Software engg | Supra.S

8" unit
25. M anagement

Contents

25.1 Selecting staff

25.2 Motivating people

25.3 Managing groups

25.4 The People Capability Maturity Mode

» The people working in a software organisation are its greatest assets. They represent
intellectual capital, and it is up to software managers to ensure that the organization
gets the best possible return on itsinvestment in people.

> Effective management is therefore about managing the people in an organisation.
Project managers have to solve technical and nontechnical problems by using the
peoplein their team in the most effective way possible. They have to motivate people,
plan and organise their work and ensure that the work is being done properly.

» Poor management of people is one of the most significant contributors to project
failure.

Four critical factorsin people management:

1. Consistency People in a project team should all be treated in a comparable way. people
should not feel that their contribution to the organisation is underval ued.

2. Respect Different people have different skills and managers should respect these
differences. All members of the team should be given an opportunity to make a contribution.
3. Inclusion It isimportant to develop a working environment where al views, even those of
the most junior staff should feel that, others listen to them and take account of their
proposals.

4. Honesty As a manager, he should always be honest about what is going well and what is
going badly in the team. He should also be honest about level of technical knowledge and be
willing to defer to staff with more knowledge when necessary.

——————————
1

Software engg | Supra.S

25.1 Selecting staff

One of the most important project management tasks is team selection.

The decison on who to appoint to a project is usualy made using three types of
information:

1. Information provided by candidates about their background and experience (their
résumé or CV). This is usualy the most reliable evidence to judge whether candidates are
likely to be suitable.

2. Information gained by interviewing candidates. Interviews can give a good impression
of whether a candidate is a good communicator and whether he or she has good social skills.
Consequently, interviews are not a reliable method for making judgements of technical
capabilities.

3. Recommendations from people who have worked with the candidates. This can be
effective when selection team know the people making the recommendation. Otherwise, the
recommendations cannot be trusted.

Thefactorsthat influence choosing a staff. are shown in Figure 25.2.

25.2 Motivating people

1. Motivation means organising the work and the working environment so that people are
stimulated to work as effectively as possible.

2. Maslow (Maslow 1954) suggests that people are motivated by satisfying their needs and
that needs are arranged in a series of levels, as shown in Figure 25.3.

Figure 25.3 Human A
needs herarchy Self- /N

realisation needs L'H,I\
.l.n’

f I.'l,'
/ Esteemn needs \
.-" b

/ Sodal needs %
/ Safiety needs h !

i | Physiological needs \

Software engg | Supra.S

3. Thelower levels of this hierarchy represent fundamental needs for food, sleep.

4. Safety needs as the need to feel secure in an environment.

5. Socia needs are concerned with the need to feel part of asocial grouping.

6. Esteem needs are the need to feel respected by others, and self-realisation needs are
concerned with personal development.

Figure 25.2 Factors

- Fary lanatio
governing staff = =y "
s8echion Apphication domain For a project to develop a successful system, the developars
BXPENIENCE must understand the application domain, | & essential that
some members of a development team have some domain
BADETIENCE.

Platform expenence This may be sigmificant f bowetevel programming s involved.
Citherwise, this s not usually a critical atinbute.

Progrmming

language experience This is nommally only significant for short-duration projects
where there i not enough time to learn a new language.
While learning a language it=elf is not difficult, it takes
several months to become proficent in using the assodated
[ibranes and components,

Problem solving This s very important for sofiware engineers who constantly

abifity have 1o solve fechnical problems. However, it 5 almost
impossible to judge without knowing the wark of the
potential team member.

Educational This may provide an indicator of what the candidate knows

background and his or her ability to leam. This facior becomes
increasinghy irelevant as engineers gain experience acoss &
rangs of projects.

Communication Project staff must be able to communicate orally and in

ability writing with other engineers, managers and customers.

Adaptability Adaptability may be judged by looking at the expenence that

candidates have had. This i an important atinbute, as it
ndicates an ability to beam.

Attitude Project staff should have a positive attitude toward their
work and should be willing to leam new skills. This is an
Impartant attribute but often very difficult to assess,

Personality This & an important attnbute but difficult to assess.
Candidates must be reasonably compatible with other team
members. No particular type of personality s more or less
suited to software enginesrng

Software engg | Supra.S

7. Therefore, ensuring the satisfaction of social, esteem and self-realisation needs is most
significant from a management point of view.

a). To satisfy socia needs, need to give people time to meet their co-workers and to
provide places for them to meet. This is relatively easy when all of the members of a
development team work in the same place but, increasingly, team members are not located in
the same building or even the same town or state.

Electronic communications such as e-mail and teleconferencing may be used to support
this remote working. However electronic communications do not really satisfy social needs.

If team is distributed, arrange periodic face-to-face meetings. Through this direct
interaction, people become part of a social group and may be motivated by the goals and
priorities of that group.

b). to satisfy esteem needs, need to show people that they are valued by the organisation.
Public recognition of achievements is a simple yet effective way of doing this. Obviousdly,
people must also fed that they are paid at alevel that reflects their skills and experience.

c). Findly, to satisfy self-realisation needs, need to give people responsibility for their
work, assign them demanding (but not impossible) tasks and provide a training programme
where people can develop their skills.

8. Classification of professionals (Bass and Dunteman, 1963) into three types:

a). Task-oriented people are motivated by the work they do. In software engineering,
they are technicians who are motivated by the intellectual challenge of software
devel opment.

b). Self-oriented people are principally motivated by personal success and recognition.
They are interested in software development as a means of achieving their own goals. This
does not mean that these people are selfish and think only of their own concerns. Rather, they
often have longer-term goals such as career progression, that motivate them. They wish to be
successful in their work to help realise these goals.

c). Interaction-oriented people are motivated by the presence and actions of coworkers.
As software development becomes more user-centered, interactionoriented individuals are

becoming more involved in software engineering.

