
Software engg Supra.S

1

7th unit

22. Verification and validation

Contents

22.1 Planning verification and validation

22.2 Software inspections

22.3 Automated static analysis

22.4 Verification and formal methods

Validation: Are we building the right product? The aim of validation is to ensure that the

software system meets the customer’s expectations. It goes beyond checking that the system

conforms to its specification to showing that the software does what the customer expects it

to do

Verification: means Are we building the product right?’, the role of verification involves

checking that the software conforms to its specification and meets its specified functional

and non-functional requirements.

The ultimate goal of the verification and validation process is to establish confidence that the

software system is ‘fit for purpose’. This means that the system must be good enough for its

intended use.

The level of required confidence depends on the system’s purpose, the expectations of the

system users and the current marketing environment for the system:

1. Software function The level of confidence required depends on how critical the software

is to an organisation.

Example, the level of confidence required for software that is used to control a safety-

critical system is very much higher than other type of software systems.

Software engg Supra.S

2

2. User expectations many users have low expectations of their software . They are willing to

accept the system failures when the benefits of use outweigh the disadvantages. However,

user tolerance of system failures has been decreasing since the 1990s. It is now less

acceptable to deliver unreliable systems, so software companies must devote more effort to

verification and validation.

3. Marketing environment When a system is marketed, the sellers of the system must take

into account competing programs, the price those customers are willing to pay for a system

and the required schedule for delivering that system. Where a company has few competitors,

it may decide to release a program at lower prices before it has been fully tested and

debugged because they want to be the first into the market.

Where customers are not willing to pay high prices for software, they may be willing to

tolerate more software faults. All of these factors must be considered when deciding how

much effort should be spent on the V & V process.

Within the V & V process, there are two complementary approaches to system checking

and analysis:

1. Software inspections or peer reviews analyse and check system representations such

as the requirements document, design diagrams and the program source code. Inspections can

be used at all stages of the V & V process.

Software inspections are static V & V techniques, where no need to run the software on a

computer.

2. Software testing: it involves running an implementation of the software with test

data. The outputs of the software and its operational behaviour are examined to check

that it is performing as required.

Testing is a dynamic technique of verification and validation.

Figure 22.1 shows that software inspections and testing play complementary roles in the

software process. The arrows indicate the stages in the process where the techniques may be

used.

Software engg Supra.S

3

. There are two distinct types of testing that may be used at different stages in the software

process:

1. Validation testing is intended to show that the software is what the customer wants—that

it meets its requirements.

2. Defect testing is intended to reveal defects in the system rather than to simulate its

operational use. The goal of defect testing is to find inconsistencies between a program and

its specification.

Verification & Validation Vs Debugging

1. Verification and validation processes are intended to establish the existence of defects in a

software system.

2. Debugging is a process (Figure 22.2) that locates and corrects these defects.

Skilled debuggers look for patterns in the test output where the defect is exhibited and use

their knowledge to locate the defect.

Software engg Supra.S

4

22.1 Planning verification and validation

1. Verification and validation is an expensive process. Careful planning is needed to get the

Most out of inspections and testing and to control the costs of the verification and validation

process.

2. The software development process model is shown in Figure 22.3 is sometimes called the

V-model (turn Figure 22.3 on end to see the V).

Shows that test plans should be derived from the system specification and design. This

model also breaks down system V & V into a number of stages. Each stage is driven by tests

that have been defined to check the conformance of the program with its design and

specification.

3. Test planning is concerned with establishing standards for the testing process, not just

with describing product tests. As well as helping managers to allocate resources and estimate

testing schedules.

4. Test planning help technical staff to get an overall picture of the system tests and place

their own work in this context.

5. The major components of a test plan for a large and complex system are shown in Figure

22.4. As well as setting out the testing schedule and procedures.

 The test plan defines the hardware and software resources that are required. This

is useful for system managers who are responsible for ensuring that these

resources are available to the testing team.

Software engg Supra.S

5

 Test plans should normally include significant amounts of contingency so that

slippages in design and implementation can be accommodated and staff

redeployed to other activities.

6. Test plans are not a static documents but evolve during the development process. Test

plans change because of delays at other stages in the development process.

7. If part of a system is incomplete, the system as a whole cannot be tested. Then revise the

test plan to redeploy the testers to some other activity and bring them back when the

software is once again available.

Software engg Supra.S

6

22.2 Software inspections

1. Software inspection is a static V & V process in which a software system is reviewed to find

errors, omissions and anomalies. Inspecting a system, use knowledge of the system,its

application domain and the programming language or design model to discover errors.

2. There are three major advantages of inspection over testing:

a). During testing, errors can mask (hide) other errors. Once one error is discovered, it

can be a new error or are side effects of the original error.

