data may be loaded into data

structures for general use, interpretation, or compiling.

Examples:

1. Write a Lex source program to copy an input file while adding 3 to every positive number

divisible by 7.
%%
intk;
[0-9]+ {

k = atoi(yytext);
if (k%7 ==0)
printf("%d", k+3);
else
printf("%d" k);
¥

to do just that. The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and
stores the result in k. The operator % (remainder) is used to check whether k is divisible by 7; if it is,
it is incremented by 3 as it is written out. It may be objected that this program will alter such input
items as 49.63 or X7. Furthermore, it increments the absolute value of all negative numbers divisible

by 7. To avoid this, just add a few more rules after the active one, as here:

Dept. of ISE, SIBIT 145

http://en.wikipedia.org/wiki/Lex_programming_tool

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
%%
intk;
-?[0-9]+ {

k = atoi(yytext);
printf("%d",

k%7 ==0? k+3 : k);

-?2[0-9.]+ ECHO;
[A-Za-z][A-Za-z0-9]+ ECHO;

wn

Numerical strings containing a ““." or preceded by a letter will be picked up by one of the last
two rules, and not changed. The if-else has been replaced by a C conditional expression to save

space; the form a?b:c means “if a then b else ¢".

2. Write a Lex program that histograms the lengths of words, where a word is defined as a

string of letters.

int lengs[100];
%%
[a-z]+ lengs[yyleng]++;
|
\n :
%%
yywrap()
{
inti;

printf("Length No. words\n");

Dept. of ISE, SIBIT 146

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

for(i=0; i<100; i++)
if (Ilengs[i] > 0)
printf("%5d%10d\n",i,lengs]i]);
return(l);
}

3.. Write a lex program to find the number of vowels and consonants.
%{

/* to find vowels and consonents*/

int vowels = 0;

int consonents = 0;

%}

%%

[\t\n]+

[aeioUAEIOU] vowels++;
[bedfghjklmnpgrstvwxyzBCDFGHIKLMNPQRSTVWXY Z] consonents++;

%%
main()
{

yylex();
printf("* The number of vowels = %d\n", vowels);

printf(" number of consonents = %d \n", consonents);

return(0);
}

The same program can be executed by giving alternative grammar. It is as follows:
Here a file is opened which is given as a argument and reads to text and counts the number of

vowels and consonants.

Dept. of ISE, SIBIT 147

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%{

unsigned int vowelcount=0;

unsigned int consocount=0;

%}

vowel [aeiouAEIOU]

consonant [bcdfghjklmnpgrstvwxyzBCDFGHIKLMNPQRSTVWXY Z]
eol \n

%%

{vowel} { vowelcount++;}

{consonant} { consocount++; }

%%
main(int argc,char *argv[])
{
if(argc > 1)
{

FILE *fp;
fp=fopen(argv[1],"r");
if(1fp)

{
fprintf(stderr,"could not open %s\n",argv[1]);
exit(1);

}
yyin=fp;

}

yylex();
printf(" vowelcount=%u consonantcount=%u\n ",vowelcount,consocount);
return(0);

¥

Dept. of ISE, SIBIT 148

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

4. Write a Lex program to count the number of words, characters, blanks and lines in a

given text.

%{
unsigned int charcount=0;
int wordcount=0;
int linecount=0;
int blankcount =0;
%}
word[" \t\n]+
eol \n
%%
[] blankcount++;
{word} { wordcount++; charcount+=yyleng;}
{eol} {charcount++; linecount++;}
. { ECHO; charcount++;}
%%
main(argc, argv)
int argc;
char **argv;
{
if(argc > 1)
{
FILE *file;
file = fopen(argv[1],"r");
if(!file)
{
fprintf(stderr, "could not open %s\n", argv[1]);
exit(1);
}
yyin = file;

Dept. of ISE, SIBIT 149

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

yylex();
printf(*\nThe number of characters = %u\n", charcount);
printf("The number of wordcount = %u\n", wordcount);
printf("The number of linecount = %u\n", linecount);
printf(*"The number of blankcount = %u\n", blankcount);
return(0);

}
else

printf("" Enter the file name along with the program \n");

}

5. Write a lex program to find the number of positive integer, neqative integer, positive

floating positive number and neqgative floating point number.

%{
int posnum = 0;
int negnum = 0;
int posflo = 0;
int negflo = 0;
%}
%%
[\n\t];

([0-9]+) {posnum-++;}
-?([0-9]+) {negnum++; }

([0-91*\.[0-9]+) { posflo++;}
-?([0-9]*\.[0-9]+) { negflo++; }
. ECHO;
%%
main()
{

yylex();

Dept. of ISE, SIBIT 150

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

printf(""Number of positive numbers = %d\n", posnum);
printf("number of negative numbers = %d\n", negnum);
printf("number of floting positive number = %d\n", posflo);
printf("number of floating negative number = %d\n", negflo);

6. Write a lex program to find the given ¢ program has right number of brackets. Count

the number of comments. Check for while loop.

