USN

10MAT31

Third Semester B.E. Degree Examination, December 2012 Engineering Mathematics - III

Time: 3 hrs .
Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

1 a. Find the Fourier series of $f(x)=x-\frac{\text { PART }-\mathbf{A}}{x^{2},-\pi \leq x \leq \pi}$. Hence deduce that

$$
\begin{equation*}
\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots \ldots \ldots \ldots=\frac{\pi^{2}}{12} \tag{07Marks}
\end{equation*}
$$

Is the above deduced series convergent? (Answer in Yes or No)
b. Define : i) Half range Fourier sine series of $f(x)$
ii) Complex form of Fourier series of $f(x)$

Find the half range cosine series of $f(x)=x$ in $0<x<2$.
(07 Marks)
(c.) Obtain $\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{1}$ in the Fourier expansion of y , using harmonic analysis for the data given.

x	0	1	2	3	4	5
y	9	18	24	28	26	20

(06 Marks)
2 a. Find the Fourier transform of

$$
\begin{array}{rlrlrl}
f(x) & =1-x^{2} & \text { for } & |x| \leq 1 \\
& =0 & & \text { for } & |x|>1
\end{array}
$$

$$
\text { Hence evaluate } \int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \left(\frac{x}{2}\right) d x
$$

(07 Marks)
b. Find the Fourier sine transform of $\frac{e^{-a x}}{x}$
c. Find the Fourier cosine transform of

$$
\begin{aligned}
\mathrm{f}(\mathrm{x}) & =4 \mathrm{x}, & & \text { for } \\
& =4<\mathrm{x}<\mathrm{x}, & & \text { for } 1<\mathrm{x}<4 \\
& =0, & & \text { for } \mathrm{x}>4
\end{aligned}
$$

(06 Marks)
3 a. i) Write down the two dimensional heat flow equation (p d e) in steady state (or two dimensional) Laplace's equation. Just mention.
ii) Solve one dimensional heat equation by the method of separation of variables. (07 Marks)
b. Using D'Alembert's method, solve one dimensional wave equation.
(07 Marks)
c. A string is stretched and fastened to two points l apart. Motion is started by displacing the string in the form of $y=a \sin (\pi x / l)$ from which it is released at time $t=0$. Show that the displacement of any point at a distance x from one end at time t is,

$$
\mathrm{y}(\mathrm{x}, \mathrm{t})=\mathrm{a} \sin \left(\frac{\pi \mathrm{x}}{\ell}\right) \cos \left(\frac{\pi \mathrm{ct}}{\ell}\right)
$$

Start the answer assuming the solution to be

$$
\begin{equation*}
y=\left(C_{1} \cos (p x)+C_{2} \sin (p x)\right)\left(C_{3} \cos (c p t)+C_{4} \sin (c p t)\right) \tag{06Marks}
\end{equation*}
$$

4 a. Fit a linear law, $\mathrm{P}=\mathrm{mW}+\mathrm{C}$, using the data

P	12	15	21	25
W	50	70	100	120

(06 Marks)
b. Find the best values of a and b by fitting the law $\mathrm{V}=a t^{\mathrm{b}}$ using method of least squares for the data,

$V(\mathrm{ft} / \mathrm{min})$	350	400	500	600
$\mathrm{t}(\mathrm{min})$	61	26	7	26

Use base 10 for algorithm for computation.
(07 Marks)
c. Using simplex method,

Maximize $Z=5 x_{1}+3 x_{2}$
Subject to, $\quad x_{1}+x_{2} \leq 2 ; 5 x_{1}+2 x_{2} \leq 10 ; 3 x_{1}+8 x_{2} \leq 12 ; \quad x_{1}, x_{2} \geq 0$.

PART - B

5 a. Use Newton-Raphson method, to find the real root of the equation $3 x=(\cos x)+1$.
Take $x_{0}=0.6$. Perform two iterations.
(06 Marks)
b. Apply Gauss-Seidel iteration method to solve equations

$$
\begin{aligned}
20 x+y-2 z & =17 \\
3 x+20 y-z & =-18 \\
2 x-3 z+20 z & =25
\end{aligned}
$$

Assume initial approximation to be $x=y=z=0$. Perform three iterations.
(07 Marks)
c. Using Rayleigh's power method to find the largest eigen value and the corresponding eigen vector of the matrix.

$$
A=\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]
$$

Take $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$ as the initial approximation. Perform four iterations.
(07 Marks)
6 a. Use appropriate interpolating formula to compute $y(82)$ and $y(98)$ for the data

x	80	85	90	95	100
y	5026	5674	6362	7088	7854

(07 Marks)
(b.) i) For the points $\left(x_{0}, y_{0}\right)\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)$ mention Lagrage's interpolation formula.
ii) If $\mathrm{f}(1)=4, \mathrm{f}(3)=32, \mathrm{f}(4)=55, \mathrm{f}(6)=119$; find interpolating polynomial by Newton's divided difference formula.
(07 Marks)
(c.) Evaluate $\int_{0}^{6} \frac{1}{1+x^{2}} d x$, using
i) Simpson's $1 / 3^{\text {rd }}$ rule
ii) Simpson's $3 / 8^{\text {th }}$ rule
iii) Weddele's rule, using

x	0	1	2	3	4	5	6
$\mathrm{f}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}$	1	0.5	0.2	0.4	0.0588	0.0385	0.027

7 (a.) Solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ subject to $u(0, t), u(4, t)=0 . u_{t}(x, 0)=0$ and $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}(4-\mathrm{x})$ by taking $\mathrm{h}=1, \mathrm{k}=0.5$ upto four steps.
b. Solve two dimensional Laplace equation at the pivotal or nodal points of the mesh shown in Fig.Q7(b). To find the initial values assume $u_{4}=0$. Perform three iterations including computation of initial values.
(07 Marks)

Fig.Q7(b)
(c.) Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$, subject to the conditions $u(x, o)=\sin \pi x, 0 \leq x \leq 1$; $\mathrm{u}(0, \mathrm{t})=\mathrm{u}(1, \mathrm{t})=0$. Carry out computations for two levels, taking $\mathrm{h}=1 / 3, \mathrm{k}=1 / 36$.
(06 Marks)

8 a. Find the z-transform of

$$
\frac{n}{3^{n}}+2^{n} n^{2}+4 \cos (n \theta)+4^{n}+8
$$

(07 Marks)
b. State and prove i) Initial value theorem
ii) Final value theorem of z-transforms.
(07 Marks)
c. Using the z-transform solve

$$
\mathrm{u}_{\mathrm{n}+2}+4 \mathrm{u}_{\mathrm{n}+1}+3 \mathrm{u}_{\mathrm{n}}=3^{\mathrm{n}} \text { with } \mathrm{u}_{0}=0, \mathrm{u}_{1}=1
$$