Software engg | Supra.S

25.3 Managing Groups

1. Most professiona software is developed by project teams ranging in size from two to
several hundred people.

2. However, as it is clearly impossible for all these people to work together on a single
problem, these large teams are usually split into a number of groups. Each group is responsible
for part of the overall system.

3. Putting together a group that works effectively is a critical management task. It is
obviously important that the group should have the right balance of technical skills, experience
and personalities.

4. There are anumber of factorsthat influence group working:

a). Group composition Is there the right balance of skills, experience and personalitiesin
the team?

b). Group cohesiveness Does the group think of itself as a team rather than as a
collection of individuals who are working together?

¢). Group communications Do the members of the group communicate effectively with
each other?

d). Group organisation Is the team organised in such a way that everyone feels valued

and is satisfied with his or her role in the group?

25.3.1 Group composition

1. A group that has complementary personalities may work better than a group selected
solely on technical ability.

2. People who are motivated by the work are likely to be the strongest technically.

3. People who are self-oriented will probably be best at pushing the work forward to finish
the job.

4. People who are interaction-oriented help facilitate communications within the group.

5. It is sometimes impossible to choose a group with complementary personalities. In that
case, the project manager has to control the group so that individual goals do not transcend
organisational and group objectives.

For example, say an engineer is given a program design for coding and notices possible

design improvements. If he implements these improvements without understanding the

Software engg | Supra.S

rationale for the original design, they might have adverse implications for other parts of the
system. If al the members of the group are involved in the design from the start, they will
understand why design decisions have been made.

6. Roles of the group leader

a) He or she may be responsible for providing technical direction and project
administration.

b) Group leaders must keep track of the day-to-day work of their group.

c) Ensure that people are working effectively and work closely with project
managers on project planning.

7. Leaders are normally appointed and report to the overall project manager. However,
the appointed leader may not be the real leader of the group as far as technical matters are
concerned.

8. The group members may ook to another group member for leadership. He or she may
be the most technically competent engineer or may be a better motivator than the appointed
group leader.

25.3.2 Group cohesiveness

1. In a cohesive group, members think of the group as more important than the individual in

2. They attempt to protect the group, as an entity, from outside interference. This makes the
group robust and able to cope with problems and unexpected situations.
3. The advantages of a cohesive group are:

a). A group quality standard can be developed Because this standard is established by
consensus, it ismore likely to be observed than external standards imposed on the group.

b). Group members work closely together People in the group learn from each other.

c). Group members can get to know each other’s work Continuity can be maintained if a
group member leaves. Others in the group can take over critical tasks and ensure that the
project is not unduly disrupted.

d). Egoless programming can be practised Programs are regarded as group property

rather than personal property.

Software engg | Supra.S

Advantages of Egoless programming
» Thus Group cohesivenessisimproved because all members feel that they have
a shared responsibility for the software. The idea of egoless programming is
fundamental to extreme programming.
» In extreme programming, constant improvement of the code in the system,
irrespective of who wrote that code.
» egoless programming also improves communications within the group.
» It encourages uninhibited discussion without regard to status, experience or
gender
4. Group cohesiveness depends on many factors, including the organisational culture and the
personalitiesin the group.
5. Managers can encourage cohesiveness in a number of ways.

a) They may organise socia events for group members and their families;

b) They may try to establish a sense of group identity by naming the group and
establishing a group identity and territory;

c) they may get involved in explicit groupbuilding activities such as sports and games.

6. One of the most effective ways to promote cohesion is to ensure that group members are
treated as responsible and trustworthy and are given access to organizational information.
7. Strong, cohesive groups, however, can sometimes suffer from two problems:

a). Irrational resistance to a leadership change If the leader of a cohesive group has to
be replaced by someone outside of the group, the group members may band together against
the new leader. Group members may spend time resisting changes proposed by the new
group leader with a consequent loss of productivity. Whenever possible, new leaders are
therefore best appointed from within the group.

b). Groupthink is when the critical abilities of group members are eroded by group
loyaties. To avoid groupthink, organise formal sessions in which group members are
encouraged to gquestion decisions that have been made. Outside experts may be introduced to

review the group’s decisions.

Software engg | Supra.S

25.3.3 Group communications
1. Good communication between members of a software development group is essential.
2. The group members must exchange information on the status of their work, the design
decisions that have been made and changes to previous decisions that are necessary.
3. Some key factors that influence the effectiveness of communication are:
a). Group size As a group increases in size, ensuring that all members communicate
effectively with each other becomes more difficult.
b). Group structure People in informally structured groups communicate more
effectively than people in groups with aformal, hierarchical structure.
In hierarchical groups, communications tend to flow up and down the hierarchy. People
at the same level may not talk to each other.
c). Group composition People with the same personadity types may clash and
communications may be inhibited.
d). The physical work environment The organisation of the workplace is a major factor

in facilitating or inhibiting communications.

25.3.4 Group organisation

1. Small programming groups are usually organised in afairly informal way. The group

leader gets involved in the software devel opment with the other group members.

2. A technical leader may emerge who effectively controls software production.

3. Inaninformal group, the work to be carried out is discussed by the group as awhole,

and tasks are allocated according to ability and experience.

4. More senior group members may be responsible for the architectural design. However,
detailed design and implementation is the responsibility of the team member who is allocated
to aparticular task.

5. Informal groups can be very successful, particularly when the majority of group
members are experienced and competent

6. To make the most effective use of highly skilled programmers, Baker (Baker, 1972)
and others (Aron, 1974; Brooks, 1975) suggest that teams should be built around an
individual, highly skilled chief programmer.

Software engg | Supra.S

7. The underlying principle of the chief programmer team is that skilled and
experienced staff should be responsible for all software devel opment.

8. They should focus on the software to be developed and should not get involved in
external meetings.

9. Disadvantages of chief programmer teams. But the chief programmer team
organisation has serious problems because it is over-dependent on the chief programmer and
thelr assistant.

10. Other team members, who are not given sufficient responsibility, become
unmotivated because they fedl their skills are underused.

