1.9 1.2 3.6 0.5 0.9 6.8 Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, & |x| \le a \\ 0, & |x| > a \end{cases}$ and hence deduce $\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}$. 2 a. (07 Marks) b. Find the Fourier cosine and sine transform of $f(x) = xe^{-ax}$, where a > 0. (06 Marks) c. Find the inverse Fourier transform of e^{-s^2} . (07 Marks) Obtain the various possible solutions of one dimensional heat equation $u_t = c^2 u_{xx}$ by the 3 a. method of separation of variables. (07 Marks) A tightly stretched string of length | with fixed ends is initially in equilibrium position. It is b. set to vibrate by giving each point a velocity $V_o \sin\left(\frac{\pi x}{l}\right)$. Find the displacement u(x, t). (06 Marks) Solve $u_{xx} + u_{yy} = 0$ given u(x, 0) = 0, u(x, 1) = 0, u(1, y) = 0 and $u(0, y) = u_0$, where u_0 is a constant. (07 Marks) Using method of least square, fit a curve $y = ax^{b}$ for the following data. (07 Marks) 3 4 X 1 2 5 0.5 2 4.5 8 12.5 Solve the following LPP graphically: B. Minimize Z = 20x + 16ySubject to $3x + y \ge 6$, $x + y \ge 4$, $x + 3y \ge 6$ and $x, y \ge 0$. (06 Marks) Use simplex method to c. Maximize Z = x + (1.5)ySubject to the constraints $x + 2y \le 160$, $3x + 2y \le 240$ and $x, y \ge 0$. (07 Marks)

Engineering Mathematics - III

Third Semester B.E. Degree Examination, June/July 2013

Time: 3 hrs.

1

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

Obtain the Fourier series expansion of $f(x) = \begin{cases} x, & \text{if } 0 \le x \le \pi \\ 2\pi - x, & \text{if } \pi \le x \le 2\pi \end{cases}$ and hence deduce

that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

(07 Marks)

Max. Marks:100

- b. Find the half range Fourier sine series of $f(x) = \begin{cases} x, & \text{if } 0 < x < \frac{\pi}{2} \\ \pi x, & \text{if } \frac{\pi}{2} < x < \pi \end{cases}$ (06 Marks)
- Obtain the constant term and coefficients of first cosine and sine terms in the expansion of y from the following table. (07 Marks)

IIC IC		ig tabl	.	S. 14			
х	0	60°	120°	180°	240°	300°	360°
17	70	72	36	0.5	0.0	68	70

USN 3 0 2 e

10MAT31

10MAT31

(07 Marks)

PART - B

- Using Newton-Raphson method find a real root of $x + \log_{10} x = 3.375$ near 2.9, corrected to 2. (07 Marks) 3-decimal places.
 - b. Solve the following system of equations by relaxation method: 2x + 8y - z = 24, 3x + 4y + 10z = 5812x + y + z = 31,
 - Find the largest eigen value and corresponding eigen vector of following matrix A by power method

$$\mathbf{A} = \begin{bmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{bmatrix}.$$

Use $\mathbf{X}^{(0)} = [1, 0, 0]^{\mathrm{T}}$ as the initial eigen vector.

In the given table below, the values of y are consecutive terms of series of which 23.6 is the 6 a. 6th term, find the first and tenth terms of the series. (07 Marks)

X	3	4	5	6	1	8	9	
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9	

Construct an interpolating polynomial for the data given below using Newton's divided b. difference formula. (07 Marks)

Х	2	4	5	6	8	10	
f(x)	10	96	196	350	868	1746	inter la

1

8

- Evaluate $\int_{0}^{\infty} \frac{x}{1+x^2} dx$ by Weddle's rule taking 7-ordinates and hence find log_e2. (06 Marks)
- Solve the wave equation $u_{tt} = 4u_{xx}$ subject to u(0, t) = 0; u(4, t) = 0; $u_t(x, 0) = 0$; u(x, 0) = x(4-x) by taking h = 1, k = 0.5 upto four steps. (07 Marks)
 - Solve numerically the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the conditions $u(0, t) = 0 = u(1, t), t \ge 0$ b. and $u(x, 0) = \sin \pi x$, $0 \le x \le 1$. Carryout computations for two levels taking $h = \frac{1}{3}$ and $k = \frac{1}{36}$. (07 Marks)
 - Solve the elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary values C. as shown in Fig.Q7(c). (06 Marks)

Find the z-transform of: i) $\sin h n \theta$; ii) $\cosh n \theta$. a. (07 Marks) Obtain the inverse z-transform of $\frac{8z^2}{(2z-1)(4z-1)}$. b. (07 Marks) Solve the following difference equation using z-transforms: c. $y_{n+2} + 2y_{n+1} + y_n = n$ with $y_0 = y_1 = 0$

2 of 2

(06 Marks)

(06 Marks)