
Software engg Supra.S

1

1. Introduction

Objectives

The objectives of this chapter are to introduce software engineering and to provide

a framework for understanding the rest of the book. When you have read this

chapter you will:

1. understand what software engineering is and why it is important;

2. understand that the development of different types of software systems may

require different software engineering techniques;

3. understand some ethical and professional issues that are important for

software engineers

Contents

1.1 FAQs about software engineering

1.2 Professional and ethical responsibility

Software engg Supra.S

2

1.1 FAQs about software engineering

This section is designed to answer some fundamental questions about software

engineering.

Fig 1.1 summarizes the answers to the questions in this section

Software engg Supra.S

3

1.1.1 What is software?

software is a computer programs. It is not just the programs but also all associated

documentation and configuration data that is needed to make these programs

operate correctly.

A software system usually consists of

1. number of separate programs

2. configuration files- which are used to set up these programs

3. system documentation-which describes the structure of the system

4. user documentation- which explains how to use the system and web sites

for users to download information.

There are two fundamental types of software product:

1. Generic products: These are stand-alone systems that are produced by a

development organisation and sold on the open market to any customer who is able

To buy them.

Examples of this type of product include software for PCs such as

databases,

word processors

drawing packages

project management tools.

2. Customised (or bespoke) products: These are systems which are commissioned

by a particular customer.

A software contractor develops the software especially for that customer.

Examples of this type of software include control systems for electronic

devices, systems written to support a particular business process and air traffic

control systems.

Software engg Supra.S

4

An important difference between these types of software is that

 In generic products,

The organization that develops the software controls the software specification.

 custom products

The specification is usually developed and controlled by the organization that is

buying the software. The software developers must work to that specification.

1.1.2 What is software engineering?

Software engineering is an engineering discipline that is concerned with all aspects

of software production from the early stages of system specification to maintaining

the system after it has gone into use.

In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply theories,

methods and tools where these are appropriate, try to discover solutions to

problems even when there are no applicable theories

Engineers also recognise that they must work to organisational and financial

constraints.

2. All aspects of software production Software engineering is concerned with the

technical processes of software development also with activities such as software

project management and with the development of tools, methods and theories to

support software production.

Software engg Supra.S

5

1.1.3 What’s the difference between software engineering and computer

science?

computer science is concerned with the theories and methods that underlie

computers and software systems.

software engineering is concerned with the practical problems of producing

software. Some knowledge of computer science is essential for software engineers.

1.1.4 What is the difference between software engineering and system

engineering?

System engineering is concerned with all aspects of the development and

evolution of systems where software plays a major role. System engineering is

concerned with hardware development, policy and process design and system

deployment as well as software engineering.

Software engineering is part of the engineering process concerned with

developing the software, control, applications and databases in the system.

(System engineering=Software engineering+hardware+deployment+principles)

1.1.5 What is a software process?

A software process is the set of activities and associated results that produce a

software product.

There are four fundamental process activities/ generic activities ,These are:

1. Software specification where customers and engineers define the software to

be produced and the constraints on its operation.

Software engg Supra.S

6

2. Software development where the software is designed and programmed.

3. Software validation where the software is checked to ensure that it is what the

customer requires.

4. Software evolution where the software is modified to adapt it to changing

customer and market requirements.

1.1.6 What is a software process model?

A software process model is a simplified description of a software process that

presents one view of that process.

Process models include activities that are part Of the software process, software

products and the roles of people involved in software engineering.

Some examples of the types of software process model are:

1. A workflow model This shows the sequence of activities in the process along

with their inputs, outputs and dependencies. The activities in this model represent

human actions.

2. A dataflow or activity model This represents the process as a set of activities,

each of which carries out some data transformation. The activities here may

represent transformations carried out by people or by computers.

3. A role/action model this represents the roles of the people involved in the

software process and the activities for which they are responsible.

Software engg Supra.S

7

Three general models or paradigms of software development:

1. The waterfall approach This takes the above activities and represents them as

separate process phases such as requirements specification, software design,

implementation, testing and so on.