%{
/* find main, comments, {, (,), } */
int comments=0;
int opbr=0;
int clbr=0;
int opfl=0;
int clfl=0;
int j=0;
int k=0;
%}
%%
"main()" j=1,
"IN M/ comments+
"while("[0-9a-zA-Z]*")"[\]*\n"{"[\t]*.*"}" k=1;
AL *\n
AT k=1,
"(" opbr++;
") clbr++;
“{" opfl++;

"} clfl++;

Dept. of ISE, SIBIT 151

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

[~ \t\n]+

. ECHO;

%%

main(argc, argv)

int argc;

char *argv([];

{

if (argc > 1)

{

FILE *file;
file = fopen(argv[1], "r");
if (!file)

printf(“error opeing a file \n");

exit(1);
}
yyin = file;
}
yylex();
if(opbr != clbr)
printf("open brackets is not equal to close brackets\n™);
if(opfl 1= clfl)
printf("open flower brackets is not equal to close flower brackets\n");

printf(" the number of comments = %d\n",comments);
if (1))

printf(“there is no main function \n");
if (k)
printf(“there is loop\n™);
else printf(“there is no valid for loop\n");
return(0);

¥

Dept. of ISE, SIBIT 152

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

6. Write a lex program to replace scanf with READ and printf with WRITE statement

also find the number of scanf and printf.

%{
int pc=0,sc=0;
%}
%%
printf fprintf(yyout,"WRITE");pc++;
scanf fprintf(yyout,”"READ");sc++;
. ECHO;
%%
main(int argc,char* argv[])
{
if(argc!=3)
{
printf("\nUsage: %s <src><dest>\n",argv[0]);
return;
}
yyin=fopen(argv[1],"r");
yyout=fopen(argv[2],"w");
yylex()

printf(*\nno. of printfs:%d\nno. of scanfs:%d\n",pc,sc);

¥

7. Write a lex program to find whether the given expression is valid.

%{
#include <stdio.h>
int valid=0,ctr=0,0c = 0;
%}
NUM [0-9]+

Dept. of ISE, SIBIT 153

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

OP [+*/]
%%
{NUM}({OPHNUM})+{
valid = 1;
for(ctr = O;yytext[ctr];ctr++)
{
switch(yytext[ctr])
{
case '+
case '-"
case ™"

case '/': oc++;

¥
{NUMHn {printf("\nOnly a number.");}

\n { if(valid) printf("valid \n operatorcount = %d",oc);
else printf("Invalid™);
valid = oc = 0;ctr=0;
}
%%
main()
{
yylex();
}

I* Another solution for the same problem */

%{
int oprc=0,digc=0,top=-1,flag=0;
char stack[20];

Dept. of ISE, SIBIT 154

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%}

digit [0-9]+

opr [+*/-]

%%

[\n\t]+

['(1 {stack[++top]="(";}

[)71 {flag=1;

if(stack[top]=="('&&(top!=-1))
top--;

else

printf("\n Invalid expression\n™);
exit(0);
}
¥
{digit} {digc++;}
{opr}['(] { oprc++; printf("%s",yytext);}
{opr}/{digit} {oprc++; printf("%s",yytext);}
{printf("Invalid "); exit(0);}
%%
main()
{
yylex();
if((digc==oprc+1||digc==oprc) && top==-1)
{
printf(""VALID");
printf("\n oprc=%d\n digc=%d\n",oprc,digc);
}
else
printf("INVALID");

¥

Dept. of ISE, SIBIT 155

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

8.Write a lex program to find the given sentence is simple or compound.

%{
int flag=0;
%}
%%
(" "[aAI[NN][dD]")I(" "[oO1[rRT")I(* “[bB][UU][LT]" *) flag=1;
%%
main()
{yylex();
if (flag==1)
printf("COMPOUND SENTENCE \n");
else
printf("SIMPLE SENTENCE \n");

9. Write a lex program to find the number of valid identifiers.

%{

int count=0;

%}

%%

(" int ")|(" float ™)|("" double ™)|(" char ™)

{
int ch; ch = input();
for(;;)

{
if (ch=="") {count++;}
else

Dept. of ISE, SIBIT 156

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

if(ch=="") {break;}

ch = input();

¥
count++;
}
%%
main(int argc,char *argv[])
{
yyin=fopen(argv[1],"r");
yylex();
printf("the no of identifiers used is %d\n",count);
}

RECOMMENDED QUESTIONS:

write the specification of lex with an example? (10)

what is regular expressions? With examples explain? (8)

write a lex program to count the no of words , lines , space, characters? (8)
write a lex program to count the no of vowels and consonants? (8)

what is lexer- parser communication? Explain? (5)

© o k~ w N e

write a program to count no of words by the method of substitution? (7)

Dept. of ISE, SIBIT 157

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

UNIT -8
LEX AND YACC -2

8.1 USING YACC

Yacc provides a general tool for describing the input to a computer program. The Yacc user
specifies the structures of his input, together with code to be invoked as each such structure is
recognized. Yacc turns such a specification into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of the flow of control in the user's

application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next
basic input item. Thus, the user can specify his input in terms of individual input characters
or in terms of higher level constructs such as names and numbers. The user supplied routine
may also handle idiomatic features such as comment and continuation conventions, which

typically defy easy grammatical specification. Yacc is written in portable C.

