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Foreword

There are approximately three hundred exercises for solution in the text. These exercises emphasize principles
of discrete-event simulation and provide practice in utilizing concepts found in the text.

Answers provided here are selective, in that not every problem in every chapter is solved. Answers in
some instances are suggestive rather than complete. These two caveats hold particularly in chapters where
building of computer simulation models is required. The solutions manual will give the instructor a basis
for assisting the student and judging the student’s progress. Some instructors may interpret an exercise
differently than we do, or utilize an alternate solution method; they are at liberty to do so. We have
provided solutions that our students have found to be understandable.

When computer solutions are provided they will be found on the text web site, www.bcnn.net, rather
than here. We have invited simulation software vendors to submit solutions to a number of modeling and
analysis problems; these solutions will also be found on the web site. Instructors are encouraged to submit
solutions to the web site as well.

Jerry Banks
John S. Carson II
Barry L. Nelson
David M. Nicol



Chapter 1

Introduction to Simulation

For additional solutions check the course web site at www.bcnn.net.

1. Solution to Exercise 1:

SYSTEM ENTITIES ATTRIBUTES ACTIVITIES EVENTS STATE VARIABLES
a. Small appliance Appliances Type of appliance Repairing Arrival of Number of appliances

repair shop the appliance a job waiting to be repaired
Age of appliance

Completion Status of repair person
Nature of problem of a job busy or idle

b. Cafeteria Diners Size of appetite Selecting food Arrival at Number of diners
service line in waiting line

Entree preference Paying for food Departures Number of servers
from service working
line

c. Grocery store Shoppers Length of grocery Checking out Arrival at Number of shoppers
list checkout in line

counters Number of checkout
lanes in operation

Departure from
checkout counter

d. Laundromat Washing Breakdown rate Repairing Occurrence of Number of machines
machine a machine breakdowns running

Number of machines in
Completion repair
of service Number of Machines

waiting for repair

1
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SYSTEM ENTITIES ATTRIBUTES ACTIVITIES EVENTS STATE VARIABLES
e. Fast food Customers Size of order Placing the Arrival at Number of customers

restaurant desired order the counter waiting

Paying for Completion Number of positions
the order of purchase operating

f. Hospital Patients Attention level Providing Arrival of Number of patients
emergency room required service the patient waiting

required
Departure of Number of physicians
the patient working

g. Taxicab company Fares Origination Traveling Pick-up Number of busy taxi cabs
of fare

Destination Number of fares
Drop-off waiting to be picked up
of fare

h. Automobile Robot Speed Spot welding Breaking Availability of
assembly line welders down machines

Breakdown rate

3. Abbreviated solution to Exercise 3:

Iteration Problem Formulation Setting of Objectives
and Overall Project Plan

1 Cars arriving at the in-
tersection are controlled
by a traffic light. The
cars may go straight,
turn left, or turn right.

How should the traffic light be se-
quenced? Criterion for evaluating
effectiveness: average delay time of
cars. Resources required: 2 people
for 5 days for data collection, 1 per-
son for 2 days for data analysis, 1
person for 3 days for model build-
ing, 1 person for 2 days for running
the model, 1 person for 3 days for
implementation.

2 Same as 1 above plus the
following: Right on red
is allowed after full stop
provided no pedestrians
are crossing and no vehi-
cle is approaching the in-
tersection.

How should the traffic light be se-
quenced? Criterion for evaluating
effectiveness: average delay time of
cars. Resources required: 2 people
for 8 days for data collection, 1 per-
son for 3 days for data analysis, 1
person for 4 days for model build-
ing, 1 person for 2 days for running
the model, 1 person for 3 days for
implementation.

3 Same as 2 above plus the
following: Trucks arrive
at the intersection. Ve-
hicles break down in the
intersection making one
lane impassable. Acci-
dents occur blocking traf-
fic for varying amounts of
time.