After each stage is defined it is ‘signed-off’, and development goes on to the

following stage.

2. Iterative development An initial system is rapidly developed from very abstract

specifications. This is then refined with customer input to produce a system that

satisfies the customer’s needs.

3. Component-based software engineering (CBSE) This technique assumes that

parts of the system already exist. The system development process focuses on

integrating these parts rather than developing them from scratch.

1.1.7 What are the costs of software engineering?

1. Distribution of costs across the different activities in the software process

depends on the process used and the type of software that is being developed.

2. If you assume that the total cost of developing a complex software system is 100

cost units then Figure 1.2 illustrates how these are spent on different process

activities.

Software engg Supra.S

8

Figure 1.2 Software engineering activity cost distribution

a) In the waterfall approach, the costs of specification, design,

implementation and integration are measured separately. System integration

and testing is the most expensive development activity. Normally, this is

about 40% of the total development costs but for some critical systems it is

likely to be at least 50% of the system development costs.

Software engg Supra.S

9

b) In iterative approach, there is no hard line between specification, design

and development. Specification costs are reduced because only a high-level

specification is produced before development in this approach.

Specification, design, implementation, integration and testing are carried out

in parallel within a development activity.

However, you still need an independent system testing activity once the

initial implementation is complete.

c) In Component-based software engineering has only been widely used for

a short Time development process.

Integration and testing costs are increased because you have to ensure that

the components that you use actually meet their specification and work as expected

with other components.

d) Development and evolution costs for long lifetime system-On top of

development costs, costs are also incurred in changing the software after it

has gone into use. The costs of evolution vary dramatically depending on the

type of system.

For long-lifetime software systems, such as control systems that may be

used for 10 years or more, these costs are likely to exceed the development costs

by a factor of 3 or 4, as illustrated in the bottom bar in Figure 1.3

Software engg Supra.S

10

3. Here products are usually developed from an outline specification, Specification

costs are relatively low. However, because they are intended for use on a range of

different configurations, they must be extensively tested.

4. Smaller business systems have a much shorter lifetime and correspondingly

reduced evolution costs. These cost distributions hold for customised software that

is specified by a customer and developed by a contractor.

1.1.8 What are software engineering methods?

A software engineering method is a structured approach to software development

whose aim is to facilitate the production of high-quality software in a cost-effective

way.

Methods include a number of different components (Figure 1.4).

Software engg Supra.S

11

1.1.9 What is CASE?

1. The acronym CASE stands for Computer-Aided Software Engineering. It

covers a wide range of different types of programs that are used to support

software process activities such as requirements analysis, system modelling,

debugging and testing.

2. All methods associated with CASE technology include

EDITORS- for the notations used in the method

ANALYSIS MODULES- which check the system model according to the method

rules

Software engg Supra.S

12

REPORT GENERATORS- to help create system documentation.

CODE GENERATOR- that automatically generates source code from the system

model and some process guidance for software engineers.

1.1.10 What are the attributes of good software?

1. Attributes reflect the quality of the software,its behavior while it is executing
and the structure and organisation of the source program and associated
documentation. Fig 1.5

Software engg Supra.S

13

1.1.11 What are the key challenges facing software engineering?

Software engineering faces three key challenges:

1. The heterogeneity challenge It is often necessary to integrate new Software

with older legacy systems written in different programming languages.

The heterogeneity challenge is the challenge of developing techniques for

building dependable software that is flexible enough to cope with this

heterogeneity.

2. The delivery challenge The delivery challenge is the challenge of shortening

delivery times for large and complex systems without compromising system

quality.

3. The trust challenge:The trust challenge is to develop techniques that

demonstrate that software can be trusted by its users.

1.2 Professional and ethical responsibility

1. Software engineers must behave in an ethical and morally responsible way if

they are to be respected as professionals. They should not use their skills and

abilities to behave in a dishonest way or in a way that will bring disrepute to the

software engineering profession.