25.3.5 Working environments

1. The workplace has important effects on people’s performance and their job
satisfaction.

2. Psychological experiments have shown that behaviour is affected by room size,
furniture, equipment, temperature, humidity, brightness and quality of light, noise and the
degree of privacy available.

3. Group behaviour is affected by architectural organisation and telecommunication
facilities.

4. Communications within a group are affected by the building architecture and the
structure of the workspace.

5. The most important environmental factorsidentified in the study were:

a). Privacy Programmers require an area where they can concentrate and work

without interruption.

b). Outside awareness People prefer to work in natural light and with a view of the
outside environment.

c). Personalisation Individuals adopt different working practices and have different
opinions on decor. The ability to rearrange the workplace to suit working practices and to
personalise that environment is important.

In short, people like individual offices that they can organise to their taste and needs.

Software engg | Supra.S

6. Development groups need areas where al members of the group can get together and
discuss their project, both formally and informally.

7. Meeting rooms must be able to accommodate the whole group in privacy.

8. McCue suggested grouping individual offices round larger group meeting rooms

(Figure 25.7) was the best way to reconcile these conflicting requirements.

Figurs 25.7 Offhice = - .
and mesfing rosm Maeting
Erouping P
Office | T l Office Window
. el !
Elﬂ"lI:E | I 1 - D'HFEE
| | 4
Offece Office
fe 4 | Shared
i documentation
Oifice Difice

.| 8

25.4 The People Capability Maturity M odel
1. The Software Engineering Institute (SEI) in the United States is engaged in a longterm
progranme of software process improvement. Part of this programme is the Capability
Maturity Model (CMM) for software processes, to support this model; they have also
proposed a People Capability Maturity Model (PCMM)
2, The P-CMM can be used as a framework for improving the way in which an organisation
manages its human assets.
3. Likethe CMM, the P-CMM is afive-level model, as shown in Figure 25.9.
4. Thefivelevelsare:
a). Initial Ad hoc, informal people management practices
b). Repeatable Establishment of policies for developing the capability of the staff
c). Defined Standardisation of best people management practice across the organisation
d). Managed Quantitative goals for people management
€). Optimizing Continuous focus on improving individual competence and workforce

motivation

10

Software engg | Supra.S

5. Curtis state that the strategic objectives of the P-CMM are:

a). To improve the capability of software organisations by increasing the capability of
their workforce

b) To ensure that software development capability is an attribute of the organization
rather than of afew individuals

c¢) To align the motivation of individuals with that of the organisation

d) To retain valuable human assets (i.e., people with critical knowledge and skills) within
the organisation.
6. The P-CMM is apractical tool for improving the management of people in an organisation
because it provides a framework for motivating, recognising, standardizing and improving
good practice.
7. It reinforces the need to recognise the importance of people as individuals and to develop
their capabilities.
8. it is a helpful guide that can lead to significant improvements in the capability of
organisations to produce highquality software.
9. The complete application of this model is very expensive and probably unnecessary for

most organisations.

11

Software engg |

Supra.S

Optimizing
Continuously improve meﬂ'luds Continuous workforce innovation
far darelup:ﬁ personal and Coaching
organisational competence

Personal competency development

Managed
Quantitaively manage Organisational performance alignment
organisational growif in Organisational competency management
workforce capabilities and Tl
establish competency-hased eam-based practices
- Team hllnldlng
Mentonng
Defined
\dentily primary
:ﬁmpmalim and f:amnp::uw Eﬂ: .
BNy ampetancy pra
actvitis with them Career development
Competency development
Workforce planning
Knawledge and skills analysis
Repeatable
Instill basic .
disciphine into Compensation
worklorce Training
Actinms Performance management
Staffing
Communication
Work environment
Iniial
Figure 5.0 The
People Capability
Maturity Model

12

Software engg | Supra.S

2" chapter
26 Software cost estimation

Contents

26.1 Software productivity

26.2 Estimation techniques

26.3 Algorithmic cost modelling
26.4 Project duration and staffing
| ntroduction

This chapter involves, associating estimates of effort and time with the project activities.
Estimation involves answering the following questions:

1. How much effort is required to complete each activity?
2. How much calendar time is needed to compl ete each activity?
3. What isthe total cost of each activity?

There are three parameters involved in computing the total cost of a software development
project:

» Hardware and software costs including maintenance
« Travel and training costs
« Effort costs (the costs of paying software engineers).

Organisations compute effort costs in terms of overhead costs where they take the total cost of
running the organisation and divide this by the number of productive staff. Therefore, the
following costs are all part of the total effort cost:

1. Costs of providing, heating and lighting office space

2. Costs of support staff such as accountants, administrators, system managers, cleaners and
technicians

3. Costs of networking and communications
4. Costs of central facilities such asalibrary or recreationa facilities

5. Costs of Social Security and employee benefits such as pensions and health insurance.

13

Software engg | Supra.S

Software costing should be carried out objectively with the aim of accurately predicting the
cost of developing the software. If the project cost has been computed as part of a project bid to a
customer, a decision then has to be made about the price quoted to the customer.

Software pricing must take into account broader organisational, economic, political and
business considerations, such as those shown in Figure 26.1

Figure 26.1 Factors
affeting software
pricing

Fattor Deseription

Market opportunity A development organisation may quate a low pnce
because it wishes to move into a new segment of the
software market. Accepting a low profit on one project
may g the organisation the opportunity to make a
greater profit [ater, The expenence gamned may also help it
develop new produds

Cost estimate ff an organtsation & unsure of its cost estimate, it may
uncertainty Increase fts pce by some contingency over and above s
normal profi.

Contractual terms A customer may be willing to allow the developer to
refain ownership of the sowrce code and reuse it in other
projects. The pice charged may then be less than if the
software source code is handad over to the customer.

Requirements volatility If the requirements are likely to change, an organisation
may hower its price to win a contract. After the contract 15
awarded, high prices can be charged for changes to the
requirements.

Financial health Developers in finanoal difficulty may lower their pnce to
gain a contract It s better to make a smaller than normal
profit or break even than to go out of business.

