Sixth Semester B.E. Degree Examination, December 2010 Analog and Mixed Mode VLSI Design

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. With reference to a DAC describe:

i) Resolution ii) LSB iii) DNL iv) INL v) V_{FS} vi) Dynamic range. Find the value of 1 LSB and V_{FS} for a 4-bit, 8-bit and 10-bit DAC. $V_{Ref} = 5V$. (12 Marks)

b. Determine the DNL and INL for a 3-bit non-ideal DAC with the given output values.

Comment on the monotonocity.

Digital code	Analog value
000	0V
001	0.625 V
010	1.5625 V
011	2 V
100	2.5 V
101	3.125 V
110	3.4375 V
111	4.375 V

(08 Marks)

- 2 a. Draw the transfer curve for a 3-bit ADC with ramp input. Explain what is quantization error. Plot the quantization error graph for an ideal ADC. (10 Marks)
 - b. Explain the mixed signal layout issues.

(10 Marks)

- a. Design a 3-bit DAC using binary switch array. Assume V_{Ref} = 5V and power dissipation 5 mW. Find the analog value for the input D = 101. Draw the diagram and the path traced for D = 101.
 - b. With a neat diagram, explain the working of a cyclic DAC. Find the value of the output voltage at the end of each cycle for $N = 4 V_{Ref} = 5V$ and D = 1101. (12 Marks)
- 4 a. Explain the working of a successive approximation ADC, with a block diagram. For the ADC, give the intermediate values for $V_{Ref} = 8V$, N = 3 and $V_{in} = 3.5V$. (12 Marks)
 - b. Explain the working of a voltage comparator, with the help of a block diagram. (08 Marks)

PART - B

- 5 a. Give the Z domain representation of a two path averager and plot the magnitude and phase response of the digital filter. (10 Marks)
 - b. If the input sinewave to an averager has a peak amplitude of 0.5V and a frequency of 20MHz, determine the peak amplitude of the averager output and the delay through the circuit.
 - c. Develop an expression for the effective number of bits, in terms of the measured SNR, if the input sinewave has a peak amplitude of 40% of $V_{Ref} + V_{Ref}$. (04 Marks)

- 6 a. With the help of a block diagram, explain the accumlate and dump circuit. Plot the general frequency response of an averaging filter. (10 Marks)
 - b. Specify the accuracy required of an 8-bit ADC, if it is to be used to attain 12 bits with INL and DNL of \pm 0.5 LSBS $V_{Ref} = 1.5 \text{ V}$. (06 Marks)
 - Discuss the advantages and disadvantages of cascading averaging circuits to increase filter attenuation.
 (04 Marks)
- 7 a. Explain the concept of interpolation. (08 Marks)
 - b. Explain how MOSFET behaves as a capacitor. Explain floating MOS capacitor. (08 Marks)
 - c. Explain the simple delay element using pass transistors and CMOS inverters. (04 Marks)
- 8 a. Draw the arrangement for a 4 -bit pipelined adder and full adder bit implemented using dynamic logic. (08 Marks)
 - b. Explain the limitation of an inverter at the output of an op-amp, with the help of its transfer curve. How is it overcome? (06 Marks)
 - c. Explain true single phase clocking (TSPC). Using TSPC explain the delay element.

(06 Marks)