How should the traffic light be
sequenced? Should the road be
widened to 4 lanes? Method of eval-
uating effectiveness: average delay
time of all vehicles. Resources re-
quired: 2 people for 10 days for data
collection, 1 person for 5 days for
data analysis, 1 person for 5 days for
model building, 1 person for 3 days
for running the model, 1 person for
4 days for implementation.
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4. Solution to Exercise 4:

Data Collection (step 4) - Storage of raw data in a file would allow rapid accessibility and a large memory
at a very low cost. The data could be easily augmented as it is being collected. Analysis of the data
could also be performed using currently available software.

Model Translation (step 5) - Many simulation languages are now available (see Chapter 4).

Validation (step 7) - Validation is partially a statistical exercise. Statistical packages are available for this
purpose.

Experimental Design (step 3) - Same response as for step 7.

Production Runs (step 9) - See discussion of step 5 above.

Documentation and Reporting (step 11) - Software is available for documentation assistance and for report
preparation.

5. Data Needed
Number of guests attending
Time required for boiling water
Time required to cook pasta
Time required to dice onions, bell peppers, mushrooms
Time required to saute onions, bell peppers, mushrooms, ground beef
Time required to add necessary condiments and spices
Time required to add tomato sauce, tomatoes, tomato paste
Time required to simmer sauce
Time required to set the table
Time required to drain pasta
Time required to dish out the pasta and sauce

Events
Begin cooking
Complete pasta cooking
Complete sauce cooking

}
Simultaneous

Arrival of dinner guests
Begin eating

Activities
Boiling the water
Cooking the pasta
Cooking sauce
Serving the guests

State variables
Number of dinner guests
Status of the water (boiling or not boiling)
Status of the pasta (done or not done)
Status of the sauce (done or not done)

7. Event
Deposit
Withdrawal
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Activities
Writing a check
Cashing a check
Making a deposit
Verifying the account balance
Reconciling the checkbook with the bank statement



Chapter 2

Simulation Examples

For additional solutions check the course web site at www.bcnn.net.

4. Solution to Exercise 4:

L̂ =
∑∞

i=0 iTi/T where

L̂ = time weighted average number of customers in the system

Ti = total time during [0, T ] in which the system contains exactly i customers

L̂ =
∑4

i=0 iTi/86 = [0(18) + 1(32) + 2(20) + 3(14) + 4(2)]/86 = 1.419 customers

L̂Q =
∑∞

i=0 iT
Q
i /T where

L̂Q = time weighted average number of customers waiting during [0, T ]

TQ
i = Total time during [0, T ] in which exactly i customers are waiting in the queue

L̂Q = [0(50) + 1(20) + 2(14) + 3(2)]/86 = .628 customers

6. Solution to Exercise 6:

New Service Distribution for Able

Service Probability Cumulative RD
Time Probability Assignment

3 .30 .30 01-30
4 .30 .60 31-60
5 .25 .85 61-85
6 .15 1.00 86-00

6a.
Able Baker

Inter- Arrival RD for Time Time Time Time
Number RD for Arrival Clock Service Service Service Service Service Service Service Time in

Arrival Time Time Begins Time Ends Begins Time Ends Queue
1 - - 0 95 0 6 6 0
2 26 2 2 25 2 3 5 0
3 98 4 6 51 6 4 10 0
4 90 4 10 92 10 6 16 0
5 26 2 12 89 12 6 18 0
6 42 2 14 38 16 4 20 2
7 74 3 17 13 18 3 21 1
8 80 3 20 61 20 5 25 0
·
·
·
25 16 1 55 87 6 63 2

5



CHAPTER 2. SIMULATION EXAMPLES 6

Typical results of a simulation:
Able serves only 12 cars rather than 16 as in the previous simulation.
Average time in queue = 1.5 minutes.

6b. Simulation for Able, Baker and Charlie using some random digits.