Some of notion of professional responsibility are:

a). Confidentiality You should normally respect the confidentiality of your

employers or clients irrespective of whether a formal confidentiality agreement has

been signed.

Software engg Supra.S

14

b). Competence You should not misrepresent your level of competence. You

should not knowingly accept work that is outside your competence.

c). Intellectual property rights You should be aware of local laws governing the

use of intellectual property such as patents and copyright. You should be careful to

ensure that the intellectual property of employers and clients is protected.

d). Computer misuse You should not use your technical skills to misuse other

people’s computers. Computer misuse ranges from relatively trivial (game playing

on an employer’s machine, say) to extremely serious (dissemination of viruses).

2. ACM/IEEE code of ethics

a) .Organisations such as the ACM, the IEEE (Institute of Electrical and Electronic

Engineers) and the British Computer Society publish a code of professional

conduct or code of ethics.

b) .Members of these organisations undertake to follow that code when they sign

up for membership. Fig 1.6

Software engg Supra.S

15

Software engg Supra.S

16

2

Socio-technical systems

Contents

2.1 Emergent system properties

2.2 Systems engineering

2.3 Organisations, people and computer systems

2.4 Legacy systems

What is a system?

1. A system is a purposeful collection of interrelated components that work

together to achieve some objective.

2. A system may include software, mechanical, electrical and electronic hardware

and be operated by people.

3. Systems that include software fall into two categories:

a) Technical computer-based systems are systems that include hardware and

software components but not procedures and processes.

Examples of technical systems include televisions, mobile phones and most

personal computer software.

Individuals and organisations use technical systems for some purpose but

knowledge of this purpose is not part of the system.

Software engg Supra.S

17

Example, the word processor

I am using is not aware that is it being used to write a book.

b) Socio-technical systems include one or more technical systems but, crucially,

also include knowledge of how the system should be used to achieve some broader

objective.

These systems have defined operational processes,include people (the

operators) as inherent parts of the system, are governed by organisational policies

and rules and may be affected by external constraints such as national laws and

regulatory policies.

Essential characteristics of socio-technical systems are.

A). They have EMERGENT PROPERTIES :are properties of the

system as a whole associated with individual parts of the system.

Emergent properties depend on both the system components and the

relationships between them.

B). They are often NONDETERMINISTIC. This means that, when

presented with a specific input, they may not always produce the same

output.

The system’s behavior depends on the human operators, who do not always

react in the same way.

C). The extent to which the system supports ORGANISATIONAL

OBJECTIVES does not just depend on the system itself.

Software engg Supra.S

18

It also depends on the stability of these objectives, the relationships and

conflicts between organisational objectives and how people in the organisation

interpret these objectives.

2.1 Emergent system properties

1. properties of the system as a whole rather than properties that can be

derived from the properties of components of a system.

2. Emergent properties are a consequence of relationships between the

system components.

3. These emergent properties cannot be attributed to any specific part of the

system. Rather, they emerge only once the system components have been

integrated.

4. Examples of some emergent properties are shown in Figure 2.1.

5. There are two types of emergent properties:

a). Functional emergent properties appear when all the parts of a system

work together to achieve some objective.

For example, a bicycle has the functional property of being a transportation

device once it has been assembled from its components.

b). Non-functional emergent properties relate to the behaviour of the

system in its operational environment.

Examples of non-functional properties are reliability, performance, safety

and security. These are often critical for computer-based systems, as failure to

Software engg Supra.S

19

achieve some minimal defined level in these properties may make the system

unusable.

6. To illustrate the complexity of emergent properties, consider the property of

system

RELIABILITY. Reliability is always be considered at the system level rather than

at the individual component level.

a)The components in a system are interdependent, so failures in one

component can be propagated through the system and affect the operation of other

components.

Software engg Supra.S

20

b) There are three related influences on the overall reliability of a system:

Hardware reliability What is the probability of a hardware component

failing and how long does it take to repair that component?