14

Software engg | Supra.S

26.1 Softwar e productivity

1. We can measure productivity in a manufacturing system by counting the number of units

that are produced and dividing this by the number of person-hours required to produce them.

2. A project manager, estimate the productivity of software engineers. a project manager may
need these productivity estimates to define the project cost or schedule, to inform investment

decisions or to assess whether process or technology improvements are effective.

3. Productivity estimates are usually based on measuring attributes of the software and

dividing this by the total effort required for development.
4. There are two types of metric that have been used:
a). Size-related metrics These are related to the size of some output from an activity.
The most commonly used size-related metric is lines of delivered source code.

Other metrics that may be used are the number of delivered object code instructions or

the number of pages of system documentation.

b). Function-related metrics these are related to the overall functionality of the delivered
software. Productivity is expressed in terms of the amount of useful functionality produced in

some given time.
Function points and object points are the best-known metrics of this type.

Size-related metrics to measur e softwar e productivity

1. The approach first developed to measure software productivity, when most programming
was in FORTRAN, assembly language or COBOL

a). Lines of source code per programmer-month (LOC/pm) is a widely used software

productivity metric.

15

Software engg i Supra.S

LOC/pm= (total number of lines of source code that are delivered)/ (total time in
programmer months
required to complete the

proj ect)

b). This time therefore includes the time required for all other activities (requirements,

design, coding, testing and documentation) involved in software devel opment.

2. However, programs in languages such as Java or C++ consist of declarations, executable
statements and commentary. They may include macro instructions that expand to several lines of

code. There may be more than one statement per line.

3. Comparing productivity across programming languages can also give misleading
impressions of programmer productivity.

4. The more expressive the programming language, the lower the apparent productivity.

5. This anomaly arises because all software development activities are considered together
when computing the development time, but the LOC metric applies only to the programming
process.

6. Therefore, if one language requires more lines than another to implement the same

functionality, productivity estimates will be anomalous.

For example, consider an embedded real-time system that might be coded in 5,000 lines of
assembly code or 1,500 lines of C. The development time for the various phases is shown in
Figure 26.2.

RS fwni Deip oy T Docomesaion

development fimes il G B ?
Assembly code Tweeks Sweeks Bweeks 10wesks 2 weels
Highlevel language Jwesks GSwesks dwesks Guwesks 2 wesks

Size Effort Productivity

Assembly code G000 mes 2Bweeks 714 lines/month
High-level language 1500 nes 20 weeks 300 fines/manth

Software engg | Supra.S

The assembler programmer has a productivity of 714 liness/month and the high-level
language programmer less than half of this— 300 lines’month. Y et the development costs for the
system developed in C arelower and it isdelivered earlier.

7. An aternative to using code size as the estimated product attribute is to use some measure
of the functionality of the code. This avoids the above anomaly, as functionality is independent

of implementation language.

function-related metrics to measur e softwar e productivity

» Using function points

1. This involves brief description and comparison of severa function-based measures. The

best known of these measures is the function-point count.

2. Productivity is expressed as the number of function points that are implemented per

person-month.

3. We can compute the total number of function points in a program by measuring or

estimating the following program features:

external inputs and outputs;
user interactions;

externa interfaces;

Y V VYV V

Files used by the system.

4. Some inputs and outputs, interactions and so on are more complex than others and take
longer to implement. The function-point metric takes this into account by multiplying the initial

function-point estimate by a complexity-weighting factor.

5. We should assess each of these features for complexity and then assign the weighting

factor that varies from 3 (for simple external inputs) to 15 for complex internal files.

6. Then compute the so-called unadjusted function-point count (UFC) by multiplying each
initial count by the estimated weight and summing all values.

17

Software engg i Supra.S

UFC = % (number of elements of given type) » (weight)

7. Then modify this unadjusted function-point count by additional complexity factors that
are related to the complexity of the system as awhole.

8. This takes into account the degree of distributed processing, the amount of reuse, the
performance, and so on. The unadjusted function-point count is multiplied by these project
complexity factors to produce a fina function-point count for the overall system. They are

effectivein practical situations

9.Disadvantages

1. the function-point count in a program depends on the estimator. Different people have
different notions of complexity. There are therefore wide variations in function-point count
depending on the estimator’s judgement and the type of system being devel oped.

2. It is harder to estimate function-point counts for event-driven systems. For this reason,
some people think that function points are not a very useful way to measure software

productivity.

> Using Object points

1.0bject points are an alternative to function points. They can be used with languages such as

database programming languages or scripting languages.
2. the number of object pointsin aprogram is aweighted estimate of:

a). The number of separate screens that are displayed Simple screens count as 1 object
point, moderately complex screens count as 2, and very complex screens count as 3 object

points.

b). The number of reports that are produced For ssimple reports, count 2 object points,
for moderately complex reports, count 5, and for reports that are likely to be difficult to produce,

count 8 object points.

18

Software engg | Supra.S

¢). The number of modules in imperative programming languages such as Java or C++
that must be developed to supplement the database programming code Each of these modules
counts as 10 object points. Object points are used in the COCOMO Il estimation model (where
they are called application points).

3. The advantage of object points over function points is that they are easier to estimate
from a high-level software specification.

> Object points are only concerned with screens, reports and modules in conventional
programming languages.
» They are not concerned with implementation details, and the complexity factor
4. Function-point and object-point counts can be used in code-estimation models.
» Thefinal code sizeis calculated from the number of function pointsin a code.
» AV C(the average number of lines of code) in a particular language required to
implement a function point can be estimated.
» Vaues of AVC vary from 200 to 300 LOC/FP in assembly language to 2 to 40
LOC/FP for a database programming language such as SQL.

» The estimated code size for a new application is then computed as follows:
Codesize= AVC X Number of function points

The programming productivity of individuals working in an organisation is affected by a

number of factors. Some of the most important of these are summarized in Figure 26.3.