Yacc provides a general tool for imposing structure on the input to a computer
program. User prepares a specification of the input process; this includes rules describing the
input structure, code to be invoked when these rules are recognized, and a low-level routine

to do the basic input.
Grammars:

The heart of the input specification is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. For example, one grammar rule might
be

date : month_name day ',' year

Here, date, month_name, day, and year represent structures of interest in the input
process; presumably, month_name, day, and year are defined elsewhere. The comma " is

Dept. of ISE, SIBIT 158

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

enclosed in single quotes; this implies that the comma is to appear literally in the input. The
colon and semicolon merely serve as punctuation in the rule, and have no significance in

controlling the input. Thus, with proper definitions, the input
July 4, 1776
might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This
user routine reads the input stream, recognizing the lower level structures, and communicates
these tokens to the parser. For historical reasons, a structure recognized by the lexical
analyzer is called a terminal symbol, while the structure recognized by the parser is called a
nonterminal symbol. To avoid confusion, terminal symbols will usually be referred to as

tokens.
Basic Specifications:

Every specification file consists of three sections: the declarations, (grammar) rules,
and programs. The sections are separated by double percent ~%%" marks. (The percent
%" is generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like
declarations
%%
rules
%%

programs

The declaration section may be empty. Moreover, if the programs section is omitted, the
second %% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
Dept. of ISE, SIBIT 159

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or
multi-character reserved symbols. Comments may appear wherever a name is legal; they are

enclosed in/*...*/,asin Cand PL/I.
The rules section is made up of one or more grammar rules.
A grammar rule has the form:

A:BODY,;

A represents a non terminal name, and BODY represents a sequence of zero or more
names and literals. The colon and the semicolon are Yacc punctuation. Names may be of
arbitrary length, and may be made up of letters, dot ~.", underscore " ", and non-initial
digits. Upper and lower case letters are distinct. The names used in the body of a grammar

rule may represent tokens or nonterminal symbols.

8.2 AYACC PARSER

A literal consists of a character enclosed in single quotes ~™™. As in C, the backslash ""\" is

an escape character within literals, and all the C escapes are recognized. Thus
\n" newline
\r' return
\"" single quote "'
\\' backslash \"
\t' tab
\b' backspace

\f' form feed

"xx' Txxx" in octal

Dept. of ISE, SIBIT 160

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

For a number of technical reasons, the NUL character (\O' or 0) should never be used in

grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar ~|"
can be used to avoid rewriting the left hand side. In addition, the semicolon at the end of a

rule can be dropped before a vertical bar. Thus the grammar rules

A : BCD ;
A EF ;
A G ;

can be given to Yacc as
A : BCD
| EF

| G

e Itis not necessary that all grammar rules with the same left side appear together in
the grammar rules section, although it makes the input much more readable, and
easier to change.

e If a nonterminal symbol matches the empty string, this can be indicated in the
obvious way:

e empty: ;

e Names representing tokens must be declared,; this is most simply done by writing

e Optoken namel, name?2...

In the declarations section, Every name not defined in the declarations section is
assumed to represent a non-terminal symbol. Every non-terminal symbol must appear on

the left side of at least one rule.

Dept. of ISE, SIBIT 161

More

notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52

Of all the nonterminal symbols, one, called the start symbol, has particular
importance. The parser is designed to recognize the start symbol; thus, this symbol
represents the largest, most general structure described by the grammar rules. By
default, the start symbol is taken to be the left hand side of the first grammar rule in
the rules section.

It is possible, and in fact desirable, to declare the start symbol explicitly in the
declarations section using the % start keyword:

%start symbol

The end of the input to the parser is signaled by a special token, called the endmarker.
If the tokens up to, but not including, the endmarker form a structure which matches
the start symbol, the parser function returns to its caller after the end-marker is seen;
it accepts the input. If the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when
appropriate; see section 3, below. Usually the endmarker represents some reasonably

obvious 1/O status, such as ““end-of-file" or ““end-of-record".

Actions:

A

With each grammar rule, the user may associate actions to be Yacc: Yet Another

Compiler-Compiler performed each time the rule is recognized in the input process.

These actions may return values, and may obtain the values returned by previous
actions. Moreover, the lexical analyzer can return values for tokens, if desired.

An action is an arbitrary C statement, and as such can do input and output, call
subprograms, and alter external vectors and variables. An action is specified by one

or more statements, enclosed in curly braces “{" and "}". For example,

‘¢ B)

{ hello(1, "abc™); }

Dept. of ISE, SIBIT 162

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

and
XXX 1 YYY ZZ27
{ printf(*a message\n"’);
flag = 25; }
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action
statements are altered slightly. The symbol “dollar sign" “~"$" is used as a signal to Yacc in

this context.

To return a value, the action normally sets the pseudo-variable ~"$$" to some value.

For example, an action that does nothing but return the value 1 is
{$$=1;}

To obtain the values returned by previous actions and the lexical analyzer, the action
may use the pseudo-variables $1, $2, . . ., which refer to the values returned by the

components of the right side of a rule, reading from left to right. Thus, if the rule is

A : BCD ;

for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule
expr : (" expr)" ;

The value returned by this rule is usually the value of the expr in parentheses. This

can be indicated by
expr (" expr ")’ {$$=9%2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar

rules of the form

Dept. of ISE, SIBIT 163

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

A : B ;
frequently need not have an explicit action.