Software reliability How likely is it that a software component will produce

an incorrect output? Software failure is usually distinct from hardware failure in

that software does not wear out.

Operator reliability How likely is it that the operator of a system will make

an error?

-All of these are closely linked. Hardware failure can generate spurious

signals that are outside the range of inputs expected by software.

-The software can then behave unpredictably.

-when system failures are occurring. These operator errors may further stress

the hardware, causing more failures, and so on.

-Thus, the initial, recoverable failure can rapidly develop into a serious

problem requiring a complete system shutdown.

7. however some properties are properties that the system should not exhibit

Safety-the system should not behave in an unsafe way

Security-the system should not permit un-authorised use

-measuring or assessing these properties is very hard.

Software engg Supra.S

21

2.2 Systems engineering

1. Systems engineering is the activity of specifying, designing,

implementing, validating, deploying and maintaining socio-technical systems.

2 .It is an activity concerned with the services that the system provides, the

constraints under which the system must be built and operated and the ways in

which the system is used to fulfill its purpose.

3. The phases of the systems engineering process are shown in Figure 2.2.

4. There are important distinctions between the system engineering process

and the software development process:

Software engg Supra.S

22

a).Limited scope for rework during system development Once some system

engineering decisions, such as the siting of base stations in a mobile phone system,

have been made, they are very expensive to change.

-One reason software has become so important in systems is that it allows

changes to be made during system development, in response to new

requirements.

b). Interdisciplinary involvement Many engineering disciplines may be involved

in system engineering. There is a lot of scope for misunderstanding because

different engineers use different terminology and conventions.

5. Figure 2.3 shows some of the disciplines that may be involve in the system

engineering team for an air traffic control (ATC) system that use radars and other

sensors to determine aircraft position.

Software engg Supra.S

23

2.2.1 System requirements definition

1. System requirements definitions specify what the system should do (its

functions) and its essential and desirable system properties. And involves

consultations with system customers and end-users.

2. This requirements definition phase usually concentrates on deriving three

types of requirement:

a) Abstract functional requirements The basic functions that the system

must provide are defined at an abstract level.

-More detailed functional requirements specification takes place at the sub-

system level.

For example, in an air traffic control system,

An abstract functional requirement would specify that a flight-plan database

should be used to store the flight plans of all aircraft entering the controlled

airspace.

b) System properties These are non-functional emergent system properties

such as availability, performance and safety. These nonfunctional system

properties affect the requirements for all sub-systems.

c). Characteristics that the system must not exhibit It is sometimes as

important to specify what the system must not do as it is to specify what the system

should do.

For example, if you are specifying an air traffic control system, you might

specify that the system should not present the controller with too much

information.

Software engg Supra.S

24

3. System objective- it is an important part of the requirements definition phase. It

is to establish a set of overall objectives that the system should meet.

a)-Here we define why the system is being procured for a particular environment.

To illustrate what this means, say you are specifying a system for an office

building to provide for fire protection and for intruder detection.

Functional objective:To provide a fire and intruder alarm system for the

building that will provide internal and external warning of fire or unauthorised

intrusion.

Organisational objectives :To ensure that the normal functioning of the

work carried out in the building is not seriously disrupted by events such as fire

and unauthorised intrusion

4. System requirement problems:

a) complex systems are usually developed to address wicked problems(A

‘wicked problem’ is a problem that is so complex and where there are so many

related entities that there is no definitive problem specification.)

-here the problems are not fully understood

-keep on changing as the system is being specified.

b) Hard to define non-functional requirements without knowing the

component structure of system.

(An extreme example of a ‘wicked problem’ is earthquake planning. No one can

accurately predict where the epicentre of an earthquake will be, what time it will

occur or what effect it will have on the local environment. We cannot therefore

Software engg Supra.S

25

completely specify how to deal with a major earthquake. The problem can only be

tackled after it has happened.)

2.2.2 System design

1. System design (Figure 2.4) is concerned with how the system functionality is to

be provided by the components of the system.