19

Software engg i Supra.S

Figura 263 Factors
affecting software
EngineEnng

Factor Description

i Application domain Knowledge of the application domain is essential for
prECEY BXpEfience effective software development. Engineers whao already
understand a domain are likely to be the most productive.

Process quality The development process used can have a significant effect
on productiity. This is coverad in Chapter 28,

Project s The arger a project, the maore time required for t=am
communications. Less time is available for development so
indrvidual productivity is reduced.

Technology support Good support technology such as CASE tools and
configuration management systems can Improve
productivity.

Working environment A | discussed in Chapter 25, a quiet working environment
with private work areas contributes to improved

productivty.
26.2 Estimation techniques

1. There is no simple way to make an accurate estimate of the effort required to develop a

software system.

2. We may have to make initial estimates on the basis of a high level user requirements
definition. The software may have to run on unfamiliar computers or use new development

technology.

3. The people involved in the project and their skills will probably not be known. All of these
mean that it is impossible to estimate system development costs accurately at an early stagein a
project.

4. Nevertheless, organisations need to make software effort and cost estimates. To do so, one

or more of the techniques described in Figure 26.4 may be used.
5. All of these techniques rely on experience-based judgements by project managers .

6. However, there may be important differences between past and future projects.

20

Software engg i Supra.S

pssiiil
estimation Lt

ectyicues Agorthmic cost A model is developed using historical cost information that
modelling relates some software metnc (usually ifs size) to the projed
cost. An estimate is made of that metric and the modal
predicts the effort required,

Expert judgement Several axparts on the proposed software develapment
techniques and the application domain are consulted. They
each estimate the project cost. These estimates are compared
and discussed. The estimation process ierates until an agreed
estimate s reached.

Estimation by This technique s applicable when other projects in the same

analogy application domain have been completed. The cost of & new
project is estimated by analogy with these completed projects.
Myers (Myers, 1989) gves a very clear descption of ths
approach,

Parkinson's law Parkinson's Law states that work expands to fill the time
avallable. The cost is determined by avallable resources rather
than by objective assessmant. If the software has o be

delvered in 12 months and 5 people are available, the effort
required 15 estimated to be 60 parson-manths.

Pnangtowan The software cost 15 estimated fo be whatever the customer
has available to spend on the pmject The estimated effort
depends on the customer’s budget and not on the software
functionality.

7. Some examples of the changes that may affect estimates based on experience include:

a) Distributed object systems rather than mainframe-based systems

b) Useof web services

c) Useof ERP or database-centred systems

d) Useof off-the-shelf software rather than original system devel opment

e) Development for and with reuse rather than new development of all parts of a System
f) Development using scripting languages such as TCL or Perl (Ousterhout, 1998)

21

Software engg | Supra.S

g) The use of CASE tools and program generators rather than unsupported software

devel opment.

8. If project managers have not worked with these techniques, their previous experience may

not help them estimate software project costs.

9. We can tackle the approaches to cost estimation shown in Figure 26.4 using either a top-
down or a bottom-up approach.

A top-down approach

a) It starts at the system level by examining the overall functionality of the product and
how that functionality is provided by interacting sub-functions.
b) The costs of system-level activities such as integration, configuration management

and documentation are taken into account.
The bottom-up approach

a) It starts at the component level. The system is decomposed into components.

b) Then estimate the effort required to develop each of these components.

¢) then add these component costs to compute the effort required for the whole system
development.

The disadvantages of the top-down approach are the advantages of the bottom-up approach and

viceversa

» Top-down estimation can underestimate the costs of solving difficult technical
problems associated with specific components such as interfaces to nonstandard
hardware. Thereis no detailed justification of the estimate that is produced.

» By contrast, bottom-up estimation produces such a justification and considers
each component. However, this approach is more likely to underestimate the costs
of system activities such as integration.

> Bottom-up estimation is also more expensive.

10 Each estimation technique has its own strengths and weaknesses. For large projects,

therefore, we should use several cost estimation techniques and Compare their results.

———————————
22

Software engg | Supra.S

11. These estimation techniques are applicable where a requirements document for the

system has been produced. This should define all users and system requirements.

12. Sometimes the costs of many projects must be estimated using only incomplete user

requirements for the system.

13. Under these circumstances, “pricing to win” isacommonly used strategy. The notion of

pricing to win may seem unethical and unbusinesslike.

> A project cost is agreed on the basis of an outline proposal.

> Negotiations then take place between client and customer to establish the detailed
project specification.

» This specification is constrained by the agreed cost.

» Thebuyer and seller must agree on what is acceptable system functionality.

26.3 Algorithmic cost modelling

1. Algorithmic cost modelling uses a mathematical formula to predict project costs based on
estimates of the project size, the number of software engineers, and other process and product
factors.

2. An agorithmic cost model can be built by analysing the costs and attributes of completed

projects and finding the closest fit formulato actual experience.
3. Algorithmic cost models are primarily used to make estimates of software development costs.

In its most genera form, an algorithmic cost estimate for software cost can be expressed as.

Effort = A = Size® = M

Where

A= isaconstant factor that depends on local organisational practices and the typeof software that
is devel oped.

23

Software engg | Supra.S

Size = may be either an assessment of the code size of the software or a functionality estimate

expressed in function or object points.
Exponent B= The value of exponent B usually lies between 1 and 1.5.
M= It isamultiplier made by combining process, product and development attributes.

4. Exponential B, This reflects the fact that costs do not normally increase linearly with project
size. As the size of the software increases, extra costs are incurred.Therefore, the larger the

system, the larger the value of this exponent.
5. all agorithmic models suffer from the fundamental difficulties they are:
a). It isoften difficult to estimate Size at an early stage in a project when only a

specification is available. Function-point and object-point estimates are easier to produce than

estimates of code size but are often still inaccurate.

b). The estimates of the factors contributing to B and M are subjective.
Estimates vary from one person to another, depending on their background and experience with

the type of system that is being devel oped.

6. If we use an algorithmic cost estimation model, we should develop a range of estimates
(worst, expected and best) rather than a single estimate and apply the costing formula to all of

them.