In the examples above, all the actions came at the end of their rules. Sometimes, it is
desirable to get control before a rule is fully parsed. Yacc permits an action to be written in

the middle of a rule as well as at the end.

The user may define other variables to be used by the actions. Declarations and
definitions can appear in the declarations section, enclosed in the marks ~%{" and "~"%}".
These declarations and definitions have global scope, so they are known to the action

statements and the lexical analyzer. For example,
%{ intvariable =0; %]}

could be placed in the declarations section, making variable accessible to all of the
actions. The Yacc parser uses only names beginning in yy"; the user should avoid such

names.

In these examples, all the values are integers.
8.3 Lexer

The user must supply a lexical analyzer to read the input stream and communicate
tokens (with values, if desired) to the parser. The lexical analyzer is an integer-valued
function called yylex. The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical analyzer is an
integer-valued function called yylex. The parser and the lexical analyzer must agree on these
token numbers in order for communication between them to take place. The numbers may be
chosen by Yacc, or chosen by the user. In either case, the ~# define" mechanism of C is used
to allow the lexical analyzer to return these numbers symbolically. For example, suppose
that the token name DIGIT has been defined in the declarations section of the Yacc

specification file. The relevant portion of the lexical analyzer might look like:

yylex(){

Dept. of ISE, SIBIT 164

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

extern int yylval;

intc;

¢ = getchar();

switch(c){

case '0":

case '1':

case '9":
yylval = c-'0";

return(DIGIT);

e The intent is to return a token number of DIGIT, and a value equal to the numerical
value of the digit. Provided that the lexical analyzer code is placed in the programs
section of the specification file, the identifier DIGIT will be defined as the token

number associated with the token DIGIT.

Dept. of ISE, SIBIT 165

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e This mechanism leads to clear, easily modified lexical analyzers; the only pitfall
is the need to avoid using any token names in the grammar that are reserved or
significant in C or the parser;

e For example, the use of token names ‘if’ or ‘while’ will almost certainly cause
severe difficulties when the lexical analyzer is compiled. The token name error is
reserved for error handling, and should not be used naively.

e The token numbers may be chosen by Yacc or by the user. In the default situation,
the numbers are chosen by Yacc.

e The default token number for a literal character is the numerical value of the character

in the local character set. Other names are assigned token numbers starting at 257.

8.4Compiling and running a SimpleParser:

Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex.
however, is relatively simple, and understanding how it works, while not strictly necessary,
will nevertheless make treatment of error recovery and ambiguities much more

comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The
parser is also capable of reading and remembering the next input token (called the lookahead
token). The current state is always the one on the top of the stack. The states of the finite
state machine are given small integer labels; initially, the machine is in state O, the stack

contains only state 0, and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and

error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to
decide what action should be done; if it needs one, and does not have one, it calls yylex to

obtain the next token.

Dept. of ISE, SIBIT 166

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped off

the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is
taken, there is always a lookahead token. For example, in state 56 there may be an action:

IF shift34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed
down on the stack, and state 34 becomes the current state (on the top of the stack). The look

ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are
appropriate when the parser has seen the right hand side of a grammar rule, and is
prepared to announce that it has seen an instance of the rule, replacing the right hand side by
the left hand side. It may be necessary to consult the lookahead token to decide whether to
reduce, but usually it is not; in fact, the default action (represented by a ".") is often a

reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are

also given small integer numbers, leading to some confusion. The action
reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34. Suppose the rule being reduced is
A : Xyz ;

The reduce action depends on the left hand symbol (A in this case), and the number
of symbols on the right hand side (three in this case). To reduce, first pop off the top three
states from the stack (In general, the number of states popped equals the number of symbols

on the right side of the rule).

Dept. of ISE, SIBIT 167

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

In effect, these states were the ones put on the stack while recognizing X, y, and z, and no
longer serve any useful purpose. After popping these states, a state is uncovered which was
the state the parser was in before beginning to process the rule. Using thisuncovered state,
and the symbol on the left side of the rule, perform what is in effect a shift of A. A new state

is obtained, pushed onto the stack, and parsing continues.

The reduce action is also important in the treatment of user-supplied actions and values.
When a rule is reduced, the code supplied with the rule is executed before the stack is
adjusted. In addition to the stack holding the states, another stack, running in parallel
with it, holds the values returnedfrom the lexical analyzer and the actions. When a shift
takes place, the external variable yylval is copied onto the value stack. After the
return from the user code, the reduction is carried out. When the goto action is done, the
external variable yyval is copied onto the value stack. The pseudo-variables $1, $2,

etc., refer to the value stack.
8.5 Arithmetic Expressions and Ambiguity:

A set of grammar rules is ambiguous if there is some input string that can be structured in

two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is
to put two other expressions together with a minus sign between them. Unfortunately, this
grammar rule does not completely specify the way that all complex inputs should be

structured. For example, if the input is
expr - expr - expr
the rule allows this input to be structured as either
(expr - expr) - expr
or as

expr - (expr - expr)