2. The activities involved in this process are:

a) Partition requirements: Here the requirements are analysed and organized

them into related groups.

b) Identify sub-systems :identify a set of sub-systems that can individually or

collectively meet the requirements. Groups of requirements are usually related to

sub-systems. sub-system identification may also be influenced by other

organizational or environmental factors.

c). Assign requirements to sub-systems :assign the requirements to subsystems.

Software engg Supra.S

26

d). Specify sub-system functionality -specify the specific functions provided by

each sub-system.

e).Define sub-system interfaces: You define the interfaces that are provided and

required by each sub-system. Once these interfaces have been agreed upon, it

becomes possible to develop these sub-systems in parallel.

As the double-ended arrows in Figure 2.4 imply, there is a lot of feedback and

iteration from one stage to another in this design process.

Spiral Model

1-As the design process continues, problems with existing requirements and new

requirements may emerge.

2-These linked processes is shown as a spiral, as shown in Figure 2.5

Software engg Supra.S

27

3-Starting in the centre, each round of the spiral may add detail to the requirements

and the design. And focus on new knowledge collected during the requirements

and design process .

2.2.3 System modelling

1. During the system requirements and design activity, systems may be modelled

as a set of components and relationships between these components.

Software engg Supra.S

28

2. These are normally illustrated graphically in a system architecture model that

gives overview of the system organisation.

3. The system architecture may be presented as a block diagram showing the major

sub-systems and the interconnections between these sub-systems.

4. For example, Figure 2.6 shows the decomposition of an intruder alarm system

into its principal components. The block diagram should be supplemented by brief

descriptions of each sub-system, as shown in Figure 2.7.

Software engg Supra.S

29

5. Here system has been decomposed into functional components.

Functional components are components that, when viewed from the perspective of

the sub-system

Figure 2.8 shows the architecture of a much larger system for air traffic control.

Several major sub-systems shown are themselves large systems. The arrowed lines

that link these systems show information flow between these sub-systems.

Software engg Supra.S

30

2.2.4 Sub-system development

1. During sub-system development, the sub-systems identified during system

design are implemented.

2. This involve starting another system engineering process for individual sub-

systems or, if the sub-system is software, a software process involving

requirements, design, implementation and testing.

Software engg Supra.S

31

3. sub-systems can be developed from scratch during the development process.

Normally, COTS sub-systems (commercial, off-the-shelf (COTS) systems) are

bought for integration into the system. It is cheaper to buy existing products than to

develop special-purpose components.

4. At this stage, the design activity phase is re-entered to accommodate a bought in

Component(COTS component).

5. Because COTS systems may not meet the requirements exactly .therefore slight

modifications are made for design phase.

6. Sub-systems are usually developed in parallel.

Problems involved

1.Lack of communication across implementation teams.

2.Any system changes proposal leads to extension of development because

of need for rework.

2.2.5 Systems integration

During the systems integration process, you take the independently developed

subsystems and put them together to make up a complete system.

1. Integration can be done using a ‘big bang’ approach,

where all the sub-systems are integrated at the same time.

2. Integration can be done using’ incremental integration’ approach,

Where sub-systems are integrated one at a time.

It is the best approach, for two reasons:

Software engg Supra.S

32

a). It is usually impossible to schedule the development of all the sub-

systems so that they are all finished at the same time.

b). Incremental integration reduces the cost of error location. If many sub-

systems are simultaneously integrated, an error that arises during testing may

be in any of these sub-systems.

When a single sub-system is integrated with an already working

system, errors that occur are probably in the newly integrated sub-system or

In the interactions between the existing subsystems and the new sub-system.

3. Once the components have been integrated, an extensive programme of system

testing takes place. This testing aimed at testing the interfaces between components

and the behaviour of the system as a whole.

2.2.6 System evolution

1. Large, complex systems have a very long lifetime. During their life, they are

changed to correct errors in the original system requirements and to implement

new requirements that have emerged.