Because inspection is a static process, it is not concerned with interactions

between errors. Consequently, a single inspection session can discover many errors in a

system.

b). Incomplete versions of a system can be inspected without additional costs.

If a program is incomplete, then you need to develop specialised test harnesses to

test the parts that are available. This obviously adds to the system development costs in

testing.

c). As well as searching for program defects, an inspection can consider broader quality

attributes of a program such as compliance with standards, portability and

maintainability.

3. Start system V & V with inspections early in the development process, but once a system is

integrated, testing is needed to check its emergent properties and system’s functionality is what

the owner of the system really wants.

4. Disadvantage

 Difficult to introduce formal inspections into many software development

organisations.

 Software engineers with experience of program testing are sometimes reluctant to

accept that inspections can be more effective for defect detection than testing.

 Managers may be suspicious because inspections require additional costs during

design and development. They may not wish to take the risk that there will be no

corresponding savings during program testing.

 Inspections take time to arrange and appear. It is difficult to convince a hard-

pressed manager that this time can be made up later because less time will be

spent on program debugging.

Software engg Supra.S

7

22.2.1 The program inspection process

1. Program inspections are reviews whose objective is program defect detection. The notion of a

formalised inspection process was first developed at IBM in the 1970s.

2.The key difference between program inspections and other types of quality review is that the

specific goal of inspections is to find program defects rather than to consider broader design

issues.

By contrast, other types of review may be more concerned with schedule,costs, progress

against defined milestones or assessing whether the software is likely to meet organisational

goals.

3. The program inspection is a formal process that is carried out by a team of at least four people.

Team members systematically analyse the code and point out possible defects.

4. In Fagan’s original proposals, he suggested roles such as author, reader, tester and moderator.

The reader reads the code aloud to the inspection team

The tester inspects the code from a testing perspective

The moderator organises the process.

5. Grady and Van Slack suggest six roles, as shown in Figure 22.5. Here the same person can

take more than one role so the team size may vary from one inspection to another.

The activities in the inspection process are shown in Figure 22.6.

Software engg Supra.S

8

6. Inspection pre-condition

Before a program inspection process begins, it is essential that:

a). to have a precise specification of the code to be inspected. It is impossible to inspect a

component at the level of detail required to detect defects without a complete specification.

b). The inspection team members should be familiar with the organisational standards.

c). An up-to-date, compilable version of the code has been distributed to all team

members for inspecting .

7. The inspection process

a) The inspection team moderator is responsible for inspection planning. This involves

selecting an inspection team, organising a meeting room and ensuring that the material to

be inspected and its specifications are complete.

b) The program to be inspected is presented to the inspection team during the overview

stage when the author of the code describes what the program is intended to do.

c) This is followed by a period of individual preparation. Each inspection team member

studies the specification and the program.

d) The inspection carried out itself should be fairly short. Each inspection team member

looks for defects in the code .The inspection team should not suggest how these defects

should be corrected nor should it recommend changes to other components.

e) Following the inspection, the program’s author should make changes to it to correct the

identified problems.

Software engg Supra.S

9

f) In the follow-up stage, the moderator should decide whether a reinspection of the code is

required. He or she may decide that a complete reinspection is not required and that the

defects have been successfully fixed.

The program is then approved by the moderator for release.

8. Checklists

a) checklist is a list of common programmer errors.

b). During an inspection, a checklist of common programmer errors is often used to focus the

discussion.

c) This checklist varies according to programming language because of the different levels of

checking provided by the language compiler.

d) Possible checks that might be made during the inspection process are shown In Figure 22.7

for different fault class.

e) Each organization should develop its own inspection checklist based on local standards and

practices. Checklists should be regularly updated as new types of defects are found.

f) The time needed for an inspection and the amount of code that can be covered depends on the

experience of the inspection team, the programming language and the application domain.

Software engg Supra.S

10

22.3 Automated static analysis

1. Inspections are one form of static analysis—you examine the program without executing it.

2. For some errors and heuristics, it is possible to automate the process of checking programs

against the check list, which has resulted in the development of automated static analysersfor

different programming languages.

Software engg Supra.S

11

3. Static analysers are software tools that scan the source text of a program and detect possible

faults and anomalies. They parse the program text and thus recognise the types of statements in

the program.

They can then detect whether statements are well formed, make inferences about the control

flow in the program and, in many cases, compute the set of all possible values for program data.

They can be used as part of the inspection process or as a separate V & V process activity.

4. The intention of automatic static analysis is to draw an inspector’s attention to anomalies in

the program, such as variables that are used without initialisation, variables that are unused or

data whose value could go out of range.