7. Estimates are most likely to be accurate when we understand the type of software that is being

developed. when programming language and hardware choices are predefined.

8. The accuracy of the estimates produced by an algorithmic model depends on the system
information that is available. As the software process proceeds, more information becomes

available so estimates become more and more accurate.
9. If theinitia estimate of effort required is x months of effort, this range may be from 0.25x

to 4x when the system is first proposed. This narrows during the development process, as shown
in Figure 26.5.

24

Software engg | Supra.S

Figure 265 Estimate Ay
uncerainty

' Feasibility Requirements Design Code . — -E-lelu.rc-r'r'

0325

26.3.1 The COCOMO model

1. The COCOMO model is an empirical model that was derived by collecting data from a large

number of software projects.

2. These data were analysed to discover formulae that were the best fit to the observations. These
formulae link the size of the system and product, project and team factors to the effort to develop

the system.
3. Reasons to chose the COCOM O mode

a). It iswell documented, available in the public domain and supported by public domain

and commercial tools.

b). It has been widely used and evaluated in arange of organisations.

c). It hasalong history from its first instantiation to its most recent version.
4.COCOMO 81

a) The first version of the COCOMO mode (COCOMO 81) was a three-level model
where the levels corresponded to the detail of the analysis of the cost estimate.

25

Software engg | Supra.S

b) Thefirst level (basic) provided an initia rough estimate; the second level modified this
using a number of project and process multipliers; and the most detailed level produced estimates
for different phases of the project. Figure 26.6 shows the basic COCOMO formula for different
types of projects.

Simple PM = 2.4 (KDSI)"™ = M Well-understinod apphcations developed by small teams

Moderate PM = 3.0 (KD50 "' = M Mare complex projects where team members may have
limitad expenence of related systems

Embedded PM = 3.6 (KDS[)™ = M Complex: projects where the software is part of a strongly

coupled complex of hardwars, software, reguiations and
operational procederes

Figure 26.6 The basic
COCOMO 81 model
c) Themultiplier M reflects product, project and team characteristics.
d) COCOMO 81 suitable for software that would be developed according to a
waterfall process using standard programming languages such as C or FORTRAN.
€) Not suitable for Prototyping and incremental software devel opment,off-the-shelf
and CASE tool support.
f) To take these changes into account, the COCOMO |1 model was devel oped.

5.COCOMO I

a) It recognises different approaches to software development such as prototyping,
devel opment by component composition and use of database programming.

b) COCOMO |1 supports a spira model of development and embeds several sub-models
that produce increasingly detailed estimates.

¢) These can be used in successive rounds of the development spiral. Figure 26.7 shows
COCOMO Il sub-models and where they are used.

26

Software engg i Supra.S

, - | Frototype systems
I"_-51|rr1l.l:u=.1r nll Based on np-p!nFat|{:n Usedfor | developed using
application points | composition model | scripting, DB

programming, etc.

: - Initial effort estimation |
Numbernirncuun !r_qgge_d.gp__ Early design modal i_l.':f_d_l_u-_r__h! based on system |

P riquirements and

design options

Number of fines of || pacad o Used for | Effort o infegrate
code resed or - —— Reuse model ——w feusable components of
penerated automatically generated

7 tade

' | | Development effort

Number of fines of | Basedon | postarchitechure | Usedfor | Kbk v desion
source code madel it

Figure 26.7 The
COCOMO Il models

d) The sub-modelsthat are part of the COCOMO Il model are:

1. An application-composition model This assumes that systems are created from
reusable components, scripting or database programming. It is designed to make estimates of

prototype devel opment.

2. An early design model This model is used during early stages of the system design
after the requirements have been established. Estimates are based on function points, which are

then converted to number of lines of source code.

3. A reuse model This model is used to compute the effort required to integrate reusable
components and/or program code that is automatically generated by design or program

translation tools.

27

Software engg | Supra.S

4. A post-architecture model Once the system architecture has been designed, a more

accurate estimate of the software size can be made.

The application-composition model

1. The application-composition model was introduced into COCOMO 11 to support the
estimation of effort required for prototyping projects and for projects where the
software is developed by composing existing components.

2. It isbased on an estimate of weighted application points (object points) divided by a
standard estimate of application-point productivity.

3. The estimate is then adjusted according to the difficulty of developing each object
point.

4. Figure 26.8 shows the levels of object-point productivity suggested by the model

developers.

Figure 26.8 Objact-

oot productiy Developer’s experience Verylow low MNominal Hegh Very high
and capability

CASE maturty and capabilly ~ Verylow low Nommal High Very high

PROD (NOP/manin) 4 7 3 & 50

5. Application composition usually involves significant software reuse, and some
of the total number of application points in the system may be implemented with
reusable components.

6. Therefore, the final formulafor effort computation for system prototypesis:

PM = (NAP = (1 — Ghreuse/100)) / PROD

28

Software engg | Supra.S

Where

PM =is the effort estimate in person-months.

NAP = total number of application points in the delivered system.

% reuse= is an estimate of the amount of reused code in the development.
PROD= is the object-point productivity as shown in Figure 26.8.

The early design modél

1. This model is used once user requirements have been agreed and initial stages of the
system design process are underway.

2. However, thereisno need of adetailed architectural design to makeinitial estimates.

3. god at this stage should be to make an approximate estimate without undue effort.

4. The estimates produced at this stage are based on the standard formula for agorithmic
models, namely:

Efocrt = A = Size® = M

where

> coefficient A (Boehm proposes)=should be 2.94.

» dize =of the system is expressed in KSLOC, which is the number of thousands of lines of
source code.

> exponent B= reflects the increased effort required as the size of the project increases. can
vary from 1.1 to 1.24.

> multiplier M =in COCOMO 11 is based on a simplified set of seven project and process
characteristics that influence the estimate. These can increase or decrease the effort
required.