Able Baker Charlie
Inter- Arrival RD for Time Time Time Time Time Time

Number RD for Arrival Clock Service Service Service Service Service Service Service Service Service Service Time in
Arrival Time Time Begins Time Ends Begins Time Ends Begins Time Ends Queue

1 - - 0 95 0 6 6 0
2 26 2 2 25 2 3 5 0
3 98 4 6 51 6 4 10 0
4 90 4 10 92 10 6 16 0
5 26 2 12 89 12 6 18 14 4 18 0
6 42 2 14 38 20 2
7 74 3 17 13 17 3 0
8 80 3 20 61 20 5 25 0
·
·
·
25 16 1 25 55 55 6 61 0
26 74 4 59 47 59 4 63

Typical results of a simulation:
Baker still has first shot at cars and thus has the most, or 12.
Able serves 8 cars, and Charlie gets the leftovers, or 6 cars.
There is no waiting time in the queue.

10. Profit = Revenue from retail sales - Cost of bagels made + Revenue from grocery store sales - Lost
profit.

Let Q = number of dozens baked/day
S =

∑
i

0i, where 0i = Order quantity in dozens for the ith customer

Q− S = grocery store sales in dozens, Q > S
S −Q = dozens of excess demand, S > Q

Profit = $5.40 min(S,Q) − $3.80Q + $2.70(Q− S) − $1.60(S −Q)

Number of Probability Cumulative RD
Customers Probability Assignment

8 .35 .35 01-35
10 .30 .65 36-65
12 .25 .90 66-90
14 .10 1.00 91-100

Dozens Probability Cumulative RD
Ordered Probability Assignment

1 .4 .4 1-4
2 .3 .7 5-7
3 .2 .9 8-9
4 .1 1.0 0
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Pre-analysis

E(Number of Customers) = .35(8) + .30(10) + .25(12) + .10(14)
= 10.20

E(Dozens ordered) = .4(1) + .3(2) + .2(3) + .1(4) = 2

E(Dozens sold) = S̄ = (10.20)(2) = 20.4

E(Profit) = $5.40Min(S̄, Q) − $3.80Q + $2.70(Q− S̄) − $1.60(S̄ −Q)
= $5.40Min(20.4, Q) − $3.80Q + $2.70(Q− 20.4)

−$0.67(20.4 −Q)

E(Profit|Q = 0) = 0 − 0 + $1.60(20.4) = −$32.64

E(Profit|Q = 10) = $5.40(10) − $3.80(10) + 0 − $1.60(20.4 − 10)
= −$0.64

E(Profit|Q = 20) = $5.40(20) − $3.80(20) + 0 − $1.60(20.4 − 20)
= $15.36

E(Profit|Q = 30) = $5.40(20.4) − $3.80(30) + $2.70(30 − 20.4) − 0
= $22.08

E(Profit|Q = 40) = $5.40(20.4) − $3.80(40) + $2.70(40 − 20.4) − 0
= $11.08

The pre-analysis, based on expectation only, indicates that simulation of the policies Q = 20, 30, and 40
should be sufficient to determine the policy. The simulation should begin with Q = 30, then proceed to
Q = 40, then, most likely to Q = 20.

Initially, conduct a simulation for Q = 20, 30 and 40. If the profit is maximized when Q = 30, it will
become the policy recommendation.

The problem requests that the simulation for each policy should run for 5 days. This is a very short run
length to make a policy decision.

Q = 30
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Day RD for Number of RD for Dozens Revenue Lost
Customer Customers Demand Ordered from Profit $

Retail $
1 44 10 8 3 16.20 0

2 1 5.40 0
4 1 5.40 0
8 3 16.20 0
1 1 5.40 0
6 2 10.80 0
3 1 5.40 0
0 4 21.60 0
2 1 5.40 0
0 4 21.60 0

21 113.40 0

For Day 1,

Profit = $113.40 − $152.00 + $24.30 − 0 = $14.30
Days 2, 3, 4 and 5 are now analyzed and the five day total profit is determined.

