O6CS	/IS832
TELEVISION AND A	

Eighth Semester B.E. Degree Examination, December 2011 Web 2.0 and Rich Internet Applications

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

		PART – A	
1	a.	What is web 2.0? Explain the concepts involved in web 2.0.	(06 Marks)
	b.	Explain any two web services.	(06 Marks)
	c.	What is JSON? How it is differ with XML. Explain syntax and literals of JSON.	(08 Marks)
2	a.	Distinguish between traditional web application model and Ajax web application	model. (06 Marks)
	b.	What is hidden frame technique? Explain hidden frame technique with an GI	
		Also list advantages and disadvantages of the same.	(08 Marks)
	c.	Explain the principles of Ajax. List the technologies behind Ajax.	(06 Marks)
3	a.	Explain XHR object with both GET and POST method. Also list the adva	ntages and
		disadvantages of the same.	(10 Marks)
	b.	Briefly explain the Ajax design patterns.	(10 Marks)
4	a.	List and explain the different categories of flex class library.	(08 Marks)
-	Ъ.	Compare and contrast traditional and flex web applications.	(06 Marks)
	c.	Explain application document and component document of MXML.	(06 Marks)
		PART – B	
5	a.	Explain four basic options used during embedding action script within flex.	(08 Marks)
	b.	Explain the following terms related to action scripts i) Methods; ii) Interfaces.	(06 Marks)
	c.	Explain the runtime error handling capability of action script.	(06 Marks)
6	a.	Explain flex application life cycle.	(06 Marks)
	b.	List and explain the flex layout rules.	(06 Marks)
	c.	Explain the class diagram of container components with the help of a neat diagram	1. (08 Marks)
7	a.	Explain the different categories of UI components. Also list the properties of c	ommon UI
		components.	(08 Marks)
	b.	Explain the list – based controls and tree control of flex.	(06 Marks)
	c.	Explain the data binding features of flex framework.	(06 Marks)
8		Write short notes on:	
	a.	Mashup techniques.	
	b.	Building RSS reader with Ajax.	
	c.	Web services in flex.	
	d.	Fluid interface.	(20 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

PART - B

- 5 a. Derive the Zorenz force equation and mention the application of the solution. (06 Marks)
 - b. The point charge Q = 18 nc has a velocity of 5×10^6 m/sec in the direction $a_v = 0.6\vec{a}_x + 0.75\vec{a}_y + 0.3\vec{a}_z$. Calculate the magnitude of the force exerted on the charge by the field
 - i) $\vec{E} = -3\vec{a}_x + 4\vec{a}_y + 6\vec{a}_z \text{ KV/m}$
 - ii) $-3\vec{a}_x + 4\vec{a}_y + 6\vec{a}_z mT$
 - iii) B and E acting together.

(08 Marks)

c. The magnetic flux density in a region of free space is given as $B = -3xa_x + 5ya_y - 2za_z$ Tesla. Find the total force on the rectangular loop shown in Fig.Q.5(c) below; if it lies z = 0 and is bounded by x = 1, x = 3 and y = 2, y = 5

Fig.Q.5(c)

All dimensions are in cms.

(06 Marks)

6 a. Derive the continuity equation from Maxwell's equations.

(06 Marks)

b. For time varying fields, show that $E = -\nabla V - \frac{\partial A}{\partial t}$, where A is a vector magnetic potential.

(06 Marks)

- c. The electric field intensity in the region 0 < x < 5, $0 < y < \pi/2$, 0 < z < 0.06 m in free space is given by $E = C \sin 12y \sin az \cos 2 \times 10^{10} t a_x \text{ v/m}$. Beginning with $\nabla \times E$ relationship, use Maxwell's equations and find a numerical value for 'a', if it is known that 'a' is greater than 0. (08 Marks)
- 7 a. State and prove Poynting theorem.

(05 Marks)

- b. Determine the relationship between E and H of an EM wave, travelling in free space, along the x direction. (10 Marks)
- c. A certain lossless medium has $\mu_r = 4 \in_r = 9.A$ 10 MHz uniform plane wave is propagating in the a_y direction with $E_{xo} = 400$ V/m and $E_{yo} = E_{zo} = 0$ at P(0.6, 0.6, 0.6) at t = 60 ns. Find
 - i) β , λ , v_p and n
 - ii) E(t)
 - iii) H(t).

(05 Marks)

- a. Discuss the reflection of uniform plane waves at normal incidence. Hence derive the expression for the transmission and reflection coefficient. (10 Marks)
 - b. A uniform plane wave in air is normally incident on to a lossless dielectric plate of thickness $\frac{\lambda}{8}$ and of intrinsic impedance $n = 260 \Omega$. Determine the standing wave ratio in front of the plate. Also find the fraction of the incident power that is transmitted to the other side of the
 - plate.c. Write short notes on Standing Wave Ratio.

(06 Marks) (04 Marks)