2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

Fourth Semester B.E. Degree Examination, December 2010 **Computer Organization** 12 - John 31 .

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- What is a stored program concept? Explain the functional units of a stored program digital 1 computer, along with a block diagram. (10 Marks)
 - b. Define the following terms:
 - i) Processor clock
- ii) RISC
- iii) SPEC rating
- iv) Basic performance equation v) the stack frame

(10 Marks)

- a. Represent the decimal values 5, -2 and -10 in the following binary formats: i) Sing and magnitude ii) 1's complement iii) 2's complement.

(06 Marks)

- b. Registers R₁ and R₂ of a computer, contain the decimal values 1200 and 4600. What is EA of the memory operand in each of the following instructions?
 - Load $20(R_1)$, R_5
 - ii) MOVE #3000, R₅
 - iii) Store R_5 , $30(R_1, R_2)$
 - iv) Add $-(R_2)$, R_5
 - Subtract (R₁)+, R₅ v)

(05 Marks)

- Consider the following possibilities for saving the return address of a subroutine:
 - i) In a processor register
 - ii) In a memory location
 - iii) On a stack

Which of these possibilities support the subroutine nesting and which support subroutine (09 Marks)

- What is an interrupt? Explain polling and vectored interrupts with their advantages and 3
 - What is DMA? What are its advantages? With the supporting diagram, explain different registers in a DMA interface. (06 Marks)
 - What is bus arbitration? Explain the centralized arbitration, with a neat diagram. (06 Marks)
- What is a synchronous bus? Explain the timing of an input transfer on a synchronous bus with a timing diagram. (06 Marks) Define: b.
 - - i) Cycle stealing
 - ii) burst mode
 - iii) Full handshake
 - Plug-and-play

What are the interface circuits? Explain a general 8-bit parallel interface, with a neat diagram. (06 Marks)

PART - B

J	a.	Explain the synchronous Divitivi, with a heat diagram.	(10 Marks)
	b.	What is a cache? Explain any two cache mapping functions.	(10 Marks)
6	a.	What are the replacement algorithms? Briefly explain the LRU replacement algorithms	orithm. (08 Marks)
	b.	What is a virtual memory? With a neat block diagram, explain the virtual memory address	
	٠.	translation.	(08 Marks)
	c.	Briefly explain the controller's major functions on the disk drive side.	(04 Marks)
7	a.	With a neat diagram, explain the floating point addition/subtraction unit.	(10 Marks)
	b.	With a neat block diagram, explain the 4-bit carry-lookahead adder.	(10 Marks)
8	a.	Explain the 3-bus organization of the data path with a neat diagram and write the control	
		sequence for the instruction ADD R4, R5, R6 for the 3-bus organization.	(10 Marks)
	b.	With a neat block diagram, explain the hardwired control unit.	(10 Marks)
