UE | SEE AND SECRE DANGEROUSE TO

Eighth Semester B.E. Degree Examination, December 2011

DECEMBER OF LIBERTY

System Modeling and Simulation

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, selecting at least TWO questions from each part.

2. Statistical tables A.6 and A.8 from the text book can be provided.

PART-A

- a. List any five circumstances, when the simulation is the appropriate tool and when it is not.
 (10 Marks)
 - b. Explain the steps in a simulation study, with the flow chart.

(10 Marks)

2 a. One company uses 6 trucks to haul manganese ore from Kolar to its industry. There are two loaders, to load each truck. After loading, a truck moves to the weighing scale to be weighed. The queue discipline is FIFO. When it is weighed, a truck travels to the industry and returns to the loader queue. The distribution of loading time, weighing time and travel time are as follows:

Loading time: 10 5 5 10 15 10 1 Weigh time: 12 12 12 16 12 16

Travel time: 60 100 40 40 80

Calculate the total busy time of both the loaders, the scale average loader and scale utilization. Assume 5 trucks are at the loaders and one is at the scale, at time "0". Stopping time $T_E = 64 \text{ min.}$ (10 Marks)

b. Explain simulation in GPSS, with a block diagram, for the single server queue simulation.

(06 Marks)

c. Explain the following:

i) System

ii) Event list

iii) Entity

iv) Event.

(04 Marks)

3 a. Explain discrete random variables and continuous random variables, with examples.

(10 Marks)

Explain any two discrete distributions.

(05 Marks)

- c. Explain the following continuous distribution:
 - i) Uniform distribution
 - ii) Exponential distribution.

(05 Marks)

- 4 a. Explain the characteristics of a queuing system. List different queuing notations. (10 Marks)
 - b. Explain any two long-run measures of performance of queuing systems. (10 Marks)

PART-B

- 5 a. Explain the two different techniques used for generating random numbers, with examples.
 (10 Marks)
 - b. The sequence of numbers 0.44, 0.81, 0.14, 0.05, 0.93 has been generated. Use the Kolmogonov-Smirnov test with α = 0.05 to determine if the hypothesis that the numbers are uniformly distributed on the interval [0, 1] can be rejected. Compare F(X) and S_N(X) on a graph.
 (10 Marks)

06CS82

a. Explain inverse-transform technique of producing random variates for exponential (05 Marks) distribution. (05 Marks) b. Generate three Poison variates with mean $\alpha = 0.2$. c. Explain the types of simulation with respect to output analysis. Give at least two examples. (10 Marks) a. Explain Chi-square goodness of fit test. Apply it to Poisson assumption with $\alpha = 3.64$. Data size = 100 and observed frequency O_i = 12, 10, 19, 17, 10, 8, 7, 5, 5, 3, 3, 1. (10 Marks) b. List the steps involved in the development of a useful model of input data. (05 Marks) c. Explain Chi-square goodness-of-fit test for exponential distribution, with an example. (05 Marks) a. Explain, with a neat diagram, model building, verification and validation. (10 Marks) (10 Marks) Explain any two output analysis for steady-state simulations.
