USN

10MAT31

Third Semester B.E. Degree Examination, June/July 2013 Engineering Mathematics - III

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Obtain the Fourier series expansion of $f(x)=\left\{\begin{array}{cl}x, & \text { if } 0 \leq x \leq \pi \\ 2 \pi-x, & \text { if } \pi \leq x \leq 2 \pi\end{array}\right.$ and hence deduce that $\frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$
(07 Marks)
b. Find the half range Fourier sine series of $f(x)=\left\{\begin{array}{ccc}x, & \text { if } 0<x<\pi / 2 \\ \pi-x, & \text { if } \pi / 2<x<\pi\end{array}\right.$.
(06 Marks)
d. Obtain the constant term and coefficients of first cosine and sine terms in the expansion of y from the following table:
(07 Marks)

x	0	60°	120°	180°	240°	300°	360°
y	7.9	7.2	3.6	0.5	0.9	6.8	7.9

2 a. Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}a^{2}-x^{2}, & |x| \leq a \\ 0, & |x|>a\end{array}\right.$ and hence deduce $\int_{0}^{\infty} \frac{\sin x-x \cos x}{x^{3}} d x=\frac{\pi}{4}$.
b. Find the Fourier cosine and sine transform of $f(x)=\mathrm{xe}^{-\mathrm{ax}}$, where $\mathrm{a}>0$.
(07 Marks)
c. Find the inverse Fourier transform of $\mathrm{e}^{-\mathrm{s}^{2}}$.

3 a. Obtain the various possible solutions of one dimensional heat equation $u_{t}=c^{2} u_{x x}$ by the method of separation of variables.
(07 Marks)
b. A tightly stretched string of length I with fixed ends is initially in equilibrium position. It is set to vibrate by giving each point a velocity $\mathrm{V}_{\mathrm{o}} \sin \left(\frac{\pi \mathrm{x}}{\mathrm{l}}\right)$. Find the displacement $\mathrm{u}(\mathrm{x}, \mathrm{t})$.
(06 Marks)
c. Solve $u_{x x}+u_{y y}=0$ given $u(x, 0)=0, u(x, 1)=0, u(1, y)=0$ and $u(0, y)=u_{0}$, where u_{0} is a constant.
(07 Marks)
4 . Using method of least square, fit a curve $y=a x^{b}$ for the following data.
(07 Marks)

x	1	2	3	4	5
y	0.5	2	4.5	8	12.5

४. Solve the following LPP graphically:

Minimize $Z=20 x+16 y$
Subject to $3 x+y \geq 6, x+y \geq 4, x+3 y \geq 6$ and $x, y \geq 0$.
(06 Marks)
c. Use simplex method to

Maximize $Z=x+(1.5) y$
Subject to the constraints $\mathrm{x}+2 \mathrm{y} \leq 160,3 \mathrm{x}+2 \mathrm{y} \leq 240$ and $\mathrm{x}, \mathrm{y} \geq 0$.

PART - B

*) A. Using Newton-Raphson method find a real root of $x+\log _{10} x=3.375$ near 2.9, corrected to 3-decimal places.
(07 Marks)
b. Solve the following system of equations by relaxation method:

$$
\begin{equation*}
12 x+y+z=31, \quad 2 x+8 y-z=24, \quad 3 x+4 y+10 z=58 \tag{07Marks}
\end{equation*}
$$

¢. Find the largest eigen value and corresponding eigen vector of following matrix A by power method

$$
A=\left[\begin{array}{ccc}
25 & 1 & 2 \\
1 & 3 & 0 \\
2 & 0 & -4
\end{array}\right]
$$

Use $X^{(0)}=[1,0,0]^{\mathrm{T}}$ as the initial eigen vector.
(06 Marks)
6 a. In the given table below, the values of y are consecutive terms of series of which 23.6 is the $6^{\text {th }}$ term, find the first and tenth terms of the series.
(07 Marks)

x	3	4	5	6	7	8	9
y	4.8	8.4	14.5	23.6	36.2	52.8	73.9

b. Construct an interpolating polynomial for the data given below using Newton's divided difference formula.
(07 Marks)

x	2	4	5	6	8	10
$\mathrm{f}(\mathrm{x})$	10	96	196	350	868	1746

d. Evaluate $\int_{0}^{1} \frac{\mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}$ by Weddle's rule taking 7-ordinates and hence find $\log _{\mathrm{e}} 2$. (06 Marks)

ม. Solve the wave equation $u_{t t}=4 u_{x x}$ subject to $u(0, t)=0 ; \quad u(4, t)=0 ; \quad u_{t}(x, 0)=0$; $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x})$ by taking $\mathrm{h}=1, \mathrm{k}=0.5$ upto four steps.
(07 Marks)
14. Solve numerically the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(0, t)=0=u(1, t), t \geq 0$ and $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$. Carryout computations for two levels taking $h=1 / 3$ and $k=1 / 36$.
(07 Marks)
c. Solve the elliptic equation $u_{x x}+u_{y y}=0$ for the following square mesh with boundary values as shown in Fig.Q7(c).
(06 Marks)

Fig.Q7(c)

8 a. Find the z-transform of: i) $\operatorname{sinhn} \theta$; ii) $\operatorname{coshn} \theta$.
(07 Marks)
b. Obtain the inverse z-transform of $\frac{8 z^{2}}{(2 z-1)(4 z-1)}$.
c. Solve the following difference equation using z-transforms:

$$
\mathrm{y}_{\mathrm{n}+2}+2 \mathrm{y}_{\mathrm{n}+1}+\mathrm{y}_{\mathrm{n}}=\mathrm{n} \text { with } \mathrm{y}_{0}=\mathrm{y}_{1}=0
$$