Dept. of ISE, SIBIT 168

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to

consider the problem that confronts the parser when it is given an input such as
expr - expr - expr
When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by
applying this rule; after applying the rule; the input is reduced to expr (the left side of the

rule). The parser would then read the final part of the input:
- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen
expr - expr

it could defer the immediate application of the rule, and continue reading the input until it

had seen
expr - expr - expr
It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving
expr - expr

Now the rule can be reduced once more; the effect is to take the right associative

interpretation. Thus, having read
expr - expr

The parser can do two legal things, a shift or a reduction, and has no way of

deciding between them. This is called a shift / reduce conflict. It may also happen that the

Dept. of ISE, SIBIT 169

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

parser has a choice of two legal reductions; this is called a reduce / reduce conflict. Note that

there are never any " Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser.
It does this by selecting one of the valid steps wherever it has a choice. A rule describing

which choice to make in a given situation is called a disambiguating rule.
Yacc invokes two disambiguating rules by default:
1. Inashift/reduce conflict, the default is to do the shift.

2. In areduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of
shifts. Rule 2 gives the user rather crude control over the behavior of the parser in this

situation, but reduce/reduce conflicts should be avoided whenever possible.

Yacc always reports the number of shift/reduce and reduce/reduce conflicts resolved
by Rule 1 and Rule 2.

As an example of the power of disambiguating rules, consider a fragment from a

programming language involving an “if-then-else" construction:
stat : IF '(" cond ')" stat
| IF *(" cond ")" stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing
conditional (logical) expressions, and stat is a nonterminal symbol describing statements.

The first rule will be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

EXAMPLE:

Dept. of ISE, SIBIT 170

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

IF (Cl) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

IF(CLl){
IF (C2) SL

ky

ELSE S2

or

IF(Cl){
IF (C2) S1
ELSE S2

ky

e The second interpretation is the one given in most programming languages having
this construct. Each ELSE is associated with the last preceding ~"un-ELSE'd" IF. In
this example, consider the situation where the parser has seen

IF(CL)IF(C2) S1
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (C1) stat

Dept. of ISE, SIBIT 171

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

and then read the remaining input,
ELSE S2
and reduce
IF (C1) stat ELSE S2
by the if-else rule. This leads to the first of the above groupings of the input.

e On the other hand, the ELSE may be shifted, S2 read, and then the right hand
portion of
IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get
IF (C1) stat
which can be reduced by the simple-if rule.

e Once again the parser can do two valid things - there is a shift/reduce conflict. The
application of disambiguating rule 1 tells the parser to shift in this case, which
leads to the desired grouping.

e This shift/reduce conflict arises only when there is a particular current input symbol,
ELSE, and particular inputs already seen, such as

IF(CL)IF(C2)8s1

e In general, there may be many conflicts, and each one will be associated with an
input symbol and a set of previously read inputs. The previously read inputs are
characterized by the state of the parser.

stat : IF '(" cond)" stat

e Once again, notice that the numbers following ““shift" commands refer to other
states, while the numbers following “reduce” commands refer to grammar rule
numbers. In the y.output file, the rule numbers are printed after those rules

which can be reduced.

Dept. of ISE, SIBIT 172

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

8.6 Variables and Typed Tokens

There is one common situation where the rules given above for resolving conflicts are
not sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used
constructions for arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or right associatively.
It turns out that ambiguous grammars with appropriate disambiguating rules can be used to
create parsers that are faster and easier to write than parsers constructed from unambiguous

grammars.

e The basic notion is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous
grammar, with many parsing conflicts. As disambiguating rules, the user specifies
the precedence, or binding strength, of all the operators, and the associativity of

the binary operators.

e This information is sufficient to allow Yacc to resolve the parsing conflicts in
accordance with these rules, and construct a parser that realizes the desired
precedences and associativities.

e The precedences and associativities are attached to tokens in the declarations
section. This is done by a series of lines beginning with a Yacc keyword: %left,
%right, or %nonassoc, followed by a list of tokens.

e All of the tokens on the same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or binding strength.
Thus,

%oleft '+" -

Qoleft "** '/

Dept. of ISE, SIBIT 173

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

e describes the precedence and associativity of the four arithmetic operators. Plus and

minus are left associative, and have lower precedence than star and slash, which are

also left associative.

e The keyword %right is used to describe right associative operators, and the keyword

%nonassoc is used to describe operators

%right '='
%oleft '+ -
o Opleft ™' '/
o %%
e expr expr ‘="' expr
o | expr '+ expr
o | expr - expr
o | expr ™*' expr
o | expr 'l expr
o | NAME
o

might be used to structure the input

a=b=c*d -e - fXg

as follows

a=(b=(((c*d)-e)-(fg)))

e When this mechanism is used, unary operators must, in general, be given a

precedence. Sometimes a unary operator and a binary operator have the same

symbolic representation, but different precedences.

o

An example is unary and binary '-'; unary minus may be given the same
strength as multiplication, or even higher, while binary minus has a lower
strength than multiplication. The keyword, %prec, changes the precedence

level associated with a particular grammar rule. %prec appears

Dept. of ISE, SIBIT 174

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

immediately after the body of the grammar rule, before the action or closing

semicolon, and is followed by a token name or literal.

o It causes the precedence of the grammar rule to become that of the following
token name or literal. For example, to make unary minus have the same

precedence as multiplication the rules might resemble:

%left '+' -

%oleft "** '/

%%

expr expr '+' expr
| expr '-' expr

| expr "*' expr

| expr /" expr

| "' expr %prec "*'
| NAME

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by

%token as well.

