Page	<i>No</i>	1

EE5T5

Reg.	No.		
			ì

Fifth Semester B.E. Degree Examination, July/August 2002

Electrical & Electronics Engineering Electrical Drawing & CAD

Time: 4 hrs.]

[Max.Marks: 100

Note: 1. Answer FOUR full questions choosing THREE questions from questions 1 to 6 and ONE question from 7 and 8.

2. Assume any missing data suitably.

- 1. (a) Sketch the electrical representation of the following:
 - a) Separately excited generator.
 - b) Single phase auto transformer.
 - c) CT & PT.
 - d) Isolator & circuit breaker.

 $(4 \times 2 = 8 \text{ Marks})$

- (b) Draw a typical layout of
 - i) Hydel power plant &
 - ii) Nuclear power plant.

(2×6=12 Marks)

- 2. (a) Sketch the typical layout of a transmission & distribution system indicating the usual voltage levels at the primary & secondary transmission as well as at the primary & secondary distribution.

 (10 Marks)
 - (b) Draw the single line diagram of a typical substation indicating the positions of all the necessary equipments.

 (10 Marks)
- 3. (a) Draw the developed winding diagram for a 4 pole 13 slots simplex double layer wave connected DC generator indicating the positions of the brushes.

 Write the winding table and also draw the sequence diagram. (26 Marks)
- 4. Draw the developed lap winding diagram for a 3ϕ star connected 4 pole machine. The winding is to be arranged in double layer with $2\frac{1}{2}$ slots/pole/phase in the phase sequence RYB.
- 5. Draw a schematic diagram of
 - a) DOL starter with all the details.
 - b) Auto transformer starter with no volt coil and overload release.

(2×10=20 Marks)

- 6. Draw proportionate sketches of the following:
 - a) Brush & brush holder.
 - b) Sectional plan of a limb with winding details of a 3ϕ transformer having 3 stepped core.
 - c) Sectional end view of method of fixing the pole to the yoke in a DC machine.

 (8+7+7=20 Marks)
- 7. Draw to a suitable scale half sectional end view and half sectional longitudinal view of a 4 pole DC shunt motor having the following dimensions.

- i) Armature:
 - Outside diameter = 18.5cms length = 13.5cms No. of slots = 24.
- ii) Mainpole (Laminated)
 Total height = 11cms
 Width = 7cms
 Pole arc = 10cms
 length of the pole = 14cms
 Airgap = 0.5cms.
- iii) Inter pole (solid) Size = 2×10.8 cms. length = 11cms.
- iv) Commutator:

 Diameter = 13cms
 length = 10cms.

(40 Marks)

- 8. (a) Draw a half sectional elevation of a salient pole alternator. Show the stator and rotor with winding and their method of fixing.
 - i) Length of the stator = 19cms
 - ii) Inside diameter of the stator = 32cms
 - iii) Outside diameter of the stator = 51cms
 - iv) length of the yoke = 24cms
 - v) overall height of the machine = 61cms
 - vi) overall length of the machine = 50cms.

(20 Marks)

(20 Marks)

- (b) Draw the half sectional end view of a squirrel cage motor with the following dimensions.
 - i) Inside diameter of the stator = 20cms.
 - ii) length of the stator = 14cms
 - iii) stator slot size = 0.95×2.9 cms
 - iv) No. of slots = 36
 - v) Outside diameter of the stator = 34cms
 - vi) No. of rotor slots = 31 with 1cm dia
 - vii) Diameter of the shaft below rotor = 2.5cms.

** * **

IISN			
0011	 []	1 1	1 1

Fifth Semester B.E. Degree Examination, January/February 2005

Electrical & Electronics Engineering

(Old Scheme)

Electrical Drawing & CAD

Time: 4 hrs.]

[Max.Marks: 100

Note: 1. Answer FOUR full questions choosing THREE questions from questions 1 to 6 and ONE question from 7 and 8.

- 2. Assume any missing data suitably.
- 1. (a) Sketch the standard symbols for the following electrical equipments.
 - i) 3 phase slip ring induction motor
 - ii) 3 phase auto transformer
 - iii) Circuit breaker and isolator
 - iv) D.C. compound generator
 - v) Potential transformer.

(10 Marks)

(b) Draw the single line diagram of a typical power system.

(10 Marks)

- 2. (a) Draw the single line diagram of a 33/6.6 kV substation indicating the positions of isolators, circuit breakers, lightning arrestors, transformer and other necessary equipments.

 (10 Marks)
 - (b) Draw the layout and schematic arrangement of Nuclear power plant.

(10 Marks)

- 3. Draw the developed winding diagram of a D.C. generator with 4 pole 16, slots, double layer, duplex progressive lap winding. Show the positions of poles, direction of induced emf and position of brushes.

 (20 Marks)
- 4. Draw the developed winding diagram for a 4 pole, 3 phase synchronous machine with double layer with 3 slots/pole/phase and short chorded by ONE slot. The phase sequence is RYB. Connect the winding in Delta.

(20 Marks)

5. (a) Draw a neat layout of a thermal power plant.

(10 Marks)

- (b) Draw the schematic diagram of a direct on line (D.O.L) starter showing all the details.

 (10 Marks)
- 6. Draw end view and elevation of the stator stamping of an induction motor of the given below dimensions.

Inside or airgap diameter of stator stamping = 18 cmSlot size = $2.9 \times 0.95 \text{cm}$ Depth of iron behind the stator slot = 4 cm

Length of stator stamping = 13.5cm

One radial cooling duct = 1cm wide

Total slots = 36

(20 Marks)

Contd.... 2

- 7. Draw the following views of a 3 phase, 250 KVA, 11KV/400V transformer
 - i) Front elevation full in section
 - ii) Plan full in section

The detailed dimensions of the parts are as follows:

CORE

Cross section of the core = 3 step core
Diameter of circumscribing circle = 24 cm
Distance between the adjacent centres of core = 42.5cm

YOKE

Yoke height = 25cm

LT Winding

Outside diameter of L.T. coil = 28.3 cm Inside diameter of L.T. coil = 25 cm Height of LT winding = 43.5 cm Number of turns per phase = 12

H.T. Winding

Outside diameter of H.T. coil = 41.5 cm Inside diameter of H.T. coil = 34.3 cm Height of HT winding = 43.5cm Number of turns/phase = 572

Total height of the transformer = 100cm. Other missing data may be assumed.

(40 Marks)

8. Draw to a suitable scale a neat and sectional end view of a DC machine as per main dimensions given below in centimetre scale. Winding of field and armature need not be shown.

D.C. 6 pole, 150 HP motor
Armature diameter = 55
Number of slots = 61
Size of slot = 1 × 4.5
Slot open type.
Depth below slot = 9
Commutator diameter = 42
Number of commutator bars = 244
Air gap length (radial) = 0.5 at main pole and 0.6 at inter pole
Main pole laminated, breadth 14, arc 20, height with shoe 21.
Interpole breadth = 4
Outside diameter of yoke = 115
Shaft diameter at bearing = 10

The method of fixing the pole lamination and the pole to the yoke should be clearly shown.

(40 Marks)

** * **