Third Semester B.E. Degree Examination, December 2012

(07 Marks)

(07 Marks)

(06 Marks)

10MAT31

Engineering Mathematics – III

Time: 3 hrs.

1

USN

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

Find the Fourier series of $f(x) = x - x^2$, $-\pi \le x \le \pi$. Hence deduce that 1 a.

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \dots = \frac{\pi^2}{12}$$

E

1

03

R

Is the above deduced series convergent? (Answer in Yes or No)

- Define : i) Half range Fourier sine series of f(x)b.
 - ii) Complex form of Fourier series of f(x)
 - Find the half range cosine series of f(x) = x in 0 < x < 2.

Obtain a₀, a₁, b₁ in the Fourier expansion of y, using harmonic analysis for the data given.

X	0	1	2	3	4	5
у	9	18	24	28	26	20

Find the Fourier transform of 2 a. $f(x) = 1 - x^2$ for $|\mathbf{x}| \leq 1$

$$= 0 \quad \text{for} \quad |\mathbf{x}| > 1$$

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos\left(\frac{x}{2}\right) dx$

Find the Fourier sine transform of b.

c. Find the Fourier cosine transform of

$$\begin{aligned} f(x) &= 4x &, & \text{for } 0 < x < 1 \\ &= 4 - x &, & \text{for } 1 < x < 4 \\ &= 0 &, & \text{for } x > 4 \end{aligned}$$

6: 3 0(0)7 Marks)

(07 Marks)

(06 Marks)

- Write down the two dimensional heat flow equation (p d e) in steady state (or two i) a. dimensional) Laplace's equation. Just mention.
 - ii) Solve one dimensional heat equation by the method of separation of variables. (07 Marks)
 - b. Using D'Alembert's method, solve one dimensional wave equation. (07 Marks)
 - A string is stretched and fastened to two points l apart. Motion is started by displacing the C. string in the form of $y = a \sin(\pi x/l)$ from which it is released at time t = 0. Show that the displacement of any point at a distance x from one end at time t is,

$$y(x,t) = a \sin\left(\frac{\pi x}{\ell}\right) \cos\left(\frac{\pi ct}{\ell}\right)$$

Start the answer assuming the solution to be

 $y = (C_1 \cos(px) + C_2 \sin(px))(C_3 \cos(cpt) + C_4 \sin(cpt))$

(06 Marks)

3

a) Fit a linear law, P = mW + C, using the data

Р	12	15	21	25
W	50	70	100	120

(06 Marks)

(07 Marks)

b. Find the best values of a and b by fitting the law $V = at^b$ using method of least squares for the data,

V (ft/min)	350	400	500	600
t (min)	61	26	7	26

Use base 10 for algorithm for computation.

c. Using simplex method, Maximize $Z = 5x_1 + 3x_2$ Subject to, $x_1 + x_2 \le 2$; $5x_1 + 2x_2 \le 10$; $3x_1 + 8x_2 \le 12$; $x_1, x_2 \ge 0$. (07 Marks)

PART – B

a.) Use Newton-Raphson method, to find the real root of the equation $3x = (\cos x) + 1$. Take $x_0 = 0.6$. Perform two iterations. (06 Marks)

Apply Gauss-Seidel iteration method to solve equations

$$20x + y - 2z = 17$$

5

$$3x + 20y - z = -18$$

$$2x - 3z + 20z = 25$$

Assume initial approximation to be x = y = z = 0. Perform three iterations. (07 Marks)

Using Rayleigh's power method to find the largest eigen value and the corresponding eigen vector of the matrix.

$$\mathbf{A} = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

Take $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^1$ as the initial approximation. Perform four iterations.

(07 Marks)

6 (a.) Use appropriate interpolating formula to compute y(82) and y(98) for the data

x	80	85	90	95	100
у	5026	5674	6362	7088	7854

(07 Marks)

b.) i) For the points $(x_0, y_0) (x_1, y_1) (x_2, y_2)$ mention Lagrage's interpolation formula.

ii) If f(1) = 4, f(3) = 32, f(4) = 55, f(6) = 119; find interpolating polynomial by Newton's divided difference formula. (07 Marks)

C. Evaluate
$$\int_{0}^{0} \frac{1}{1+x^2} dx$$
, using

i) Simpson's 1/3rd rule ii) Simpson's 3/8th rule iii) Weddele's rule, using

Х	0	1	2	3	4	. 5	6
$f(x) = \frac{1}{1+x^2}$	1	0.5	0.2	0.4	0.0588	0.0385	0.027

(06 Marks)

- 7 (a) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0, t), u(4, t) = 0. $u_t(x, 0) = 0$ and u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps. (07 Marks)
 - b. Solve two dimensional Laplace equation at the pivotal or nodal points of the mesh shown in Fig.Q7(b). To find the initial values assume $u_4 = 0$. Perform three iterations including computation of initial values. (07 Marks)

c. Solve the equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, subject to the conditions $u(x, o) = \sin \pi x$, $o \le x \le 1$; u(0, t) = u(1, t) = 0. Carry out computations for two levels, taking h = 1/3, k = 1/36. (06 Marks)

8 a. Find the z-transform of

$$\frac{n}{3^{n}} + 2^{n} n^{2} + 4\cos(n\theta) + 4^{n} + 8$$
 (07 Marks)

- b. State and prove i) Initial value theorem ii) Final value theorem of z-transforms. (07 Marks)
- c. Using the z-transform solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$, $u_1 = 1$. (06 Marks)