5. These characteristics used in the early design model are

» product reliability and complexity (RCPX),
» reuserequired (RUSE),

29

Software engg | Supra.S

platform difficulty(PDIF),
personnel capability (PERS),
personnel experience (PREX),
schedule (SCED)

support facilities (FCIL).

YV V. V V V

This resulis in an effort computation as follows:
PM =294 < Size® = M
w héere

M = PERS = RCPX = RUSE = PDIF = PREX = FCIL = SCED

Thereuse model

1. software reuse is common, and most large systems include a significant percentage of
code that is reused from previous devel opments.
2. Thereuse modd is used to estimate the effort required to integrate reusable or generated
code.
3. COCOMO Il considers reused code to be of two types.
Black-box code is code that can be reused without understanding the code or making
changesto it. The development effort for black-box codeis taken to be zero.
Code that has to be adapted to integrate it with new code or other reused components is
called white-box code. Some development effort is required here.

4. Black-box code: In addition, many systems include automatically generated code from

program transators that generate code from system models. This is a form of reuse where
standard templates are embedded in the generator.
» For code that is automatically generated, the model estimates the number of person
months required to integrate this code.

30

Software engg | Supra.S

» Theformulafor effort estimation is:

PM,.,. = (ASLOC « AT/100) / ATPROD /| Estimate for generated code

Luin

Where
AT=is the percentage of adapted code that is automatically generated

ATPROD=is the productivity of engineersin integrating such code.

(example: Boehm have measured ATPROD to be about 2,400 source statements per
month. Therefore, if there is a total of 20,000 lines of white-box reused code in a system and
30% of this is automatically generated, then the effort required to integrate this generated code
is: (20,000 X 30/100) / 2400 = 2.5 person months //Generated code example)

5. White —box code: The other component of the reuse model is used when a system
includes some new code and some reused white-box components that have to be
integrated.
> Inthis case, the reuse model compute the effort, based on the number of lines of code

that are reused, it calculates a figure that represents the equivalent number of lines of
new code.

(Example: if 30,000 lines of code are to be reused, the new equivalent size estimate might be
6,000. Essentialy, reusing 30,000 lines of code is taken to be equivalent to writing 6,000 lines of
new code. This calculated figure is added to the number of lines of new code to be developed in
the COCOMO Il post-architecture model.)

» Theestimatesin this reuse model are:
ASLOC—the number of lines of code in the components that have to be adapted;

ESL OC—the equival ent number of lines of new source code.

31

Software engg | Supra.S

» Theformula used to compute ESLOC : The following formulais used to calculate the

number of equivalent lines of source code:

ESLOC = ASLOC « (1 — AT/T00) = AAM

> AAM is the Adaptation Adjustment Multiplier, which takes into account the effort
required to reuse code. Simplistically,
» AAM isthe sum of three components:

1. An adaptation component (referred to as AAF) that represents the costs of
making changes to the reused code.

2. An understanding component (referred to as SU) that represents the costs of
understanding the code to be reused and the familiarity of the engineer with the code.

3. An assessment factor (referred to as AA) that represents the costs of reuse

decisionmaking.

The post-ar chitectur e level

1. The post-architecture model is the most detailed of the COCOMO Il models. It is used
once an initial architectural design for the system is available so the sub-system structure is
known.

2. Theestimates produced at the post-architecture level are based on the same basic formula
(PM = A = Size® = My yged in the early design estimates. In addition, a much more extensive
set of product, process and organizational attributes (17 rather than 7) are used to refine the
initial effort computation.

3. Itispossibleto use more attributes at this stage because you have more information about
the software to be developed and the development process.

4. The estimate of the code size in the post-architecture model is computed using three
components:

a). An estimate of the total number of lines of new code to be developed

32

Software engg i Supra.S

b). An estimate of the equivalent number of source lines of code (ESLOC) calculated

using the reuse model

c). An estimate of the number of lines of code that have to be modified because of

changes to the requirements.

5. The exponent term (B) is based on five scale factors, as shown in Figure 26.9. These
factors are rated on a six-point scale from Very low to Extra high (5to 0).

Figure 26.9 Scale
factors used In the
COCOMO I
expanent
computation

Seale factor Explanation

Precedentadness Reflects the previous experience of the organisation wath this
type of project. Very low means no previous experience; Extra
high means that the organisation is completely familiar with
this application domain.

Development Reflects the dgres of flaxbility in the development process.
flaubillty Very low means a prescribed process i used; Extra high
means that the client sets only general goals.

Architecture/nsk Reflects the extent of nsk analysis camed out. Very low
resalution means [tte analysis; Estra high means a complete and
thorough risk analysis.

Team cohesion Reflects how well the development team know each other
and work together. Very low means very difficult interactions;
Extra high means an infegrated and effective taam with no
communication problems

Process matunty ~ Reflects the process matunty of the organisation, The
computation of this value depends on the CMM Maturty
Questionnaire, but an estimate can be achieved by subtracting
the CMM process maturity level from 5.

33

Software engg | Supra.S

6. Then add the ratings, divide them by 100 and add the result to 1.01 to get the exponent
that should be used.

7. Possible values for the ratings used in exponent calculation are:

Precedentedness Thisis anew project for the organisation—rated Low (4)
Development flexibility No client involvement—rated Very high (1)
Architecture/risk resolution No risk analysis carried out—rated Very low (5)

Team cohesion New team so no information—rated Nominal (3)

YV V. V VYV V

Process maturity Some process control in place—rated Nominal (3)

8. Thesum of these valuesis 16, calculate the exponent by adding 0.16 to 1.01, getting a
valueof 1.17.

9. The attributes (Figure 26.10) that are used to adjust the initial estimates and create

multiplier M in the post-architecture model fall into four classes:

a). Product attributes are concerned with required characteristics of the software

product being devel oped.

b). Computer attributes are constraints imposed on the software by the hardware

platform.

c). Personnel attributes are multipliers that take the experience and capabilities of the

people working on the project into account.

d). Project attributes are concerned with the particular characteristics of the software

development project.

