2002 SCHEWE

USN

CS44

Fourth Semester B.E. Degree Examination, December 2010 Finite Automata and Formal Languages

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions.

2. Any missing data may be suitably assumed

1 a. Define symbols, alphabets, strings and languages.

(04 Marks)

b. Define a DFA. Design a DFA to accept language with even number of a's and odd number of b's over Σ = {a, b}, and process the string U = aaaabbb.
(08 Marks)

c. If $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is a DFA constructed by $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ by the subset construction, then prove that L(D) = L(N). (08 Marks)

2 a. Convert the following \in - NFA to DFA.

(06 Marks)

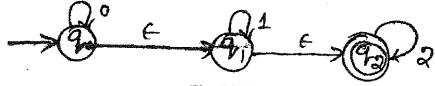


Fig. Q2(a)

b. Define regular expression. Write a regular expression to accept following languages.

i) Combination of a's and b's of even length.

ii) 2nd symbol is 'a' and 3rd symbol is 'b' from right end.

iii) L = $\{a^nb^m | \text{where } n \ge 3, b \le 2\}.$

(07 Marks)

Convert the following regular expressions to its equivalent NFA.
 (a + ab)* a b*.

(07 Marks)

3 a. Define and prove the pumping lemma for regular expression.

(06 Marks)

b. If L and M are regular languages, then so is $L \cap M$.

(04 Marks)

c. Convert the following DFA to a minimized DFA.

(06 Marks)

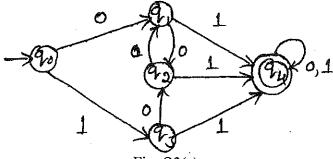


Fig. Q3(c)

d. Explain the applications of regular expressions.

(04 Marks)

4 a. Define grammar. Write a grammar for the following languages.

i)
$$L = \{a^n b^m | m > n, n \ge 0\}$$

ii)
$$L = \{0^n 1^{2n} \mid n \ge 0\}$$

iii)
$$L = \{a^n b^m c^k \mid k = n + m\}.$$

(06 Marks)

b. Consider the following grammar, write the LMD and RMD for the string $U = - + \infty$ xyxy. Check given grammar is ambiguous or not.

$$E \rightarrow * EE \mid - EE \mid + EE \mid x \mid y$$

(12 Marks)

c. List the applications of parser.

(02 Marks)

(20 Marks)

a. What are the different kinds of languages accepted by PDA? Design a PDA for language $L = \{a^n b^m c^n \mid n \ge 0, m \ge 0\}$ and traverse the string w = aabcc. (12 Marks) b. Convert the given CFG to its equivalent PDA. $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$. $E \rightarrow I \mid E * E \mid E + E \mid (E)$. (08 Marks) a. Remove the useless symbols from the given grammar: 6 $S \rightarrow aAa$ $A \rightarrow ab \mid bcC \mid DaA$ $C \rightarrow abb \mid DD$ $D \rightarrow aDA$ $E \rightarrow aC$. (05 Marks) b. Define CNF and GNF. Convert the following grammar into CNF. $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E)/I$ $I \rightarrow a/b$. (10 Marks) c. Prove that the following grammar is not regular $L = \{0^{n}1^{n}2^{n} \mid n \ge 1\}.$ (05 Marks) a. Design a Turing machine to accept a language 7 $L = \{a^n b^n \mid n \ge 1\}.$ Write transition diagram and table, process the string U = aaabbb. (12 Marks) b. Explain in detail, i) Multitape turing machine ii) Non – deterministic turing machine (08 Marks) iii) Restricted turing machine. 8 Write short notes on: a. Variants of FA b. DPDA c. Turing machine and computers

* * * * *

d. Post's correspondence problem.