5. Some of the checks that can be detected by static analysis are shown in Figure 22.8.

6. The stages involved in static analysis include:

a). Control flow analysis This stage identifies and highlights loops with multiple exit or

entry points and unreachable code. Unreachable code is code that is surrounded by unconditional

goto statements or that is in a branch of a conditional statement where the guarding condition can

never be true.

b). Data use analysis This stage highlights how variables in the program are used. It detects

variables that are used without previous initialisation, variables that are written twice without an

intervening assignment and variables that are declared but never used. Data use analysis also

discovers ineffective tests where the test condition is redundant. Redundant conditions are

conditions that are either always true or always false.

c). Interface analysis This analysis checks the consistency of routine and procedure

declarations and their use. Interface analysis can also detect functions and procedures that are

declared and never called or function results that are never used.

d). Information flow analysis This phase of the analysis identifies the dependencies between

input and output variables. It shows how the value of each program variable is derived from

other variable values. With this information, a code inspection should be able to find values that

Software engg Supra.S

12

have been wrongly computed. Information flow analysis can also show the conditions that affect

a variable’s value.

d). Path analysis This phase of semantic analysis identifies all possible paths through the

program and sets out the statements executed in that path. It essentially unravels the program’s

control and allows each possible predicate to be analysed individually.

22.4 Verification and formal methods

1. Formal methods of software development are based on mathematical representations of the

software, usually as a formal specification. These formal methods are mainly concerned with a

mathematical analysis of the specification; with transforming the specification to a more

detailed, semantically equivalent representation.

2. formal methods are the ultimate static verification technique. They require very detailed

analyses of the system specification and the program, and their use is often time consuming and

Software engg Supra.S

13

expensive. Consequently, the use of formal methods is mostly confined to safety- and security-

critical software development processes.

3. Formal methods may be used at different stages in the V & V process:

a). A formal specification of the system may be developed and mathematically analysed for

checking inconsistency. This technique is effective in discovering specification errors and

omissions.

b) Is the code of a software system is consistent with its specification can be formally

verified using mathematical statements and formal specification is effective in discovering

programming and some design errors.

4. The argument against the use of formal specification is that :

a) It requires specialized notations. These can only be used by specially trained staff and

cannot be understood by domain experts.

b) formal verification is not cost-effective. Verifying a nontrivial software system takes a

great deal of time and requires specialised tools such as theorem provers and mathematical

expertise.

5. Formal specification do not guarantee that the software will be reliable in practical use. The

reasons for this are:

a) The specification may not reflect the real requirements of system users. many failures

experienced by users were a consequence of specification errors and omissions that could not be

detected by formal system specification.

Furthermore, system users rarely understand formal notations so they cannot read the formal

specification directly to find errors and omissions.

b). The proof may contain errors. Program proofs are large and complex, so, like large and

complex programs, they usually contain errors.

c). The proof may assume a usage pattern which is incorrect. If the system is not used as

anticipated, the proof may be invalid.

Software engg Supra.S

14

22.4.1 Cleanroom software development

1. Cleanroom software development is a software development philosophy that uses formal

methods to support rigorous software inspection.

2. A model of the Cleanroom process is shown in Figure 22.10. The objective of this approach to

software development is zero-defect software.

3. The Cleanroom approach to software development is based on five key strategies:

a). Formal specification The software to be developed is formally specified.

Example: statetransition model that shows system responses to stimuli is used to express the

specification.

b). Incremental development The software is partitioned into increments that are developed

and validated separately using the Cleanroom process. These increments are specified, with

customer input, at an early stage in the process.

Software engg Supra.S

15

c). Structured programming The program development process is a process of stepwise

refinement of the specification. A limited number of constructs are used and the aim is to

systematically transform the specification to create the program code.

d). Static verification The developed software is statically verified using rigorous software

inspections. There is no unit or module testing process for code components.

e). Statistical testing of the system The integrated software increment is tested statistically,

to determine its reliability. These statistical tests are based on an operational profile, which is

developed in parallel with the system specification as shown in Figure 22.10.

4. There are three teams involved when the Cleanroom process is used for large system

development:

a). The specification team This group is responsible for developing and maintaining the

system specification. This team produces customer-oriented specifications (the user requirements

definition) and mathematical specifications for verification.

b). The development team This team has the responsibility of developing and verifying the

software. The software is not executed during the development process.

c). The certification team This team is responsible for developing a set of statistical tests to

exercise the software after it has been developed. These tests are based on the formal

specification. The test cases are used to certify the software reliability.

5. Advantages:

a) Use of the Cleanroom approach has generally led to software with very few errors.

b) leads to Rigorous program inspection.

c) Inspection and formal analysis has been found to be very effective in the Cleanroom

process.

d) cost-effective because less effort is required to test and repair the developed software.