11. Solution to Exercise 11:

Daily Probability Cumulative RD
Demand Probability Assignment

0 .33 .33 01-33
1 .25 .58 34-58
2 .20 .78 59-78
3 .12 .90 79-90
4 .10 1.00 91-00

Lead Probability Cumulative RD
Time Probability Assignment

1 .3 .3 1-3
2 .5 .8 4-8
3 .2 1.0 9-0



CHAPTER 2. SIMULATION EXAMPLES 9

Cycle Day Beginning RD for Demand Ending Shortage Order RD for Days Until
Inventory Demand Inventory Quantity Quantity Lead Time Order Arrives

1 1 12 56 1 11 0
2 11 30 0 11 0
3 11 79 3 8 0
4 8 84 3 5 0
5 5 20 0 5 0
6 5 10 0 5 0
7 5 83 3 2 0 10 2 1

2 1 2 62 2 0 0 0
2 10 58 1 9 0
3 9 32 0 9 0
4 9 42 1 8 0
5 8 87 3 5 0
6 5 88 3 2 0
7 2 00 4 0 2 10 7 2

.

..
6 1 0 71 2 0 2 1

2 10 34 1 7 0 0
3 7 14 0 7 0
4 7 46 1 6 0
5 6 84 3 3 0
6 3 09 0 3 0
7 3 65 2 1 0 10 2 1

Typical results from simulation of current system:
Probability of shortage = 0.25
Average ending inventory = 3.5 units

Effect on Shortages Caused by Policy Variable Changes

Policy Variable
Change Review Reorder Reorder

Period Quantity Point
Increase Increase Decrease No effect in this

case since all values
were below current
reorder point.

Decrease Decrease Increase Decrease would have
to be drastic, say to
a reorder point of
< 2 units. Such
a change would in-
crease shortages.

12. Solution to Exercise 12:

Daily Probability Cumulative RD
Demand Probability Assignment

0 .18 .18 01-18
1 .39 .57 19-57
2 .29 .86 58-86
3 .09 .95 87-95
4 .05 1.00 96-00
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Lead Probability Cumulative RD
Time Probability Assignment

0 .135 .135 001-135
1 .223 .358 136-358
2 .288 .646 359-646
3 .213 .859 647-859
4 .118 .977 860-977
5 .023 1.000 978-000

RD for Lead Time RD for Demand Lead Time
Cycle Lead Time Demand Demand

1 024 0 - - 0
2 330 1 14 0 0
3 288 1 53 1 1
4 073 0 - - 0
5 197 1 24 1 1
6 924 4 53 1

81 2
70 2
18 0 5

Narrow histogram intervals (say 1 time unit) seem to be more descriptive and less blocky than larger
intervals. For a realistic determination many more cycles would need to be simulated. With a large number
of cycles, narrow histogram intervals will probably be favored.

15. Solution to Exercise 15:

Time Between Probability Cumulative RD
Calls Probability Assignment

15 .14 .14 01-14
20 .22 .36 15-36
25 .43 .79 37-79
30 .17 .96 80-96
35 .04 1.00 97-00

Service Probability Cumulative RD
Time Probability Assignment

5 .12 .12 01-12
15 .35 .47 13-47
25 .43 .90 48-90
35 .06 .96 91-96
45 .04 1.00 97-00

First, simulate for one taxi for 5 days.
Then, simulate for two taxis for 5 days.

}
Shown on simulation tables

Comparison

Smalltown Taxi would have to decide which is more important—paying for about 43 hours of idle time
in a five day period with no customers having to wait, or paying for around 4 hours of idle time in a five day
period, but having a probability of waiting equal to 0.59 with an average waiting time for those who wait of
around 20 minutes.
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One Taxi

Day Call RD for Time Time Call RD for Service Time Time Time Time Idle Time
between between Time Service Time Service Customer Service Customer of Taxi
Calls Calls Time Begins Waits Ends in System

1 1 15 - 0 01 5 0 0 5 5 0
2 01 20 20 53 25 20 0 55 25 0
3 14 15 35 62 25 55 20 80 45 0
4 65 25 60 55 25 80 20 105 45 0
5 73 25 85 95 35 105 20 140 55 0
6 48 25 110 22 15 140 30 155 45 0

.

