Third Semester B.E. Degree Examination, December 2011 Logic Design

Time: 3 hrs .
Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART-A

1 a. Expand $f_{1}=a+b c+a \bar{c} d$ into minterms and $f_{2}=a(b+c)(a+c+\bar{d})$ into maxterms.
(06 Marks)
b. Simplify $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\sum \mathrm{m}(1,2,4,11,13,14,15)+\mathrm{dc}(0,5,7,8,10)$ using Karnaugh map technique.
(05 Marks)
c. Obtain a minimal SOP expression for the function $f(a, b, c, d, e)=\sum m(3,7,11,12,13,14$, $15,16,18)+\mathrm{dc}(24,25,26,27,28,29,30,31)$ using Karnaugh map method. (05 Marks)
d. Explain canonical form of Boolean equations with an example.
(04 Marks)

2 a. Minimize $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})=\pi(0,6,7,8,9,13)+\pi \mathrm{dc}(5,15)$ using quine Mc cluskey method.
(12 Marks)
b. Simplify $f(a, b, c, d)=\sum m(2,3,4,5,13,15)+d c(8,9,10,11)$ taking least significant bit as map entered variable.
(08 Marks)

3 a. Design and implement a 4 bit look ahead carry adder.
(14 Marks)
b. Implement $16: 1$ multiplexer using $4: 1$ multiplexers.
(06 Marks)

4 a. Design and implement a 2 BIT digital comparator.
(09 Marks)
b. Implement a full subtractor using 3-8 line decoder with the decoder having high outputs and active low enable thermal.
(05 Marks)
c. Implement the Boolean function $f(a, b, c, d)=\sum m(0,1,5,6,7,9,10,15)$ using multiplexer with a, b connected to select lines $\mathrm{s}_{1}, \mathrm{~s}_{0}$.
(06 Marks)

PART - B

5 a. Give the NAND - NAND implementation of a gated SR latch with preset and clear facilities, such that when preset $=0$, the output should be 1 while clear $=0$, the output be 0 . Give the truth table clearly indicating gate, clear, preset and input signals and the corresponding outputs.
(07 Marks)
b. Explain the working of a pulse triggered JK master slave flip flop with a truth table.
c. Explain the functioning of positive edge triggered D - flip flop.

6 a. Explain 4 bit universal shift register using negative edge triggered D - flip flops. (08 Marks)
b. Give the circuit of a 4 bit JOHNSON counter using negative edge triggered D flip flops. Draw the timing waveforms with respect to clock starting with an initial state of $\mathrm{Q}_{3} \mathrm{Q}_{2} \mathrm{Q}_{1} \mathrm{Q}_{0}=0000$. What is the modulus of this counter?
c. What is meant by triggering of flip flops? Name the different triggering methods. (04 Marks)

7 a. Compare synchronous and ripple counters.
(03 Marks)
b. Draw the circuit of a 3 BIT, asynchronous, down counter using negative edge triggered JK flip flops and draw the timing waveforms.
(05 Marks)
c. Design and implement a synchronous counter to count the sequence $0-3-2-5-1-0$ using negative edge triggered JK flip flops.
(12 Marks)
8 a. Explain Mealy and Moore machine models.
(06 Marks)
b. Construct the excitation table, transition table, state table and state diagram for the Moore circuit shown in Fig.Q.8(b).

$$
\begin{aligned}
& c_{i}=\frac{1}{16} \sum_{n=5}^{20} b_{T}(n) v(n+i) \\
& v(n)=\sum_{k=0}^{5} b_{T}(n-k) f_{k} \\
& v(n+i)=\sum_{k=0}^{5} b_{T}(n-k+i) f_{k} \\
& c_{i}=\frac{1}{16} \sum_{n=5}^{20} b_{T}(n) \sum_{k=0}^{5} b_{r}(n+-k) f_{k} \\
& c_{i}=\frac{1}{16} \sum_{k=0}^{5} f_{k} \sum_{n=5}^{20} b_{T}(m) b_{T}(n+i-k) \\
& \text { A shiffor in had sea } \\
& =\text { canal clef index } \\
& \begin{array}{r}
C_{i}=\text { corr hes for } 1 \text { Shiftion } \\
\text { and read }
\end{array}
\end{aligned}
$$

