

		AUUG DUNE SINIE		
USI	1		EC65	
		Sixth Semester B.E. Degree Examination, December 2010	0	
т:,	na.	Antennas & Propagation 3 hrs. May		
1 11	me.	Note: Answer any FIVE full questions. Max. N	Marks:100	
1	a.			
	b. c.	The state of the state of the states in this ancienta.	(07 Marks)	
		given by, $u = u_m$, $0 < \theta < \frac{\pi}{2}$		
		$0 < \phi < 2\pi$	(07 Marks)	
2	a. b.	Draw and explain the field and pattern of a directional antenna. Derive the expression for magnetic vector potential of a thin linear antenna.	(06 Marks)	
	c.	A thin dipole antenna is $\left(\frac{\lambda}{10}\right)$ long. If its loss resistance is 2.5 Ω , find the	he radiation	
		resistance and efficiency.	(04 Marks)	
3	a.	Derive the expression for electric field intensity of an array of two point source amplitude and inphase currents. Reference point is at the centre of the array radiation pattern.	ces of equal 7. Draw the (10 Marks)	
	b.	Draw the radiation pattern of an array of 4 isotropic sources separated by distance of $\frac{\lambda}{2}$ n		
		and having inphase currents. Derive the equation required.	2 (10 Marks)	
4	a. b. c.	Derive the expression for electric field intensity of a loop antenna. Find the radiation efficiency of 1 m diameter loop ($C = \pi$ m) of 10 mm diameter at, i) 1 MHz ii) 10 MHz. Explain helical geometry.	(08 Marks) copper wire (06 Marks) (06 Marks)	
5	a. b. c.	Explain the important parameters of the monofilar axial mode helical antenna. Explain with a neat diagram, Yagiuda array antenna. Write the diagram of log periodic antenna and explain.	(08 Marks) (06 Marks) (06 Marks)	
6	a. b. c.	Explain different types of horn antennas. Give the comparison between parabolic and corner reflectors. Explain embedded and plasma antennas.	(08 Marks) (06 Marks) (06 Marks)	
7	a.	Explain line of sight propagation. Derive the expression for maximum line of sig		
		Derive the expression for electric field intensity of tropospheric waves. A VHF communication has to be established with 35 W transmitter at 90 MH distance, up to which, line of sight communication may be possible, if the he transmitting and receiving antennas are 40 m and 25 m respectively. Also det field strength at the receiving end.	(08 Marks) (07 Marks) z. Find the	
	b. c.	Explain the structure of the atmosphere, with a neat diagram. What is the effect of earth's magnetic field on wave propagation? Calculate the critical frequencies for F1, F2 and E layers, for which, the maximum densities are 2.3×10^6 , 3.5×10^6 and 1.7×10^6 electrons per cm ³ respectively.	(10 Marks) (05 Marks) mum ionic (05 Marks)	