.

.
20 77 25 444 63 25 470 25 495 50 0

2

.

.

.

Typical results for a 5 day simulation:
Total idle time = 265 minutes = 4.4 hours
Average idle time per call = 2.7 minutes
Proportion of idle time = .11
Total time customers wait = 1230 minutes
Average waiting time per customer = 11.9 minutes
Number of customers that wait = 61 (of 103 customers)
Probability that a customer has to wait = .59
Average waiting time of customers that wait = 20.2 minutes

Two taxis (using common RDs for time between calls and service time)

Taxi 1 Taxi 2
Day Call Time Call Service Time Service Time Time Service Time Time Time Idle Idle

between Time Time Service Time Service Service Time Service Customer Customer Time Time
Calls Begins Ends Begins Ends Waits in System Taxi 1 Taxi 2

1 1 - 0 5 0 5 5 0 5
2 20 20 25 20 25 45 0 25
3 15 35 25 35 25 60 0 25 35
4 25 60 25 60 25 85 0 25 15
5 25 85 35 80 35 120 0 35
6 25 110 15 110 15 125 0 15 50

.

.

.
20 20 480 25 480 25 505 0 25 10

2

.

.

.

Typical results for a 5 day simulation:
Idle time of Taxi 1 = 685 minutes
Idle time of Taxi 2 = 1915 minutes
Total idle time = 2600 minutes = 43 hours
Average idle time per call = 25.7 minutes
Proportion of idle time = .54
Total time customers wait = 0 minutes
Number of customers that wait = 0

17. Solution to Exercise 17:

X = 100 + 10RNNx

Y = 300 + 15RNNy

Z = 40 + 8RNNz

Typical results...
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RNNx X RNNy Y RNNz Z W

1 -.137 98.63 .577 308.7 -.568 35.46 11.49
2 .918 109.18 .303 304.55 -.384 36.93 11.20
3 1.692 116.92 -.383 294.26 -.198 38.42 10.70
4 -.199 98.01 1.033 315.50 .031 40.25 10.27
5 -.411 95.89 .633 309.50 .397 43.18 9.39
...

19. Solution to Exercise 19:

T = Lead Time
T ∼ N(7, 22)
T = 7 + 2(RNN)(Rounded to nearest integer)

Daily Probability Cumulative RD
Demand Probability Assignment

0 0.367 0.367 001-367
1 0.368 0.735 368-735
2 0.184 0.919 736-919
3 0.062 0.981 920-981
4 0.019 1.000 982-000

Cycle RNN for Lead Day RD for Demand Lead
Lead Time Time Demand Time

Demand
1 -.82 5 1 127 0

2 313 0
3 818 2
4 259 0
5 064 0 2

2 -.45 6 1 912 2
2 651 1
3 139 0
4 288 0
5 524 1
6 772 2 6

...

21. Solution to Exercise 21:

Lead Time Probability Cumulative RD
(Days) Probability Assignment

0 .166 .166 001-166
1 .166 .332 167-332
2 .166 .498 333-498
3 .166 .664 499-664
4 .166 .830 665-830
5 .166 .996 831-996

996-000
(discard)
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Assume 5-day work weeks.

D = Demand
D = 5 + 1.5(RNN)( Rounded to nearest integer)

Week Day Beginning RNN for Demand Ending Order RD for Lead Lost
Inventory Demands Inventory Quantity Lead Time Time Sales

1 1 18 -1.40 3 15 0
2 15 -.35 4 11 0
3 11 -.38 4 7 13 691 4 0
4 7 .05 5 2 0
5 2 .36 6 0 4

2 6 0 .00 5 0 5
7 0 -.83 4 0 4
8 13 -1.83 2 11 0
9 11 -.73 4 7 13 273 1 0
10 7 -.89 4 3 0

...