Software engg Supra.S

16

2nd chapter,7th unit
23 Software testing

Contents

23.1 System testing

23.2 Component testing

23.3 Test case design

23.4 Test automation

A more abstract view of software testing is shown in Figure 23.1. The two fundamental testing

activities are

Component testing— testing the parts of the system. The aim of the component testing stage is

to discover defects by testing individual program components. These components may be

functions, objects or reusable components .

System testing— testing the system as a whole. During system testing, these components/sub-

systems are integrated to form the complete system. At this stage, system testing should focus

on establishing that the system meets its functional and non-functional requirements, and does

not behave in unexpected ways.

Software engg Supra.S

17

The software testing process has two distinct goals:

1. To demonstrate to the developer and the customer that the software meets its

requirements.

For custom software, this means that there should be at least one test for every requirement in

the user and system requirements documents.

For generic software products, it means that there should be tests for all of the system

features that will be incorporated in the product release.

2. To discover faults or defects in the software where the behaviour of the software

is incorrect, undesirable or does not conform to its specification. Defect testing is concerned

with rooting out all kinds of undesirable system behaviour,

The first goal leads to validation testing, where you expect the system to perform correctly

using a given set of test cases that reflect the system’s expected use.

The second goal leads to defect testing, where the test cases are designed to expose defects.

Testing cannot demonstrate that the software is free of defects or that it will behave as specified

in every circumstance. m‘Testing can only show the presence of errors, not their absence.’

Testing is a process intended to build confidence in the software.

A general model of the testing process is shown in Figure 23.2.

Software engg Supra.S

18

-Test cases are specifications of the inputs to the test and the expected output from the system

plus a statement of what is being tested.

- Test data are the inputs that have been devised to test the system. Test data can sometimes be

generated automatically. Automatic test case generation is impossible.

23.1 System testing

1. System testing involves integrating two or more components that implement system functions

or features and then testing this integrated system.

2. For most complex systems, there are two distinct phases to system testing:

a). Integration testing, where the test team have access to the source code of the system.

When a problem is discovered, the integration team tries to find the source of the problem and

identify the components that have to be debugged. Integration testing is mostly concerned with

finding defects in the system.

b). Release testing, where a version of the system that could be released to users is tested.

Here, the test team is concerned with validating that the system meets its requirements.. Release

testing is usually ‘black-box’ testing where the test team is simply concerned with demonstrating

that the system does or does not work properly.

Problems are reported to the development team whose job is to debug the program. Where

Customers are involved in release testing, this is sometimes called acceptance testing.

23.1.1 Integration testing

1. The process of system integration involves building a system from its components and testing

the resultant system for problems that arise from component interactions. The components that

are integrated may be reusable components that have been adapted for a particular system or

newly developed components.

2. Integration testing checks that these components actually work together correctly and transfer

the right data at the right time across their interfaces.

Software engg Supra.S

19

3. System integration involves identifying clusters of components that deliver some system

functionality and integrating these by adding code that makes them work together.

4. Types of integration

Top-down integration: here the overall skeleton of the system is developed first, and

components are added to it

Bottom-up integration: here first the infrastructure components that provide common

services, such as network and database access is integrated, then add the functional components.

5.Incremental approach to system integration

a) A major problem that arises during integration testing is localising errors.

b) It is difficult to identify localized errors because of complex interactions between the

system components .

c) To make it easier to locate errors, an incremental approach to system integration and

testing is used. Divide the integration process into increments.

-Initially, integrate a minimal system configuration and test this increment.

-Then a new increment is integrated, it is important to rerun the tests for previous

increments as well as the new tests that are required to verify the new system functionality.

-Rerunning an existing set of tests is called regression testing. If regression testing

exposes problems, check whether these are problems in the previous increment that the new

increment has exposed or whether these are due to the added increment of functionality.

d) In the example shown in Figure 23.3, A, B, C and D are components and T1 to T5 are

related sets of tests of the features incorporated in the system.

e) T1, T2 and T3 are first run on a system composed of component A and component B (the

minimal system). If these reveal defects, they are corrected. Component C is integrated and T1,

T2 and T3 are repeated to ensure that there have not been unexpected interactions with A and B.

Software engg Supra.S

20

If problems arise in these tests, this probably means that they are due to interactions with the new

component.

f)The source of the problem is localised, thus simplifying defect location and repair. Test set

T4 is also run on the system.

g) Finally, component D is integrated and tested using existing and new tests (T5).

6. When planning integration, first decide the order of integration of components. second

involve the customer in the development process, this helps in deciding which functionality

should be included in each system increment.

