USN	1 A T 1 1 T E 0 3 2	10MAT41
N.	Fourth Semester B.E. Degree Examination, June/July 201 Engineering Mathematics – IV	3
approximation.	E: 3 hrs. Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions from each part. 2. Use of Statistical tables permitted. PART - A Max. Note: 1. Answer FIVE full questions from each part. 3. Solve $\frac{dy}{dx} = x + y, x = 0, y = 1$ at $x = 0.2$ using Runge-Kutta method. Take $h = 0$	(06 Marks)
	Using Milne's predictor-corrector method find $y(0,3)$ correct to three decimals given by $\frac{x - 0.1 0 0.1 0.2}{y 0.908783 1.0000 1.11145 1.25253}$	(07 Marks)
2	 Approximate y and z at x = 0.2 using Picard's method for the solution ^{dz}/_{dx} = x³(y+z) with y(0) = 1, z(0) = 1/2. Perform two steps (y₁, y₂, z₁, z₂). Using Runge-Kutta method solve y" = x(y')² - y² at x = 0.2 with x₀ = 0, y₀ = 1. 	ux (10 Marks)
appear to cvarta	h = 0.2. If $f(z) = u + iv$ is analytic prove that Cauchy-Reimann equations $u_x = v_y$, $u_y = 0$. If $w = z^3$ find dw/dz.	(10 Marks)
4	r . If the potential function is $\phi = \log \sqrt{x^2 + y^2}$. Find the stream function. a . Find the bilinear transformation which maps the points $z = 1$, i, -1 onto the points	(06 Marks)
	 b. Discuss the conformal transformation w = e^z. Any horizontal strip of height 2⁻ will map what portion of w-plane. c. State and prove Cauchy's integral formula. 	π in z-plane (07 Marks) (07 Marks)
i	$\mathbf{PART} - \mathbf{B}$	
5	a. Prove that $J_{1/2}^{(x)} = \sqrt{\frac{2}{\pi x}}$ sinx.	(06 Marks)
	5. State and prove Rodrigues formula for Legendre's polynomials.	(07 Marks)

State and prove Rodrigues formula for Legendre's polynomials. Express $f(x) = x^4 + 3x^3 - x^2 + 5x - 2$ in terms of Legendre polynomial. b. c.

(07 Marks)

6 a. The probabilities of four persons A, B, C, D hitting targets are respectively 1/2, 1/3, 1/4, 1/5. What is the probability that target is hit by atleast one person if all hit simultaneously?

(06 Marks)

- b. i) State addition law of probability for any two events A and B.
 - ii) Two different digits from 1 to 9 are selected. What is the probability that the sum of the two selected digits is odd if '2' one of the digits selected. (07 Marks)
- Three machine A, B, C produce 50%, 30%, 20% of the items. The percentage of defective items are 3, 4, 5 respectively. If the item selected is defective what is the probability that it is from machine A? Also find the total probability that an item is defective. (07 Marks)
- 7 a. The p.d.f of x is

0 2 3 4 5 1 6 X k 3k 5k 7k 9k 11k 13k p(x)

Find k. Also find $p(x \ge 5)$, $p(3 \le x \le 6)$.

- b. A die is thrown 8 times. Find the probability that '3' falls,
 - i) Exactly 2 times
 - ii) At least once
 - iii) At the most 7 times.
- c. In a certain town the duration of shower has mean 5 minutes. What is the probability that shower will last for i) 10 minutes or more; ii) less than 10minutes; iii) between 10 and 12 minutes.
 (07 Marks)
- 8 a. What is null hypothesis, alternative hypothesis significance level? (06 Marks)
 - b. The nine items of a sample have the following values: 45, 47, 50, 52, 48, 47, 49, 53, 51. Does the mean of these differ significantly from the assumed mean of 47.5. Apply student's t-distribution at 5% level of significance. ($t_{0.05}$ for 8df = 2.31). (07 Marks)
 - c. In experiments on a pea breading, the following frequencies of seeds were obtained:

Round-yellow	Wrinkled yellow	Round green	Wrinkled green	Total
315	101	108	32	556

Is the experiment is in the agreement of theory which predicts proportion of frequencies 9:3:3:1 $(x_{0.05}^2, 3df \equiv 7.815)$. (07 Marks)

* * * * *

(06 Marks)

(07 Marks)