Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be t

Third Semester B.E. Degree Examination, December 2011

Network Analysis

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART-A

1 a. Using the mesh current method, determine V_2 that results zero current in 4Ω resistor.

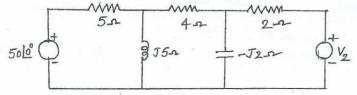


Fig.Q1(a)

(10 Marks)

b. Find the currents in all resistors by Node voltage method.

(10 Marks)

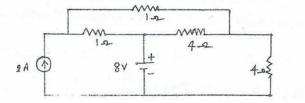
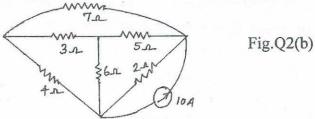
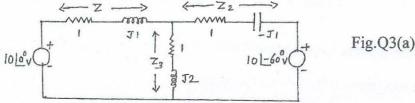



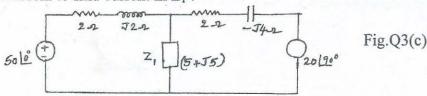
Fig.Q1(b)


2 a. Define the terms: i) Tree, ii) Co-tree, iii) Tie set schedule, iv) Cut set schedule, with respect to a graph of a network. (04 Marks

b. For the network shown, draw the graph, select a tree, write the tie set schedule and obtain the equilibrium equations. Hence currents in various branches. (16 Marks)

3 a. Find the current through Z_3 by superposition theorem.

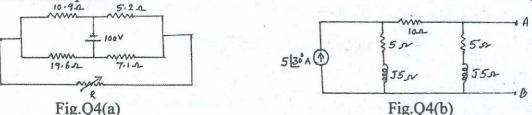
(10 Marks)



b. State and explain reciprocity theorem.

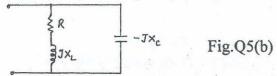
(04 Marks)

c. Use Millman's theorem to find current in Z_1 :


(06 Marks)

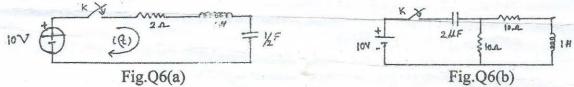
4 a. For the circuit shown in Fig.Q4(a), find the value of R that will receive maximum power.

Determine this power.


(08 Marks)

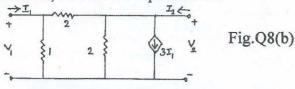
b. Obtain the Thevenin and Norton equivalent circuits at terminals AB for the network shown. Hence, find the current through 10Ω resistor across AB. (12 Marks)

PART - B


- 5 a. Define the terms: i) Resonance, ii) Q factor, iii) Half power frequency, iv) Band width, v) Selectivity pertaining to a series RLC circuit. (05 Marks)
 - b. Obtain an expression for the resonance frequency for the circuit shown in Fig.Q5(b).

(08 Marks) (07 Marks)

- c. Obtain the condition for maximum value of V_L by variation of inductance.
- 6 a. In the network shown, switch 'K' is closed at t = 0 with the capacitor uncharged. Find the


values for $i(0^+) \frac{di(t)0^+}{dt}$ at $t = 0^+$ and also find $\frac{d^2i(0^+)}{dt^2}$. (10 Marks)

b. In the given circuit, switch K is closed at time t=0. Find the values of i_1 , i_2 , $\frac{di_1}{dt}$, $\frac{di_2}{dt}$, $\frac{d^2i_1}{dt^2}$,

$$\frac{\mathrm{d}^2 i_2}{\mathrm{d}t^2} \text{ at } t = 0^+. \tag{10 Marks}$$

- 7 a. Find the Laplace transform of the following:
 - i) $\sin^2 t$ ii) $\cos^2 t$ iii) $\sin wt$ iv) $\int_0^t i(t) dt$ (08 Marks)
 - b. Find the inverse Laplace transform: i) $\frac{s^2+5}{s(s^2+2s+4)}$, ii) $\frac{2s+6}{s^2+6s+25}$. (08 Marks)
 - c. State and prove initial value theorem. (04 Marks)
- 8 a. Express Z parameters in terms of h parameters. (06 Marks)
 - b. For the network shown, find Z and Y parameters. (14 Marks)