2. System evolution, like software evolution is inherently costly for several

reasons:

a) Proposed changes have to be analysed very carefully from a business and a

technical perspective. Changes have to contribute to the goals of the system

and should not simply be technically motivated.

b). Because sub-systems are never completely independent, changes to one

subsystem may adversely affect the performance or behaviour of other

subsystems. Consequent changes to these sub-systems may therefore be needed.

Software engg Supra.S

33

c). As systems age, their structure typically becomes corrupted by change so

the costs of making further changes increases.

2.2.7 System decommissioning

1. System decommissioning means taking the system out of service after the end of

its useful operational lifetime.

For hardware systems this may involve disassembling and recycling materials or

dealing with toxic substances.

2. Software has no physical decommissioning problems, but some software may be

incorporated in a system to assist with the decommissioning process.

For example, software may be used to monitor the state of hardware components.

When the system is decommissioned, components that are not worn can therefore

be identified and reused in other systems.

2.3 Organisations, people and computer systems

1. Socio-technical systems are enterprise systems that are intended to help

deliver some organisational or business goal.

2. This might be to increase sales, reduce material used in manufacturing,

collect taxes, maintain a safe airspace, etc influenced by the organisation’s

policies and procedures and by its working culture.

3. The users of the system are people who are influenced by the way the

organisation is managed and by their interactions with other people inside and

outside of the organisation.

Software engg Supra.S

34

4. Human and organisational factors from the system’s environment that affect the

system design include:

a) Process changes Does the system require changes to the work processes in the

environment? If so, training will certainly be required. If changes are significant, or

if they involve people losing their jobs, there is a danger that the users will resist

the introduction of the system.

b). Job changes Does the system de-skill the users in an environment or cause

them to change the way they work? If so, they may actively resist the introduction

of the system into the organisation. Designs that involve managers having to

change their way of working to fit the computer system are often resented. The

managers may feel that their status in the organisation is being reduced by the

system.

c). Organisational changes Does the system change the political power structure

in an organisation? For example, if an organisation is dependent on a complex

system, those who know how to operate the system have a great deal of political

power.

2.3.1 Organisational processes

However, the development process is not the only process involved in systems

engineering. It interacts with the system procurement process and with the process

of using and operating the system. This is illustrated in Figure 2.9.

Software engg Supra.S

35

procurement process It is normally embedded within the organisation that will

buy and use the system (the client organisation).

-The process of system procurement is concerned with making decisions
about the best way for an organisation to acquire a system and deciding on the best
suppliers of that system.

Figure 2.10 shows the procurement process for both existing systems and systems that have to be
specially designed.

Software engg Supra.S

36

Some important points about the process shown in this diagram are:

1. Off-the-shelf components do not usually match requirements exactly. Therefore,

choosing a system means finding the closest match between the system

requirements and the facilities offered by off-the-shelf systems, then modify the

requirements and this can have knock-on effects on other sub-systems.

2. When a system is to be built specially, the specification of requirements acts as

the basis of a contract for the system procurement. It is therefore a legal, as well as

a technical, document.

3. After a contractor to build a system has been selected, there is a contract

negotiation period where negotiation to further changes to the requirements and

issues such as the cost of changes to the system are discussed.

Development process Complex systems are usually developed by a different

organization (the supplier) from the organization that is procuring the

system(organization buy the sub-system from different supplier organization. The

reason for this is that the procurer’s business is rarely system development so its

employees do not have the skills needed to develop complex systems themselves).

1-This supplier, who is usually called the principal contractor, may contract

out the development of different sub-systems to a number of sub-contractors.

2-For large systems, such as air traffic control systems, a group of suppliers

may form a consortium to bid for the contract.

3- The consortium should include all of the capabilities required for this type

of system, such as computer hardware suppliers, software developers, peripheral

suppliers and suppliers of specialist equipment .

Software engg Supra.S

37

4-The procurer deals with the contractor rather than the sub-contractors so

that there is a single procurer/supplier interface.

