USN	·				-	
l.		 	 	 		

EC51

Fifth Semester B.E. Degree Examination, December 2010

		Analog Communication	•
T	ime:	3 hrs. Note: Answer any FIVE full questions. Max. N	Marks:100
1	a. b.	The street of an Air wave, using the square law modulate	or. (10 Marks) (05 Marks)
	c.	The efficiency of AM wave is defined by $\eta = \frac{P_s}{P_s} \times 100$, where P_s is the power can	arried by the
		two sidebands and P_t is the total power of AM signal. Find the efficiency for $\mu =$	0.5. (05 Marks)
2	а. b.	Describe the generation of DSB-SC wave, using ring modulator. Explain the coherent detection of DSB-SC wave.	(10 Marks) (10 Marks)
3	a. b.	Derive the equations of SSB signal using Hilber transform. Explain the generation of SSB wave, using phase discrimination method, assurtone message signal.	(10 Marks) ming single (10 Marks)
4	a. b.	Describe the generation technique of FM wave, suing direct method. Explain with relevant analysis how PLL is used for FM detection.	(10 Marks) (10 Marks)
5	a. b.	Briefly explain the following: i) Axioms of probability ii) Gaussian process iii) Auto correlation function iv) Characteristic function If $y = g(x) = \cos x$, then find moment 'm', of the random variable y, where uniformly distributed in the interval $(-\pi, \pi)$.	(16 Marks) X is c.r.v. (04 Marks)
6	b.	are 5 dB and 15 dB respectively. The available power gain of first and second 12 dB and 10 dB respectively. Find the available power gain of first and second	(12 Marks)
7	a.	Derive an expression for figure of merit of DSB SC receiver	

Derive an expression for figure of merit of DSB-SC receiver.

(08 Marks)

The carrier amplitude of 1 volt, rms is available at the input of envelop detector, along with the noise PSD of 10⁻³ watts/Hz. If the carrier is modulated to a depth of 100% and message B.W, W = 3.2 KHz, then determine (SNR)₀. Derive the relation used. (12 Marks)

8 Write short notes on:

FM stereo multiplexing a.

(07 Marks)

Pre-emphasis and De-emphasis

(07 Marks)

Vestegial sideband

(06 Marks)

•