

10EC52

Fifth Semester B.E. Degree Examination, December 2012
 Digital Signal Processing

Time: 3 hrs.
Max. Marks: 100

Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part.
 2. Use of normalized Chebyshev and Butterworth prototype tables are NOT ALLOWED.

PART - A

1 a. Find the N-point DFT of $x(n)$ if $x(n)=\left\{\begin{array}{ll}\frac{1}{3} ; & 0 \leq n \leq 2 \\ 0 ; & \text { otherwise }\end{array}\right.$.
(08 Marks)
b. Two finite sequences $x(n)=[x(0), x(1), x(2), x(3)]$ and $h(n)=[h(0), h(1), h(2), h(3)]$ have DFTs given by $\mathrm{X}(\mathrm{R})=\operatorname{DFT}\{\mathrm{x}(\mathrm{n})\}=\{1, \mathrm{~J},-1,-\mathrm{J}\} ; \mathrm{H}(\mathrm{R})=\mathrm{DFT}\{\mathrm{h}(\mathrm{n})\}=\{0,1+\mathrm{J}, 1,1-\mathrm{J}\}$. Use the properties of the DFT and find the following:
i) $\quad \mathrm{X}_{\mathrm{I}}(\mathrm{R})=\mathrm{DFT}\{\mathrm{h}(0),-\mathrm{h}(1), \mathrm{h}(2),-\mathrm{h}(3)\}$
ii) $\quad \mathrm{X}_{2}(\mathrm{R})=\operatorname{DFT}\{\mathrm{y}(\mathrm{n})\}$ where $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n}) \underset{4}{\circledast} \mathrm{~h}(\mathrm{n})$
iii) $\quad \mathrm{X}_{3}(\mathrm{R})=\operatorname{DFT}\{\mathrm{x}(0), \mathrm{h}(0), \mathrm{x}(1), \mathrm{h}(1), \mathrm{x}(2), \mathrm{h}(2), \mathrm{x}(3), \mathrm{h}(3)\}$
(12 Marks)
2 a. Consider a length - 12 sequence defined for
$0 \leq \mathrm{n} \leq 11, \quad \mathrm{x}(\mathrm{n})=\{8,4,7,-1,2,0,-2,-4,-5,1,4,3\}$
with 12-point DFT given by $\mathrm{X}(\mathrm{R}), 0 \leq \mathrm{R} \leq 11$, evaluate the following function without computing DFT, $\sum_{R=0}^{11} e^{-\frac{J 4 R}{6}} \times(R)$
(05 Marks)
b. \quad Determine $x_{3}(n)=x_{1}(n) \circledast x_{2}(n)$ for the sequences, $x_{1}(n)=e^{j \pi n} ; \quad 0 \leq n \leq 7$;
$x_{2}(n)=u(n)-u(n-5)$. Sketch all the sequences. Use time domain approach.
(08 Marks)
c. Show that:
i) Real and even sequence has real DFT.
ii) Multiplication of two DFT's in frequency domain corresponds to circular convolution in time domain.
(07 Marks)
3 a. Consider a FIR filter with impulse response $h(n)=\{3,2,1,1\}$ if the input is

$$
\mathrm{x}(\mathrm{n})=\{1,2,3,3,2,1,-1,-2,-3,5,6,-1,2,0,2,1\},
$$

find the output $\mathrm{y}(\mathrm{n})$. Use overlap-add method assuming the length of block is 7 .
(09 Marks)
b. Write a note on Chirp z-transform.
(06 Marks)
c. What is in-place computation? What is the total number of complex additions and multiplications required for $\mathrm{N}=512$ point, if DFT is computed directly and if FFT is used? Also find the number of stages required and its memory requirement.
(05 Marks)

4 a. Derive DIT-FFT algorithm for $\mathrm{N}=8$ and draw the complete signal graph.
(12 Marks)
b. Find the IDFT of $X(R)=\{0,2+2 \mathrm{j},-\mathrm{j} 4,2-2 \mathrm{j}, 02+2 \mathrm{j}, \mathrm{j} 4,2-2 \mathrm{j}\}$ using inverse Radix -2 DIT-FFT algorithm.
(08 Marks)

PART - B

5 a. Design a Chebyshev analog low pass filter that has -3 dB cut off frequency of $100 \mathrm{rad} / \mathrm{sec}$ and a stopband attenuation of 25 dB or greater for all radian frequencies past $250 \mathrm{rad} / \mathrm{sec}$. Verify the design.
(10 Marks)
b. Derive the s to z plane transformation based on finite backward difference method. Also show that the entire left half s-plane poles are mapped inside the smaller circle of radius $1 / 2$ centered at $\mathrm{z}=1 / 2$ inside the unit circle in the z -plane.
(10 Marks)
6 a. Obtain the direct form II (canonic) and cascade realization of

$$
H(z)=\frac{(z-1)\left(z^{2}+5 z+6\right)(z-3)}{\left(z^{2}+6 z+5\right)\left(z^{2}-6 z+8\right)}
$$

the cascade system should consist of two biquadratic sections.
(10 Marks)
b. Given $\mathrm{H}(\mathrm{z})=\left(1+0.6 \mathrm{z}^{-1}\right)^{5}$
i) Realize in direct form
ii) Realize as a cascade of first order sections only
iii) As a cascade of $1^{\text {st }}$ and $2^{\text {nd }}$ order sections.
(10 Marks)
7 a. Using rectangular window technique, design a lowpass filter with passband gain of unity, cut off frequency of 1000 Hz and working at a sampling frequency of 5 kHz . The length of impulse response should be 7 .
(10 Marks)
b. With necessary mathematical analysis, explain the frequency sampling technique of FIR filter design.
(10 Marks)
8 a. Design a digital filter $H(z)$ that when used in $A / D-H(z)-D / A$ structure, gives an equivalent analog filter with the following specifications:

PB Ripple $\leq 3.01 \mathrm{~dB}$
PB Edge : 500 Hz
SB attenuation $\geq 15 \mathrm{~dB}$
SB Edge : 750 Hz
Sample rate : 2 kHz
The filter is to be designed by performing a bilinear transformation on analog system function. Use Butterworth prototype. Also obtain the difference equation.
(15 Marks)
b. If $\mathrm{H}_{\mathrm{a}}(\mathrm{s})=\frac{1}{(\mathrm{~s}+2)(\mathrm{s}+1)}$; find the corresponding $\mathrm{H}(\mathrm{z})$ using impulse invariance method for sampling frequency of 5 samples $/ \mathrm{sec}$.
(05 Marks)