Example library system, LIBSYS,

First start by integrating the search facility so that, in a minimal system, users

can search for documents that they need, then add the functionality to allow users to

download a document, then progressively add the components that implement other

system features.

Software engg Supra.S

21

23.1.2 Release testing (functional testing)

1. Release testing is the process of testing a release of the system that will be distributed to

customers.

2. The primary goal of this process is to increase the supplier’s confidence that the system

delivers the specified functionality, performance and dependability, and that it does not fail

during normal use. If so, it can be released as a product or delivered to the customer.

3. Release testing is usually a black-box testing process where the tests are derived from the

system specification, by studying its inputs and the related outputs.

4. In functional testing the tester is only concerned with the functionality and not the

implementation of the software.

5. Figure 23.4 illustrates the model of a system .

-The tester presents inputs to the component or the system and examines the corresponding

outputs.

Software engg Supra.S

22

-If the outputs are not those predicted (i.e., if the outputs are in set Oe) then the test has

detected a problem with the software.

-When testing system releases, try to ‘break’ the software by choosing test cases that are in

the set Ie in Figure 23.4.

6. A set of guidelines that increase the probability that the defect tests will be successful.

1. Choose inputs that force the system to generate all error messages.

2. Design inputs that cause input buffers to overflow.

3. Repeat the same input or series of inputs numerous times.

4. Force invalid outputs to be generated.

5. Force computation results to be too large or too small.

7. Scenario-based testing

a).To validate that the system meets its requirements, the best approach to use is scenario-

based testing, where number of scenarios can be devised and then develop test cases from these

scenarios.

b) For example, consider searching and downloading of document by using the facility in

LIBSYS, that can later request permission and registers request by filling copyright form. If

granted, the document will be downloaded to the registered library’s server and printed for user.

c) From this scenario, it is possible to device a number of tests that can be applied to the

proposed release of LIBSYS:

1. Test the login mechanism using correct and incorrect logins to check that valid users

are accepted and invalid users are rejected.

2. Test the search facility using queries against known sources to check that the search

mechanism is actually finding documents.

Software engg Supra.S

23

3. Test the system presentation facility to check that information about documents is

displayed properly.

4. Test the mechanism to request permission for downloading.

8. Use-case based testing.

a) The use-cases and sequence charts can be used during both integration and release testing.

b)Example: Figure 23.5 shows the sequence of operations in the weather station when it

responds to a request to collect data for the mapping system.

c) The diagram identify operations that will be tested and to help design the test cases to execute

the tests. Therefore issuing a request for a report will result in the execution of the following

thread of methods:

CommsController:request → WeatherStation:report → WeatherData:summarise

c) The sequence diagram can also be used to identify inputs and outputs that have to be created

for the test:

1. An input of a request for a report should have an associated acknowledgement and a report

should ultimately be returned from the request. During the testing create summarised data that

can be used to check that the report is correctly organised.

2. An input request for a report to WeatherStation results in a summarised report being

generated. then test this in isolation by creating raw data corresponding to the summary prepared

for the test of CommsController and checking that the WeatherStation object correctly produces

this summary.

3. This raw data is also used to test the WeatherData object.

Software engg Supra.S

24

Software engg Supra.S

25

23.1.3 Performance testing/stress testing

1. Performance tests have to be designed to ensure that the system can process its intended load.

2. This usually involves planning a series of tests where the load is steadily increased until the

system performance becomes unacceptable.

3. performance testing is concerned both with demonstrating that the system meets its

requirements and discovering problems and defects in the system.

4. Operational Profile- it is a set of tests that reflect the actual mix of work that will be handled

by the system. An operational profile have been constructed to test whether performance

requirements are being achieved

5. Effective way to discover defects is to design tests around the limits of the system. In

performance testing, testing means stressing the system (hence the name stress testing) by

making demands that are outside the design limits of the software.

For example, a transaction processing system may be designed to process up to 300

transactions per second; an operating system may be designed to handle up to 1,000 separate

terminals. Stress testing continues these tests beyond the maximum design load of the system

until the system fails.

6. This type of testing has two functions:

a). It tests the failure behaviour of the system. Circumstances may arise through an

unexpected combination of events where the load placed on the system exceeds the maximum

anticipated load. In these circumstances, it is important that system failure should not cause data

corruption or unexpected loss of user services.

Stress testing checks that overloading the system causes it to ‘fail-soft’ rather than collapse

under its load.

b). It stresses the system and may cause defects to come to light that would not normally

be discovered.