Typical results
Average number of lost sales/week = 24/5 = 4.8 units/weeks

22. Solution to Exercise 22:

Material A (200kg/box)

Interarrival Probability Cumulative RD
Time Probability Assignment

3 .2 .2 1-2
4 .2 .4 3-4
5 .2 .6 5-6
6 .2 .8 7-8
7 .2 1.0 9-0

Box RD for Interarrival Clock
Interarrival Time Time Time

1 1 3 3
2 4 4 7
3 8 6 13
4 3 4 17
...

14 4 4 60

Material B (100kg/box)

Box 1 2 3 · · · 10
Clock Time 6 12 18 · · · 60
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Material C (50kg/box)

Interarrival Probability Cumulative RD
Time Probability Assignment

2 .33 .33 01-33
3 .67 1.00 34-00

Box RD for Interarrival Clock
Interarrival Time Time Time

1 58 5 3
2 92 3 6
3 87 3 9
4 31 2 11
...

...
...

...
22 62 3 60

Clock A B C
Time Arrival Arrival Arrival

3 1 1
6 1 2
7 2
9 3
11 4
12 2
...

Simulation table shown below.
Typical results:
Average transit time for box A (t̄A)

t̄A =
Total waiting time of A + (No. of boxes of A)(1 minute up to unload)

No. of boxes of A

=
28 + 12(1)

12
= 3.33 minutes

Average waiting time for box B (w̄B)

w̄B =
(Total time B in Queue)

No. of boxes of B
=

10
10

= 1 minute/box of B

Total boxes of C shipped = Value of C Counter = 22 boxes

Clock No. of A No. of B No. of C Queue Time Time Time A Time B A B C
Time in Queue in Queue in Queue Weight Service Service in Queue in Queue Counter Counter Counter

Begins Ends
3 1 0 1 250
6 0 0 0 0 6 10 3 0 1 1 2
7 1 0 0 200
9 1 0 1 250
11 1 0 2 300
12 0 0 0 350 12 16 5 0 2 2 4

.

.

.
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25. Solution can be obtained from observing those clearance values in Exercise 24 that are greater than
0.006.

26. Degrees =360(RD/100)

Replication 1

RD Degrees
57 205.2
45 162.0
22 79.2

Range = 205.20 − 79.20 = 1260 (on the same semicircle).
Continue this process for 5 replications and estimate the desired probability.

27. Solution to Exercise 27:

V = 1.022 + (−.72)2 + .282 = 1.7204

T =
−.18√
1.7204

3

= −.2377

28. Solution to Exercise 28:

Cust. RD for IAT AT RD for Serv. No. in TimeServ. Time Serv. Go Into
Arrival Service Time Queue Begins Ends Bank?

1 30 2 2 27 2 1 -
√

2 46 2 4 26 2 0 4 6

3 39 2 6 99 4 0 6 10

4 86 4 10 72 3 0 10 13

5 63 3 13 12 1 0 13 14

6 83 4 17 17 1 0 17 18

7 07 0 17 78 3 1 18 21

8 37 2 19 91 4 1 -
√

9 69 3 22 82 3 0 22 25

10 78 4 26 62 3 0 26 29
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General Principles

For solutions check the course web site at www.bcnn.net.
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Chapter 4

Simulation Software

For solutions check the course web site at www.bcnn.net.
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Chapter 5

Statistical Models in Simulation

1. Let X be defined as the number of defectives in the sample. Then X is binomial (n = 100, p = .01) with
the probability mass function

p(x) =
(

100
x

)
(.01)x(.99)100−x, x = 0, 1, . . . , 100

The probability of returning the shipment is

P (X > 2) = 1 − P (X ≤ 2)

= 1 −
(

100
0

)
(.99)100 −

(
100
1

)
(.01)(.99)99

−
(

100
2

)
(.01)2(.99)98 = .0794

2. Let X be defined as the number of calls received until an order is placed. Then, X is geometric (p = .48)
with the probability mass function

p(x) = (.52)x−1(.48), x = 0, 1, 2 . . .