5-The sub-contractors design and build parts of the system to a specification

that is produced by the principal contractor. Once completed, the principal

contractor integrates these different components and delivers them to the customer

buying the system.

6-Depending on the contract, the procurer may allow the principal contractor

a free choice of sub-contractors or may require the principal contractor to choose

sub-contractors from an approved list.

Operational processes are the processes that are involved in using the system for

its defined purpose. For example, operators of an air traffic control system follow

specific processes when aircraft enter and leave airspace so on

1-For new systems, these operational processes have to be defined and

documented during the system development process.

2-Operators may have to be trained and other work processes adapted to

make effective use of the new system.

3-The key benefit of having people in a system is that people have a unique

capability of being able to respond effectively to unexpected situations even when

they have never had direct experience of these situations.

4-Operators also use their local knowledge to adapt and improve processes.

5-designers should design operational processes to be flexible and adaptable.

The operational processes should not be too constraining, they should not require

Software engg Supra.S

38

operations to be done in a particular order. So that they can respond for operational

errors effectively.

2.4 Legacy systems

Because of the time and effort required to develop a complex system, large

computerbased systems usually have a long lifetime.

-For example, military systems are often designed for a 20-year lifetime.

It is sometimes too expensive and too risky to discard such business critical

systems after a few years of use. Their development continues throughout their life

with changes to accommodate new requirements, new operating platforms, and so

forth.

Definition: Legacy systems are socio-technical computer-based systems that have

been developed in the past, often using older or obsolete technology.

1. These systems include not only hardware and software but also legacy processes

and procedures—old ways of doing things that are difficult to change because they

rely on legacy software.

2. Changes to one part of the system inevitably involve changes to other

components,

3. Legacy systems are often business-critical systems. They are maintained

because it is too risky to replace them.

For example, for most banks the customer accounting system was one of their

earliest systems.

Software engg Supra.S

39

4. Figure 2.11 illustrates the logical parts of a legacy system and their

relationships:

a). System hardware In many cases, legacy systems have been written for

mainframe hardware that is no longer available, that is expensive to maintain and

that may not be compatible with current organisational IT purchasing policies.

b). Support software The legacy system may rely on a range of support

software from the operating system and utilities provided by the hardware

manufacturer through to the compilers used for system development. Again, these

may be obsolete and no longer supported by their original providers.

c). Application software The application system that provides the business

services is usually composed of a number of separate programs that have been

developed at different times. Sometimes the term legacy system means this

application software system rather than the entire system.

Software engg Supra.S

40

d). Application data These are the data that are processed by the application

system. This data may be inconsistent and may be duplicated in several files.

e). Business processes These are processes that are used in the business to

achieve some business objective. Business processes may be designed around a

legacy system and constrained by the functionality that it provides.

An example of a business process in an insurance company would be issuing

an insurance policy.

f). Business policies and rules These are definitions of how the business

should be carried out and constraints on the business. Use of the legacy

applicationsystem may be embedded in these policies and rules.

5. An alternative way of looking at these components of a legacy system is as a

series of layers, as shown in Figure 2.12.

a) Each layer depends on the layer immediately below it and interfaces with

that layer. If interfaces are maintained, then you should be able to make

changes within a layer without affecting either of the adjacent layers.

Software engg Supra.S

41

b) Here changes to one layer of the system may require consequent changes to

layers that are both above and below the changed level. The reasons for this are:

1. Changing one layer in the system may introduce new facilities, and higher

layers in the system may then be changed to take advantage of these facilities.

For example, a new database introduced at the support software layer may

include facilities to access the data through a web browser, and business processes

may be modified to take advantage of this facility.

2.Changing the software may slow the system down so that new hardware is

needed to improve the system performance. The increase in performance from the

new hardware may then mean that further software changes which were previously

impractical become possible.

3.It is often impossible to maintain hardware interfaces, especially if a

radical change to a new type of hardware is proposed.

For example, if a company moves from mainframe hardware to client-

server systems these usually have different operating systems. Major changes to

the application software may therefore be required.