The precedence and associatively are used by Yacc to resolve parsing conflicts; they

give rise to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that
have them.

Dept. of ISE, SIBIT 175

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

A precedence and associativity is associated with each grammar rule; it is the
precedence and associativity of the last token or literal in the body of the rule. If
the %prec construction is used, it overrides this default. Some grammar rules

may have no precedence and associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and

either the input symbol or the grammar rule has no precedence and associativity,
then the two disambiguating rules given at the beginning of the section are used,

and the conflicts are reported.

If there is a shift/reduce conflict, and both the grammar rule and the input
character have precedence and associativity associated with them, then the
conflict is resolved in favor of the action (shift or reduce) associated with the
higher precedence. If the precedences are the same, then the associativity is
used; left associative implies reduce, right associative implies shift, and

nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and

reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of

precedences may disguise errors in the input grammar; it is a good idea to be sparing with

precedences, and use them in an essentially "~“cookbook" fashion, until some experience

has been gained. The y.output file is very useful in deciding whether the parser is actually

doing what was intended.

Recursive rules:

The algorithm used by the Yacc parser encourages so called “left recursive”

grammar rules: rules of the form

name

name rest_of rule ;

These rules frequently arise when writing specifications of sequences and lists:

Dept. of ISE, SIBIT 176

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
list : item
| list *," item
and
seq item
| seq item

In each of these cases, the first rule will be reduced for the first item only, and the
second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as
seq item
| item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to
left. More seriously, an internal stack in the parser would be in danger of overflowing if a

very long sequence were read. Thus, the user should use left recursion wherever
reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if

so, consider writing the sequence specification with an empty rule:
seq I* empty */

| seq item

Dept. of ISE, SIBIT 177

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

Once again, the first rule would always be reduced exactly once, before the first item was

read, and then the second rule would be reduced once for each item read
RUNNING BOTH LEXER AND PARSER:

The yacc program gets the tokens from the lex program. Hence a lex program has be
written to pass the tokens to the yacc. That means we have to follow different procedure

to get the executable file.

I. The lex program <lexfile.I> is fist compiled using lex compiler to get lex.yy.c.

ii. The yacc program <yaccfile.y> is compiled using yacc compiler to get y.tab.c.

iii. Using c compiler b+oth the lex and yacc intermediate files are compiled with the
lex library function. cc y.tab.c lex.yy.c -l

iv. If necessary out file name can be included during compiling with —o option.

Examples

1. Write a Yacc program to test validity of a simple expression with +, - . /, and *.

[* Lex program that passes tokens */

%{
#include "y.tab.h"
extern int yyparse();
%}
%%

[0-9]+ { return NUM;}

[a-zA-Z_][a-zA-Z_0-9]* { return IDENTIFIER;}

[+-] {return ADDORSUB;}

[*/] {return PROORDIV;}

DA {return yytext[0];}

[\n] {return \n";}

%%

int main()

{

Dept. of ISE,SOBIT 178

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

yyparse();
¥

[* Yacc program to check for valid expression */

%{
#include<stdlib.h>
extern int yyerror(char * s);
extern int yylex();
%}
%token NUM
%token ADDORSUB
%token PROORDIV
%token IDENTIFIER
%%
input :
| input line
line :'\n'
| exp "\n' { printf("valid"); }
| error \n' { yyerrok; }
exp :exp ADDORSUB term
| term
term :term PROORDIV factor
| factor
factor : NUM
| IDENTIFIER
|'(exp’)

%%

Dept. of ISE, SIBIT 179

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

int yyerror(char *s)
{
printf("%s","INVALID\n");

ks

[* yacc program that gets token from the ¢ porogram */

%{

#include <stdio.h>

#include <ctype.h>

%}

%token NUMBER LETTER

%left '+ *-'

Yleft *' /'

%%

line:line expr "\n' {printf("\nVALID\n");}
| line "\n'
|
lerror \n' { yyerror ("\n INVALID"); yyerrok;}

expr.expr '+' expr
lexpr '-' expr
lexpr "*'expr
lexpr /" expr
| NUMBER
| LETTER

%%
main()

{
yyparse();

Dept. of ISE, SIBIT 180

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

ki
yylex()
{

char c;
while((c=getchar())=="");
if(isdigit(c)) return NUMBER,;
if(isalpha(c)) return LETTER;
return c;

¥

yyerror(char *s)

{
printf("%s",s);

}

2. Write a Yacc program to recognize validity of a nested ‘IF’ control statement and

display levels of nesting in the nested if.