34

Software engg i Supra.S

kil s o
RELY Product Required system reliability
Py Product Complexty of system modules
Docu Product Extent of documentation required
DATA Product Size of database used
RUSE Product Requied percentage of reusable components
TIME Computer Execution tme constraint
PVOL Computer Volatity of development platform
STOR Computer Memorny constramts
ACAP Personnel Capability of project analysts
PCON Personnel Personnel continuity
PCAP Personnel Programmer capability
PEXP Personnel Progmmmer expensnce in project domain
AEXP Personnel Analyst expenence m project domain
LTEX Personne!l Language and tool expenence
TOOL Project Use of software toolks
SCED Project Development: schedule comprassion
SITE Project Extent of multisite working and quality of mter-site

communications

10. Figure 26.11 shows how these cost drivers influence effort estimates.

(Example: consider a value for the exponent of 1.17 as discussed in the above example
and assumed that RELY, CPLX, STOR, TOOL and SCED are the key cost driversin the
project. All of the other cost drivers have a nominal value of 1, so they do not affect the

computation of the effort.

In Figure 26.11, assigned maximum and minimum values to the key cost drivers to show
how they influence the effort estimate. see that high values for the cost drivers lead to an effort

estimate that is more than three times the initial estimate, whereas low val ues reduce the estimate

o ———————————
35

Software engg | Supra.S

to about one third of the original. This highlights the vast differences between different types of

project .)
Figure 26,11 The Exponent value B
gfiect of cost drivers .
cost dover System size (including factors for rewse and 128,000 DSl

on effort estmates :
requirements volatility)

Initial COCOMO estimate without cost drivers 730 person-months

Reliabikity Very high, multeplier = 130
Camplexity Very tugh, multipler = 1.3
Memary constraing High, mulbplier = 1.21

Tool us= Low, muttipher = 1.12
Schedule Accelerabed, muliipler = 1.29
Adjusted coOCOMO astimate 1306 person-months
Relrabihity Very low, mulispher = 0,75
Complexiy Very low, muligpher = 0.75
Memary constrain Mone, multipher = 1

Tool use Very high, muliipher = 0.72
Schedule Normal, multiplier = 1
Adjusted coOCOMO estimate 185 person-months

26.3.2 Algorithmic cost modelsin project planning

1. One of the most valuable uses of algorithmic cost modelling is to compare different

ways of investing money to reduce project costs.

2. This is particularly important where we have to make hardware/software cost trade-

offs and where we may have to recruit new staff with specific project skills.

3. Consider an embedded system to control an experiment that is to be launched into

space.
» There are three components to be taken into account in costing this project:
1. The cost of the target hardware to execute the system
2. The cost of the platform (computer plus software) to develop the system

3. The cost of the effort required to devel op the software.

36

Software engg | Supra.S

> Figure 26.13 shows the hardware, software and total costs for the options A—F shown in
Figure 26.12.

> Applying the COCOMO Il model without cost drivers predicts an effort of 45 person-
months to develop an embedded software system for this application. The average cost
for one person-month of effort is $15,000.

» The relevant multipliers are based on storage and execution time constraints (TIME and
STOR), the availability of tool support (cross-compilers, etc.) for the devel opment system
(TOOL), and development team’s experience platform experience (LTEX). In all options,
the reliability multiplier (RELY) is 1.39, indicating that significant extra effort is needed
to develop areliable system.

» The software cost (SC) is computed as follows:

SC = Effort estimate « RELY « TIME x STOR = TOOL » EXP x §15,000

Figure 26.12

Management options A. Use existing hardware,

development system and
devefopment team

B. Processor and C. Memaory 0, More
memaory upgrade upgrade only expenenced stalf
Hardware cost increase Hardware cost
Expenence decreass InCrease

E Staff wath
hardware expenignce

E Mew dn;elupm-enl

system

Hardware cost increase
Expenence decrease

37

Software engg i Supra.S

Opfien RELY STOR TIME TOOLS LIEX Total Softwmre Harndware Total

it ot cost cost
a |30 1.06 111 0.86 | 63 949303 | CROOAOD 1040303
B 1.39 1 1 112 122 B8 1313550 | 20000 14020325
C 1.39 1 1.11 0BG | 60 805653 | D5000 1000653
EX |30 1 1 072 1.22 56 844425 220000 1044158
F 1.39 1 1 112 084 57 851180 | 20000 1002706

Figure 26,13 Cost of
Management opbions

26.4 Project duration and staffing

1. estimating the effort required to develop a software system and the overall project costs,
project managers must also estimate how long the software will take to develop and when staff
will be needed to work on the project.

2. The development time for the project is called the project schedule. Increasingly,
organizations are demanding shorter development schedules so that their products can be brought
to market before their competitor’s.

3. As the number of staff increases, more effort may be needed. The reason for this is that
people spend more time communicating and defining interfaces between the parts of the system
developed by other people.

4. The COCOMO model includes a formula to estimate the calendar time (TDEV) required to
complete a project.

The time computation formulais the same for all COCOMO levels:

TDEY = § {pm}-}:lh-::'-_n-lun.

38

Software engg | Supra.S

where

PM = isthe effort computation

B=is the exponent computed

This computation predicts the nomina schedule for the project.

5. The planned schedule may be shorter or longer than the nominal predicted schedule.

However, there is obviously a limit to the extent of schedule changes, and the COCOMO Il

TDEV =3 » (PM)™+4100 » SCEDPercentage/ 100

where
SCEDPer centage =is the percentage increase or decrease in the nominal schedule.

If the predicted figure then differs significantly from the planned schedule, it suggests that there
isahigh risk of problems delivering the software as planned.

(ExampleTo illustrate the COCOMO development schedule computation, assume that 60
months of effort are estimated to develop a software system . Assume that the value of exponent

B is 1.17. From the schedule equation, the time required to complete the project is:
TDEV =3 = (60)** = 13 months

In this case, there is no schedule compression or expansion, so the last term in the formula has no

effect on the computation.)

39

