2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fifth Semester B.E. Degree Examination, May/June 2010 **Fundamentals of CMOS VLSI**

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part. 2. Draw neat diagrams.

		PART – A		
1	a.	Explain the fabrication steps in P-well CMOS fabrication.	(10 Marks)	
	b.	Obtain the de transfer characteristics of a CMOS inverter and mark all the reg		
		the status of PMOS and NMOS.	(10 Marks)	
_				
2		Compare CMOS and bipolar technologies.	(04 Marks)	
	b.	Explain the transmission gate operation.	(04 Marks)	
	c.	Draw λ-based design rules for double metal CMOS process for layers and transistors.		
			(08 Marks)	
	d.	Draw the circuit diagram and stick diagram for nand gate.	(04 Marks)	
3	a.	Explain different types of pseudo – NMOS logic.	(07 Marks)	
	b.	Explain CMOS domain logic and derive the evaluation voltage equation.	(08 Marks)	
	c.	Explain 2-input x-nor gate in pass transistor logic.	(05 Marks)	
4	a.	Explain the terms: i) Rise time; ii) Fall time; iii) Delay time. Derive the equality	ations for fall	
		time of CMOS inverter.	(08 Marks)	
	b.	Provide scaling factors for gate area, gate delay, sat current.	(06 Marks)	
	c.	Explain in brief the wiring capacitances.	(06 Marks)	
		PART – B		
5	a.	Explain the restoring logic, in detail.	(04 Marks)	
	b.	How to implement the switch logic for 4-way multiplexer? Explain.	(08 Marks)	
٠	c.	Explain the pre charge bus approach, used in system design.	(08 Marks)	
	٠	r	(001144140)	
6	a.	Explain the 4 x 4 cross bar switch operation. Mention the salient features o	f sub system	
		design process.	(08 Marks)	
	b.	Explain the design steps for A 4-bit adder.	(06 Marks)	
	c.	How can 4-bit ALU architecture be used to implement an adder?	(06 Marks)	
7	a.	Explain the read and write operations in dynamic memory cell.	(06 M	
1	b.	Explain booth multiplier, with an example.	(06 Marks)	
	c.	Explain different types of I/O pads.	(08 Marks)	
	- U .	Explain different types of 1/O page.	(06 Marks)	
8	a.	Write a note on testability and testing.	(10 Marks)	
	b.	Explain the ground rubs for a system design.	(10 Marks)	