Third Semester B.E. Degree Examination, December 2011
Engineering Mathematics - III
Time: 3 hrs .

Note: 1. Answer any FIVE full questions, selecting
 at least TWO questions from each part.
 2. Missing data will be suitably assumed.

PART - A

1 a. Obtain the Fourier series for the function $f(x)=\left\{\begin{array}{cl}\pi x & : 0 \leq x \leq 1 \\ \pi(2-x) & : 1 \leq x \leq 2\end{array}\right.$ and deduce that $\frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(07 Marks)
b. Obtain the half range Fourier sine series for the function.
(07 Marks)
$f(x)=\left\{\begin{array}{l}1 / 4-x ; 0<x<1 / 2 \\ x-3 / 4 ; 1 / 2<x<1\end{array}\right.$.
c. Compute the constant term and the first two harmonics in the Fourier series of $f(x)$ given by the following table.
(06 Marks)

$$
\begin{array}{llllllll}
\mathrm{x} & : & 0 & 1 & 2 & 3 & 4 & 5 \\
\mathrm{f}(\mathrm{x}): & 4 & 8 & 15 & 7 & 6 & 2
\end{array}
$$

2 a. Find the Fourier transform of $f(x)=\left\{\begin{array}{cc}1-x^{2} \text { for }|x| \leq 1 \\ 0 & \text { for }|x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty}\left(\frac{x \cos x-\sin x}{x^{3}}\right) \cos \frac{x}{2} d x$.
(07 Marks)
b. Find the Fourier cosine transform of $f(x)=\frac{1}{1+x^{2}}$.
(07 Marks)
c. Solve the integral equation $\int_{0}^{\infty} f(\theta) \cos \alpha \theta d \theta=\left\{\begin{array}{cc}1-\alpha ; & 0 \leq \alpha \leq 1 \\ 0 ; & \alpha>1\end{array}\right.$. Hence evaluate $\int_{0}^{\infty} \frac{\sin ^{2} t}{t^{2}} d t$.
(06 Marks)
3 a. Solve two dimensional Laplace equation $u_{x x}+u_{y y}=0$, by the method of separation of variables.
(07 Marks)
b. Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=\frac{c^{2} \partial^{2} u}{\partial x^{2}}, 0<x<\pi$ under the conditions :
i) $u(0,+)=0, u(\pi, t)=0$
ii) $u(x, 0)=u_{0} \sin x$ where $u_{0}=$ constant $\neq 0$.
(07 Marks)
c. Obtain the D^{\prime} Alembert's solution of one dimensional wave equation.
(4) a. Fit a curve of the form $\mathrm{y}=a \mathrm{e}^{\mathrm{bx}}$ to the following data :
(07 Marks)

$$
\begin{array}{ccccccc}
\mathrm{x} & : & 77 & 100 & 185 & 239 & 285 \\
\mathrm{y} & : & 2.4 & 3.4 & 7.0 & 11.1 & 19.6
\end{array}
$$

b. Using graphical method solve the L.P.P minimize $z=20 x_{1}+10 x_{2}$ subject to the constraints $x_{1}+2 x_{2} \leq 40 ; 3 x_{1}+x_{2} \geq 0 ; 4 x_{1}+3 x_{2} \geq 60 ; x_{1} \geq 0 ; x_{2} \geq 0$.
(06 Marks)
Solve the following L.P.P maximize $z=2 x_{1}+3 x_{2}+x_{3}$, subject to the constraints $x_{1}+2 x_{2}+5 x_{3} \leq 19,3 x_{1}+x_{2}+4 x_{3} \leq 25, x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0$ using simplex method.
(07 Marks)

PART - B

5 Using the Regula - falsi method, find the root of the equation $x e^{x}=\cos x$ that lies between 0.4 and 0.6. Carry out four iterations.
(07 Marks)
b. Using relaxation method solve the equations :
$10 \mathrm{x}-2 \mathrm{y}-3 \mathrm{z}=205 ; \quad-2 \mathrm{x}+10 \mathrm{y}-2 \mathrm{z}=154 ; \quad-2 \mathrm{x}-\mathrm{y}+10 \mathrm{z}=120 . \quad$ (07 Marks)
c. Using the Rayleigh's power method, find the dominant eigen value and the corresponding eigen vector of the matrix. $A=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ starting with the initial vector $[1,1,1]^{\mathrm{T}}$.
(06 Marks)
6 a. From the following table, estimate the number of students who have obtained the marks between 40 and 45 :
(07 Marks)

$$
\begin{array}{lccccc}
\text { Marks } & 30-40 & 40-50 & 50-60 & 60-70 & 70-80 \\
\text { Number of students : } & 31 & 42 & 51 & 35 & 31
\end{array}
$$

Using Lagrange's formula, find the interpolating polynomial that approximate the function described by the following table :
(07 Marks)

$$
\begin{array}{lccccc}
\mathrm{x} & : & 0 & 1 & 2 & 5 \\
\mathrm{f}(\mathrm{x}) & : & 2 & 3 & 12 & 147
\end{array} \quad \text { Hence find } \mathrm{f}(3)
$$

c. A curve is drawn to pass through the points given by the following table :

$$
\begin{array}{l:ccccccc}
\mathrm{x} & : & 1 & 1.5 & 2 & 2.5 & 3 & 3.5 \\
\mathrm{y} & : & 2 & 2.4 & 2.7 & 2.8 & 3 & 2.6 \\
2.1
\end{array}
$$

Using Weddle's rule, estimate the area bounded by the curve, the $\mathrm{x}-$ axis and the lines $x=1, x=4$.
(06 Marks)
7 a. Solve the Laplace's equation $u_{x x}+u_{y y}=0$, given that :
(07 Marks)

b. Solve $\frac{\partial^{2} u}{\partial t^{2}}=4 \frac{\partial^{2} u}{\partial x^{2}}$ subject to $u(0, t)=0 ; u(4, t)=0 ; u(x, 0)=x(4-x)$. Take $h=1, k=0.5$.
(07 Marks)
e. Solve the equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=\sin \pi x, 0 \leq x \leq 1$; $u(0 t)=u(1, t)=0$ using Schmidt's method. Carry out computations for two levels, taking $\mathrm{h}-1 / 3, \quad \mathrm{k}=1 / 36$.
(06 Marks)

8
a. Find the Z - transform of :
i) $(2 \mathrm{n}-1)^{2}$
ii) $\cos \left(\frac{n \pi}{2}+\pi / 4\right)$
(07 Marks)
b. Obtain the inverse Z-transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$.
(07 Marks)
c. Solve the difference equation $y_{n+2}+6 y_{n+1}+9 y_{n}=2 n$ with $y_{0}=y_{1}=0$ using Z transforms.
(06 Marks)