[* Lex program to pass tokens */

%{

#include “y.tab.h”
%}
digit [0-9]

num {digit} + (“.” {digit}+)?

binopr [+-/*%"=><&[’=="| “1="| “>=" | “<="
unopr [~1]

char [a-zA-Z_]

id {char}({digit} | {char})*

space [\t]
Dept. of ISE, SIBIT 181

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%%
{space} ;
{num} return num;
{ binopr } return binopr;
{ unopr } return unopr;
{ id} return id

“if” return if

. return yytext[0];
%%

NUMBER {DIGIT}+
I* Yacc program to check for the valid expression */

%{
#include<stdio.h>
int cnt;

%}

%token binopr
%token unop
%token num
%token id
%token if

%%

foo: if stat { printf(‘“valid: count = %d\n”, cnt); cnt = 0;

Dept. of ISE, SIBIT 182

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

exit(0);
}

| error { printf(“Invalid \n”); }
if stat: token_if ‘(‘ cond)’ comp_stat {cnt++;}
cond: expr
expr: sim_exp

| “(expr)’

| expr binop factor

| unop factor

factor: sim_exp

| < ((eXpr 6)7
sim_exp: num

|id
sim_stat: expr ‘;’

| if
stat_list: sim_stat

Dept. of ISE, SIBIT 183

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

| stat_list sim_stat

comp_stat: sim_stat

| <{* stat_list ‘}’

%%

main()

yyparse();
}
yyerror(char *s)
{
printf(“%s\n”, s);

exit(0);

3. Write a Yacc program to recognize a valid arithmetic expression that uses +, -,/ , *.

%{
#include<stdio.h>
#include <type.h>

%}

Dept. of ISE, SIBIT 184

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

% token num

% left '+ *-'

% left ="'/

%%

st : stexpn\n' {printf ("valid \n"); }
|
| st'\n'

| error \n" { yyerror ("Invalid \n"); }

%%
void main()

{

yyparse (); return 0 ;

yylex()

char c;
while (c =getch ()) ==""
if (is digit (c))

return num,;

Dept. of ISE, SIBIT 185

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

return c;

}

yyerror (char *s)

{

printf("%s", s);

4. \Write a yacc program to recognize an valid variable which starts with letter followed

by a diqit. The letter should be in lowercase only.

I* Lex program to send tokens to the yacc program */

%{
#include "y.tab.h"
%}
%%
[0-9] return digit;
[a-z] return letter;
[\n] return yytext[0];
. return 0;

%%

I* Yacc program to validate the given variable */

Dept. of ISE, SIBIT 186

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%{
#include<type.h>
%}
% token digit letter ;
%%
ident : expn \n'{ printf ("valid\n"); exit (0); }
expn : letter
| expn letter
| expn digit

| error { yyerror ("invalid \n"); exit (0); }

%%

main()

yyparse();

by

yyerror (char *s)

{

printf("%s", s);

Dept. of ISE, SIBIT 187

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
}
I* Yacc program which has ¢ program to pass tokens */
%{

#include <stdio.h>

#include <ctype.h>

%}

%token LETTER DIGIT

%%

st:st LETTER DIGIT "\n' {printf("\nVALID");}
| st '\n'
|
| error \n' {yyerror("\nINVALID");yyerrok;}

%%
main()

{

yyparse();

}

yylex()
{

char c;
while((c=getchar())=="");
if(islower(c)) return LETTER,;
if(isdigit(c)) return DIGIT,;
return c;

¥

Dept. of ISE, SIBIT 188

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

yyerror(char *s)

{
printf("%s",s);

ks

5.Write a yacc program to evaluate an expression (simple calculator program).

I* Lex program to send tokens to the Yacc program */
%{

#include" y.tab.h"
expern int yylval,

%}

%%

[0-9] digit

char[_a-zA-Z]

id {char} ({ char } | {digit })*

%%

{digit}+ {yylval = atoi (yytext);
return num,;

}

{id} return name

(M

\n return 0;

return yytext [0];

Dept. of ISE, SIBIT 189

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
%%
I* Yacc Program to work as a calculator */
%{

#include<stdio.h>
#include <string.h>
#include <stdlib.h>

%}

% token num name

% left '+ "'

% left "'/

% left unaryminus

%%

st : name '="expn

| expn { printf ("%d\n" $1); }

expn : num {$$=$1;}
| expn '+ num {$$=3$1+$3;}
[expn'-' num {$$=9$1-$3;}
|expn *' num {$$=9$1*$3; }
| expn'/' num {if (hum ==0)

{ printf ("div by zero \n");

Dept. of ISE, SIBIT 190

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

exit (0);

}

else
{$3=%1/%3;}

|'Cexpn’)’ {$$=1952;}

%%

main()

yyparse();

}

yyerror (char *s)

{
printf("%s", s);
}
5. Write a yacc program to recognize the grammar { a"b for n >= 0}.
I* Lex program to pass tokens to yacc program */
%{
#include "y.tab.h"
%}

[a] { return a; printf("returning A to yacc \n"); }

Dept. of ISE, SIBIT 191

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

[b] return b
[\n] return yytex[O];

. return error;

