USN

06EE71

Seventh Semester B.E. Degree Examination, June/July 2011 **Computer Techniques in Power System Analysis**

Time: 3 hrs.

1

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- Given two primitive elements p-q and r-s with mutual admittance ypqrs, represent in a. admittance form and obtain the primitive performance equation. (06 Marks) (06 Marks)
 - Explain the terms with example i) Tree; ii) Basic cutsets. b.
 - The oriented connected graph of a system is shown in Fig.Q.1(c). C.

Obtain :

i) Basic cutset incidence matrix B

Basic loop incidence matrix C. ii)

Select elements 5, 6 and 7 as links. Hence verify the relation $C_b = -B_l^t$. (08 Marks)

With usual notation, deduce the expression for Y_{BUS} by singular transformation. a. (07 Marks) b. The bus admittance matrix with ground node 0 as reference of a power system network with 4 buses is given below. Obtain the admittance diagram. Assume no mutual coupling.

	<u> </u>						
		1	2	3	4		
$Y_{BUS} =$	1	-j15	j10	0	j5		
	2	j10	-j17	j5	0		
- 505	3	0	j5	-j19	j10		
	4	j5	0	j10	-j15		
	0		0.2		_@		
		/		/	10		
				/			

(06 Marks)

The bus impedance matrix with node 0 as reference of the system shown in Fig.Q.2(c) is 1 2 $Z_{BUS} =$ 0.08 0.04 1 2 0.04 0.12

Using Z_{BUS} algorithm, modify the above Z_{BUS} for the removal of element 1 - 2 with self impedance 0.2 pu. Neglect mutual coupling. (07 Marks)

(O) Ref Fig.Q.2(c).

2

- 3 a. Define power flow problem and explain its importance.
 - b. Derive expressions for diagonal elements of NR Jacobian submatrices in polar form.

(08 Marks)

(06 Marks)

(04 Marks)

c. In the power system of Fig.Q.3(c), bus 1 with slack and remaining are load buses. Write down the bus voltage equations for Gauss – Seidel iterative technique. (08 Marks)

- 4 a. Stating all assumptions, deduce the FDLF model and give the computational flow-diagram. (07 Marks)
 - b. Compare Gauss Seidel and NR load flow methods in respect of
 - i) Time per iteration and number of iterations.
 - ii) Total solution time.

5

- iii) Effect of selection of slack bus, acceleration factor.
- iv) Convergence characteristics.
- c. For a three bus system, Y_{BUS} (with ground as reference) is

		1	2	3
Y _{BUS} =	1	-j32	j10	0
	2	j10	-j15	j5
	3	0	j5	-j6

Bus 1 is slack with voltage (1.02 + j0) pu. The real and reactive power injections (in pu) at buses 2 and 3 (load buses) are P₂ = -0.5; Q₂ = -0.1; P₃ = -0.3; Q₃ = 0.0. Assuming (1 + j0) pu voltage at buses 2 and 3, determine its voltages at the end of first iteration using G-S method. (07 Marks)

PART – B

- a. Deduce the condition for optimal load dispatch considering transmission losses in a system comprising K-plants. (06 Marks)
- b. For the system shown in Fig.Q.5(b) obtain expressions for $B coefficients B_{11}$, B_{22} and B_{12} .

(07 Marks)

Fig.Q.5(b).

2 of 3

c. A system with two generating units is shown in Fig.Q.5(c).

Fig.Q.5(c).

When a load of 125 MW is transmitted from unit 1 to load, loss of 15.625 MW is incurred in the line. Determine the optimal generation schedule and total load demand if the cost of received power (λ) is Rs.24/MWh. The incremental fuel costs (in Rs/MWh) are $\frac{dF_1}{dP_1} = 0.0255 P_1 + 15$ and $\frac{dF_2}{dP_2} = 0.05 P_2 + 20$. (07 Marks)

6 a. With a usual notation, derive the generalized transmission loss formula and B-coefficients. (07 Marks)

b. In a system comprising two generating plants, the fuel costs (in Rs/hr) are $F_1 = 0.004 P_1^2 + 8P_1 + 10$; $F_2 = 0.006 P_2^2 + 9P_2 + 15$.

The system is operating on economic load dispatch with $P_1 = P_2 = 500$ MW and $\frac{dP_L}{dP_2} = 0.2$.

Find the penalty factor of plant 1.

(06 Marks)

(05 Marks)

c. The incremental fuel cost in Rs./MWh for 3 generating units in a system are :

$$\frac{dF_1}{dP_1} = 0.12 P_1 + 30 ; \quad \frac{dF_2}{dP_2} = 0.2 P_2 + 40 ; \quad \frac{dF_3}{dP_3} = 0.16 P_3 + 10.$$

The constraints on the generating units are :

 $30 \le P_1 \le 150 \text{ MW}$, $20 \le P_2 \le 100 \text{ MW}$ and $50 \le P_3 \le 250 \text{ MW}$. Determine the optimal load allocation when the total load demand is 310 MW. Neglect losses. (07 Marks)

- 7 a. Explain with necessary equations the solution of swing equation by point by point method. How discontinuities are handled? (08 Marks)
 - b. List the merits and demerits of Runge Kutta method.
 - c. The swing equations of a synchronous generator is

$$\frac{d\delta}{dt} = \omega - 377 \text{ rad/sec} ; \qquad \frac{d\omega}{dt} = 32[1 - 0.4 \sin \delta] .$$

At t = 0.0 sec, $\omega = 377$ rad/sec and $\delta = 0.523$ radians. Determine the values of ω and δ at 0.1 sec. using modified Euler method. Assume $\Delta t = 0.1$ sec. (07 Marks)

- 8 a. Explain : i) Network performance equation ; ii) Load models employed in multi machine stability studies. (10 Marks)
 - b. With necessary equations and flow-charts, describe the solution of swing equations using modified Euler method in a multi machine stability analysis. (10 Marks)

* * * * *

06EE71

Seventh Semester B.E. Degree Examination, June/July 2011 **Computer Techniques in Power System Analysis**

Time: 3 hrs.

1

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- Given two primitive elements p-q and r-s with mutual admittance ypqrs, represent in a. admittance form and obtain the primitive performance equation. (06 Marks)
 - b. Explain the terms with example i) Tree; ii) Basic cutsets.
 - The oriented connected graph of a system is shown in Fig.Q.1(c). C.

Obtain :

i) Basic cutset incidence matrix B

ii) Basic loop incidence matrix C.

Select elements 5, 6 and 7 as links. Hence verify the relation $C_b = -B_l^t$. (08 Marks)

With usual notation, deduce the expression for Y_{BUS} by singular transformation. a. (07 Marks) b. The bus admittance matrix with ground node 0 as reference of a power system network with 4 buses is given below. Obtain the admittance diagram. Assume no mutual coupling.

(06 Marks)

The bus impedance matrix with node 0 as reference of the system shown in Fig.Q.2(c) is

() Ref Fig.Q.2(c).

Using Z_{BUS} algorithm, modify the above Z_{BUS} for the removal of element 1-2 with self impedance 0.2 pu. Neglect mutual coupling. (07 Marks)

2

(06 Marks)