(a) The probability that the first order will come on the fourth call is

p(4) = .0675

(b) The number of orders, Y, in eight calls is binomial
(n = 8, p = .48) with the probability mass function

p(y) =
(

8
y

)
(.48)y(.52)8−y, y = 0, 1, . . . , 8

The probability of receiving exactly six orders in eight calls is

p(6) = .0926

(c) The number of orders, X, in four calls is binomial (n = 4, p = .48) with
probability mass function

p(x) =
(

4
x

)
(.48)x(.52)8−x, x = 0, 1, 2, 3, 4

18
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The probability of receiving one or fewer orders in four calls is

P (X ≤ 1) =
(

4
0

)
(.52)4 +

(
4
1

)
(.48)(.52)3

= .3431

3. Let X be defined as the number of women in the sample never married

P (2 ≤ X ≤ 3) = p(2) + p(3)

=
(
20
2

)
(.18)2 (.82)18 +

(
20
3

)
(.18)3 (.82)17

= .173 + .228 = .401

4. Let X be defined as the number of games won in the next two weeks. The random variable X is described
by the binomial distribution:

p(x) =
(
5
x

)
(.55)x(.45)5−x

P (3 ≤ X ≤ 5) = p(3) + p(4) + p(5)

=
(
5
3

)
(.55)3(.45)2 +

(
5
4

)
(.55)4 (.45) +

(
5
5

)
.555

= .337 + .206 + .050 = .593

5. Solution to Exercise 5:
(a) Using the geometric probability distribution, the desired probability is given by

p(.4) = (.6)3 (.4) = .0864

(b) Using the binomial distribution, the desired probability is given by

P (X ≤ 2) =
5∑

i=0

(
5
i

)
(.4)i (.6)5−i

= .07776 + .2592 + .3456
= .68256

6. X = X1 + X2 ∼ Erlang with Kθ = 1. Since K = 2, θ = 1/2

F (2) = 1 −
1∑

i=0

e−22i/i! = 0.406
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P (X1 + X2 > 2) = 1 − F (2) = .594

7. The geometric distribution is memoryless if

P (X > s + t|X > s) = P (X > t)

where s and t are integers and X is a geometrically distributed random variable. The probability of a failure
is denoted by q and

P (X > s) =
∞∑

j=s+1

qj−1p = qs,

P (X > t) = qt, and
P (X > s + t) = qs+t; so,
P [(X > s + t)|X > s] =

(
qs+t/qs

)
= qt

which is equal to P (X > t).

8. The number of hurricanes per year, X, is Poisson (α = 0.8) with the probability mass function

p(x) = e−0.8(0.8)x/x!, x = 0, 1, . . .

(a) The probability of more than two hurricanes in one year is

P (X > 2) = 1 − P (X ≤ 2)
= 1 − e−0.8 − e−0.8(0.8) − e−0.8(0.82/2)
= .0474

(b) The probability of exactly one hurricane in one year is

p(1) = .3595

9. The number of arrivals at a bank teller’s cage, X, is Poisson (α = 1.2) with the probability mass function

p(x) = e−1.2(1.2)x/x!, x = 0, 1, 2, . . .

(a) The probability of zero arrivals during the next minute is

p(0) = .3012

(b) The probability of zero arrivals during the next two minutes (α = 2.4) is p(0) = 0.0907.

10. Using the Poisson approximation with the mean, α, given by

α = np = 200(.018) = 3.6

The probability that 0 ≤ x ≤ 3 students will drop out of school is given by

F (3) =
3∑

x=o

eααx

x!
= .5148
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11. Let X be the number of calls received. The variance and mean are equal. Thus,

σ2 = α = 4

and the standard deviation is

σ = 2

Then using the Poisson distribution

P (X > 6) = 1 − .889 = .111

12. Let X be defined as the lead time demand. Then, X is Poisson (α = 6) with cumulative distribution
function

F (x) =
x∑
i=0

e−6(6)i/i!