%%
I* Yacc program to check the given expression */
%{
#include<stdio.h>
%}

% token a b error
%%
input :line
| error
line :expn\n'{ printf(" valid new line char \n"); }
expn :aaexpn bb

| aa

aa .aaa

Dept. of ISE, SIBIT 192

More notes & papers: www.VTUplanet.com

SYSTEM SOFTWARE 10CS52
|a
bb ‘bbb
| b

error :error {yyerror ("");}

%%

main()

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

[* Yacc to evaluate the expression and has ¢ program for tokens */

%{
/*6by {A’NB N>=0} */

#include <stdio.h>

Dept. of ISE, SIBIT 193

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%}
%token A B
%%
st:strecaendb \n' {printf("String belongs to grammar\n”);}
| stendb \n' {printf("String belongs to grammar\n");}
| st '\n'
| error \n' {yyerror ("\nDoes not belong to grammar\n");yyerrok;}

reca: reca enda | enda;
enda:A;

endb:B;

%%

main()

{

yyparse();

}

yylex()

{

char c;
while((c=getchar())=="");
if(c=="a")

return A,
if(c=="b")

return B;
return c;

¥

yyerror(char *s)

{
fprintf(stdout,"%s",s);

¥

Dept. of ISE, SIBIT 194

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

7. Write a program to recognize the grammar {a"b" |[n>=0}

I* Lex program to send tokens to yacc program */

%{
#include "y.tab.h"
%}
[a] {return A ; printf("returning A to yacc \n"); }
[b] return B
[\n] return yytex[0];
. return error;
%%
I* yacc program that evaluates the expression */
%{
#include<stdio.h>
%}

% token a b error

%%

input : line

| error

Dept. of ISE, SIBIT 195

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

line :expn\n'{ printf(" valid new line char \n"); }
expn :aaexpnbb

error :error {yyerror ("");}

%%

main()

yyparse();
¥

yyerror (char *s)

{

printf("%s", s);

I* Yacc program which has its own ¢ program to send tokens */

%{
[*7hy {ANBAN N>=0} */

Dept. of ISE, SIBIT 196

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

#include <stdio.h>

%}

%token A B

%%

st:strecaendb \n' {printf("String belongs to grammar\n”);}
| st \n' {printf("N value is 0,belongs to grammar\n™);}
|
| error \n'

{yyerror ("\nDoes not belong to grammar\n");yyerrok;}

reca: enda reca endb | enda;
enda:A;

endb:B;

%%

main()

{

yyparse();

}

yylex()

{

char c;
while((c=getchar())=="");
if(c=="a")

return A;
if(c=="b")

return B;
return c;

¥

yyerror(char *s)

{
fprintf(stdout,"%s",s);

Dept. of ISE, SIBIT 197

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

8. Write a Yacc program t identify a valid IF statement or IF-THEN-EL SE statement.

I* Lex program to send tokens to yacc program */

%{

#include "y.tab.h"

%}

CHAR [a-zA-Z0-9]

%x CONDSTART

%%

<*>[1]

<*>[\t\n]+ ;

<*><<EOF>> return O;

if return(IF);

else return(ELSE);

then return(THEN);

\({BEGIN(CONDSTART);return('(');}
<CONDSTART>{CHAR}+ return COND;
<CONDSTART>\) {BEGIN(INITIAL);return("));}
{CHAR}+ return(STAT) ;

%%

[* Yacc program to check for If and IF Then Else statement */

%{
#include<stdio.h>
%}
Dept. of ISE,S9BIT 198

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

%token IF COND THEN STAT ELSE

%%

Stat:IF '(" COND ") THEN STAT {printf("\n VALId Statement");}
| IF'(COND ') THEN STAT ELSE STAT {printf("\n VALID Statement");}
|

%%

main()

{

printf("\n enter statement *);

yyparse();
k

yyerror (char *s)

{
printf("%s",s);

ks

I* Yacc program that has ¢ program to send tokens ~ */

%{
#include <stdio.h>
#include <ctype.h>
%}
%token if simple
% noassoc reduce
% noassoc else

%%

Dept. of ISE, SIBIT 199

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

start : start st ‘\n’

st : simple
| if_st

if st :ifst%precreduce { printf (“simple\n”); }

| if st else st {printf (“if_else \n”); }
%%
int yylex()
{
intc;

¢ = getchar();

switch (¢)

{
case ‘i’ : return if;
case ‘s’ : return simple;
case ‘e’ : return else;

default : return c;

Dept. of ISE, SIBIT 200

More notes & papers: www.VTUplanet.com
SYSTEM SOFTWARE 10CS52

main ()

{
yy parse();

ky

yyerror (char *s)

{

printf("%s", s);
}

RECOMMENDED QUESTIONS:

give the specification of yacc program? give an example? (8)

what is grammar? How does yacc parse a tree? (5)

how do you compile a yacc file? (5)

explain the ambiguity occurring in an grammar with an example? (6)
explain shift/reduce and reduce/reduce parsing ? (8)

write a yacc program to test the validity of an arthimetic expressions? (8)

N o g s~ w D Ee

write a yacc program to accept strings of the form anbn, n>0? (8)

Dept. of ISE, SIBIT 201

	Syl & content
	4 notes full