Software engg Supra.S

26

23.2 Component testing/unit testing

1. Component testing (sometimes called unit testing) is the process of testing individual

components in the system. This is a defect testing process so its goal is to expose faults in these

components

2. There are different types of component that may be tested at this stage:

a). Individual functions or methods within an object- Individual functions or methods are the

simplest type of component and your tests are a set of calls to these routines with different input

parameters.

b). Object classes that have several attributes and methods

- object class testing provide coverage of all the features of the object it includes:

A). The testing in isolation of all operations associated with the object

B). The setting and interrogation of all attributes associated with the object

C). The exercise of the object in all possible states. This means that all events that cause a

state change in the object should be simulated.

c). Composite components made up of several different objects or functions.-These

composite components have a defined interface that is used to access their functionality.

3. Inheritance makes it more difficult to design object class tests. Where a superclass provides

operations that are inherited by a number of subclasses, all of these subclasses should be tested

with all inherited operations. The reason for this is that the inherited operation may make

assumptions about other operations and attributes, which these may have been changed when

inherited. Equally, when a superclass operation is overridden then the overwriting operation must

be tested. Tests that fall into the same equivalence class might be those that use the same

attributes of the objects. Therefore, equivalence classes should be identified that initialise, access

and update all object class attributes.

Software engg Supra.S

27

23.2.1 Interface testing

1. Many components in a system are not simple functions or objects but are composite

components that are made up of several interacting objects. The functionality of these

components can be accessed through their defined interface.

2. Testing these composite components then is primarily concerned with testing that, is the

component interface behaves according to its specification.

3. Figure 23.7 illustrates this process of interface testing. Assume that components A, B and C

have been integrated to create a larger component or sub-system. The test cases are not applied

to the individual components but to the interface of the composite component created by

combining these components.

4. Errors in the composite component may arise because of interactions between its parts.

5. There are different types of interfaces between program components and, consequently,

different types of interface errors that can occur:

a). Parameter interfaces These are interfaces where data or sometimes function

references are passed from one component to another.

Software engg Supra.S

28

b). Shared memory interfaces These are interfaces where a block of memory is shared

between components. Data is placed in the memory by one sub-system and retrieved from there

by other sub-systems.

c). Procedural interfaces These are interfaces where one component encapsulates a set of

procedures that can be called by other components. Objects and reusable components have this

form of interface.

d). Message passing interfaces These are interfaces where one component requests a

service from another component by passing a message to it. A return message includes the

results of executing the service. Some object-oriented systems have this form of interface, as do

client-server systems.

6. Interface errors are one of the most common forms of error in complex systems

These errors fall into three classes:

a). Interface misuse A calling component calls some other component and makes an

error in the use of its interface. This type of error is particularly common with parameter

interfaces where parameters may be of the wrong type, may be passed in the wrong order or the

wrong number of parameters may be passed.

b). Interface misunderstanding A calling component misunderstands the specification of

the interface of the called component and makes assumptions about the behaviour of the called

component. The called component does not behave as expected and this causes unexpected

behaviour in the calling component.

Example, a binary search routine may be called with an unordered array to be searched.

The search would then fail.

c). Timing errors These occur in real-time systems that use a shared memory or a

message-passing interface. The producer of data and the consumer of data may operate at

different speeds. Unless particular care is taken in the interface design, the consumer can access

out-of-date information because the producer of the information has not updated the shared

Software engg Supra.S

29

7. Some general guidelines for interface testing are:

a). Examine the code to be tested and explicitly list each call to an external component.

Design a set of tests where the values of the parameters to the external components are at the

extreme ends of their ranges. These extreme values are most likely to reveal interface

inconsistencies.

b). Where pointers are passed across an interface, always test the interface with null

pointer parameters.

c). Where a component is called through a procedural interface, design tests that should

cause the component to fail. Differing failure assumptions are one of the most common

specification misunderstandings.

d). Use stress testing, as discussed in the previous section, in message-passing systems.

Design tests that generate many more messages than are likely to occur in practice. Timing

problems may be revealed in this way.

e). Where several components interact through shared memory, design tests that vary the

order in which these components are activated. These tests may reveal implicit assumptions

made by the programmer about the order in which the shared data is produced and consumed.

interface information.

23.3 Test case design

1. Test case design is a part of system and component testing where you design the test cases

(inputs and predicted outputs) that test the system.

2. The goal of the test case design process is to create a set of test cases that are effective in

discovering program defects and showing that the system meets its requirements.

3. There are various approaches that can be taken to design test case:

a). Requirements-based testing where test cases are designed to test the system

requirements. This is mostly used at the system-testing stage as system requirements are usually

Software engg Supra.S

30

implemented by several components. For each requirement, identify test cases that can

demonstrate that the system meets that requirement.

b). Partition testing where identify input and output partitions and design tests so that the

system executes inputs from all partitions and generates outputs in all partitions. Partitions are

groups of data that have common characteristics.

such as all negative numbers, all names less than 30 characters, all events arising from

choosing items on a menu, and so on.

c). Structural testing where use knowledge of the program’s structure to design tests that

exercise all parts of the program. Essentially, when testing a program, try to execute each

statement at least once. Structural testing helps identify test cases that can make this possible.

In general, when designing test cases, start with the highest-level tests from the requirements

then progressively add more detailed tests using partition and structural testing.

23.3.1 Requirements-based testing

1. Requirements-based testing, is a systematic approach to test case design where consider each

requirement and derive a set of tests for it.

2. Requirements-based testing is validation rather than defect testing—trying to demonstrate that

the system has properly implemented its requirements.

3. Example, consider the user requirements for the LIBSYS system

a). The user shall be able to search either all of the initial set of databases or selecta

subset from it.

b). The system shall provide appropriate viewers for the user to read documents in the

document store.

c). Every order shall be allocated a unique identifier (ORDER_ID) that the user shall be

able to copy to the account’s permanent storage area.

Software engg Supra.S

31

4. Possible tests for the first of these requirements, assuming that a search function has been

tested, are:

 Initiate user searches for items that are known to be present and known not to be

present, where the set of databases includes one database.

 Initiate user searches for items that are known to be present and known not to be

present, where the set of databases includes two databases.

 Initiate user searches for items that are known to be present and known not to be

present where the set of databases includes more than two databases.

 Select one database from the set of databases and initiate user searches for items

that are known to be present and known not to be present.

 Select more than one database from the set of databases and initiate searches for

items that are known to be present and known not to be present.

5. from the above, testing a requirement does not mean just writing a single test. But have to

write several tests to ensure the coverage of the requirement.

23.3.2 Partition testing

1. The input data and output results of a program usually fall into a number of different classes

that have common characteristics such as positive numbers, negative numbers etc

- Programs normally behave in a comparable way for all members of a class. That is, test

a program that does some computation and requires two positive numbers, then the program

should behave in the same way for all positive numbers.

2. Because of this equivalent behaviour, these classes are sometimes called equivalence

partitions or domains.

3. partition testing: It is asystematic approach to test case design, based on identifying all

partitions for a system or component. Test cases are designed so that the inputs or outputs lie

within these partitions. Partition testing can be used to design test cases for both systems and

components.

4. In Figure 23.8, each equivalence partition is shown as an ellipse.

Software engg Supra.S

32

 Input equivalence partitions are sets of data where all of the set members should

be processed in an equivalent way.

 Output equivalence partitions are program outputs that have common

characteristics, so they can be considered as a distinct class.

 Identify partitions where the inputs are outside the other partitions that have been

chosen.

 These test whether the program handles invalid input correctly. Valid and invalid

Inputs also form equivalence partitions.

 Once a set of partitions have been identified, chose test cases from each of these

partitions. choose test cases on the boundaries of the partitions plus cases close to

the mid-point of the partition..

 Then test these by choosing the mid-point of the partition. Boundary values are

often a typical (e.g., zero may behave differently from other nonnegative

numbers) so are overlooked by developers.

Software engg Supra.S

33

Example (Note: If asked in exam include example otherwise no need)

1) For example, say a program specification states that the program accepts 4 to 8 inputs

that are five-digit integers greater than 10,000. Figure 23.9shows the partitions for

this situation and possible test input values.

2) The pre-condition states that the search routine will only work with sequences that are

not empty. The post-condition states that the variable Found is set if the key element

is in the sequence. The position of the key element is the index L. The index value is

undefined if the element is not in the sequence.

From this specification, see two equivalence partitions:

a. Inputs where the key element is a member of the sequence (Found = true)

b. Inputs where the key element is not a sequence member (Found = false)

Software engg Supra.S

34

3). guidelines that are useful in designing test cases:

a). Test software with sequences that have only a single value. Programmers naturally

think of sequences as made up of several values, and sometimes they embed this assumption in

their programs. Consequently, the program may not work properly when presented with a single-

value sequence.

b). Use different sequences of different sizes in different tests. This decreases the chances

that a program with defects will accidentally produce a correct output because of some accidental

characteristics of the input.

c) Derive tests so that the first, middle and last elements of the sequence are accessed.

This approach reveals problems at partition boundaries.

4). From these guidelines, two more equivalence partitions can be identified:

a. The input sequence has a single value.

b. The number of elements in the input sequence is greater than 1. then identify further

partitions by combining these partitions

5). Figure 23.11 shows the partitions that have been identified to test the search component. A

set of possible test cases based on these partitions is also shown in Figure 23.11. If the key

element is not in the sequence, the value of L is undefined (‘??’). The guideline that different

sequences of different sizes should be used has been applied in these test cases. The set of input

values used to test the search routine is not exhaustive. The routine may fail if the input sequence

happens to include the elements 1, 2, 3 and 4. However, it is reasonable to assume that if the test

fails to detect defects when one member of a class is processed, no other members of that class

will identify defects.

Software engg Supra.S

35

Software engg Supra.S

36

23.3.3 Structural testing

1. Structural testing (Figure 23.12) is an approach to test case design where the tests are derived

from knowledge of the software’s structure and implementation. This approach is sometimes

called ‘white-box’, ‘glass-box’ testing, or ‘’clear-box’ testing.

Example

1. Identifying partitions and test cases for a binary search routine (Figure 23.14).

2. pre-conditions: The sequence is implemented as an array that array must be ordered and

the value of the lower bound of the array must be less than the value of the upper bound.

3. Binary searching involves splitting the search space into three parts. Each of these parts

makes up an equivalence partition (Figure 23.13). then design test cases where the key

lies at the boundaries of each of these partitions

.

Software engg Supra.S

37

Software engg Supra.S

38

4. This leads to a test cases for the search routine, as shown in Figure 23.15.

23.3.4 Path testing

1. Path testing is a structural testing strategy whose objective is to exercise every independent

execution path through a component or program. If every independent path is executed, then all

statements in the component must have been executed at least once. Furthermore, all conditional

statements are tested for both true and false cases.

2. The starting point for path testing is a program flow graph. This is a skeletal model of all paths

through the program.

-A flow graph consists of nodes representing decisions and edges showing flow of

control. The flow graph is constructed by replacing program control statements by equivalent

diagrams.

Example :flow graph for the binary search method in Figure 23.16. shown each statement as a

separate node where the node number corresponds to the line number in the program.

Software engg Supra.S

39

Software engg Supra.S

40

Software engg Supra.S

41

3. The objective of path testing is to ensure that each independent path through the program is

executed at least once. An independent program path is one that traverses at least one new edge

in the flow graph. Both the true and false branches of all conditions must be executed.

4. The number of independent paths in a program can be found by computing the cyclomatic

complexity of the program flow graph. For programs without goto statements, the value of the

cyclomatic complexity is one more than the number of conditions in the program. A simple

condition is logical expression without ‘and’ or ‘or’ connectors.

5. If the program includes compound conditions, which are logical expressions including ‘and’

or ‘or’ connectors, then count the number of simple conditions in the compound conditions when

calculating the cyclomatic complexity.

Example : if there are six if-statements and a while loop and all conditional expressions

are simple, the cyclomatic complexity is 8. If one conditional expression is a compound

expression such as ‘if A and B or C’, then count this as three simple conditions. The cyclomatic

complexity is therefore 10. The cyclomatic complexity of the binary search algorithm (Figure

23.14) is 4 because there are three simple conditions at lines 5, 7 and 11.

6. After discovering the number of independent paths through the code by computing the

cyclomatic complexity, next design test cases to execute each of these paths.

7. The minimum number of test cases that you need to test all program paths is equal to the

cyclomatic complexity.

8. dynamic program analyser can be used to discover the program’s execution profile. Dynamic

program analysers are testing tools , count the number of times each program statement has been

executed.

Software engg Supra.S

42

23.4 Test automation

1. Testing is an expensive and laborious phase of the software process. As a result, software tools

have been developed to perform testing. These tools offer a range of facilities and their use can

significantly reduce the costs of testing.

2. A software testing workbench is an integrated set of tools to support the testing process. In

addition to testing frameworks that support automated test execution, a workbench may include

tools to simulate other parts of the system and to generate system test data.

3. Figure 23.17 shows some of the tools that might be included in a testing workbench:

Software engg Supra.S

43

a). Test manager Manages the running of program tests. The test manager keeps track of

test data, expected results and program facilities tested.

b). Test data generator Generates test data for the program to be tested. This may be

accomplished by selecting data from a database or by using patterns to generate random data of

the correct form.

c). Oracle Generates predictions of expected test results. Oracles may either be previous

program versions or prototype systems.

d). File comparator Compares the results of program tests with previous test results and

reports differences between them.

e). Report generator Provides report definition and generation facilities for test results.

f). Dynamic analyser Adds code to a program to count the number of times each

statement has been executed. After testing, an execution profile is generated showing how often

each program statement has been executed.

g). Simulator Different kinds of simulators may be provided. Target simulators simulate

the machine on which the program is to execute. User interface simulators are script-driven

programs that simulate multiple simultaneous user interactions.