The order size at various protection levels is given by:

Order Size Protection(%) F (x)
6 50 .606
8 80 .847
9 90 .916
10 95 .957
11 97 .979
11 97.5 .979
12 99 .991
13 99.5 .996
15 99.9 .999

13. A random variable, X, has a discrete uniform distribution if its probability mass function is

p(x) = 1/(n + 1) RX = {0, 1, 2, . . . n}

(a) The mean and variance are found by using

n∑
i=0

i = [n(n + 1)]/2 and

n∑
i=0

i2 = [n(n + 1)(2n + 1)]/6

E(X) =
n∑
i=0

xip(xi) =
n∑
i=0

ip(i)

= [1/(n + 1)]
n∑
i=0

i = n/2

V (X) = E(X2) − [E(X)]2

=
n∑
i=0

x2
i p(xi) − (n/2)2 = (n2 + 2n)/12
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(b) If RX = {a, a + 1, a + 2, . . . , b}, the mean and variance are

E(X) = a + (b− a)/2 = (a + b)/2

V (X) = [(b− a)2 + 2(b− a)]/12

14. Let X be defined as the lifetime of the satellite. Then, X is exponential (λ = .4) with cumulative
distribution function

F (x) = 1 − e−.4x, x ≥ 0

(a) The probability of the satellite lasting at least five years is

P (X ≥ 5) = 1 − F (5) = .1353

(b) The probability that the satellite dies between three and six years is

P (3 ≤ X ≤ 6) = F (6) − F (3) = .2105

15. Let X be the number of hours until a crash occurs. Using the exponential distribution, the desired
probability is given by

F (48) − F (24) = [1 − e−
1
36 (48)] − [1 − e−

1
36 (24)]

= e−2/3 − e−4/3 = .513 − .264 = .249

16. Let X be defined as the number of ball bearings with defects in a random sample of 4000 bearings.
Then, X is binomial (n = 4000, p = 1/800) with probability mass function

p(x) =
(

4000
x

)
(1/800)x (1 − (1/800))n−x

, x = 0, 1, 2, . . . , 4000

The probability that the random sample yields three or fewer ball bearings with defects is

P (X ≤ 3) = p(0) + p(1) + p(2) + p(3)
= .2649

Also, X can be approximated as Poisson (λ = 4000/800) with a probability mass function

p(x) = e−5(5)x/x!, x = 0, 1, 2, . . .

The probability that the random sample yields three or fewer ball bearings with defects is

P (X ≤ 3) = p(0) + p(1) + p(2) + p(3)
= .2650

17. An exponentially distributed random variable, X, that satisfies
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P (X ≤ 3) = .9P (X ≤ 4),

can be specified by letting
1 − e−3λ = .9(1 − e−4λ)

By letting z = e−λ,
0 = z3 − .90z4 − .10, or

z = .6005 and λ = .51

18. Let X be the number of accidents occuring in one week. The mean is given by

α = 1

The probability of no accidents in one week is given by

p(0) =
e−1α0

0!
= .368

The probability of no accidents in three successive weeks is given by

[p(0)]3 = .3683 = .05

19. Let X be defined as the lifetime of the component. Then X is exponential (λ = 1/10, 000 hours) with
cumulative distribution function

F (x) = 1 − e−x/10000, x > 0

Given that the component has not failed for s = 10, 000 or s = 15, 000 hours, the probability that it lasts
5000 more hours is

P (X ≥ 5000 + s|X > s) = P (X ≥ 5000) = .6065

In both cases, this is due to the memoryless property of the exponential distribution.

20. Let X be defined as the lifetime of the battery. Then, X is exponential (λ = 1/48) with cumulative
distribution function

F (x) = 1 − e−x/48, x > 0

(a) The probability that the battery will fail within the next twelve months, given that it has operated for
sixty months is

P (X ≤ 72|X > 60) = P (X ≤ 12)
= F (12) = .2212

due to the memoryless property.

(b) Let Y be defined as the year in which the battery fails, Then,

P (Y = odd year) = (1 − e−.25) + (e−.50e−.75) + . . .

P (Y = even year) = (1 − e−.50) + (e−.75 − e−1) + . . .
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So,

P (Y = even year) = e−.25P (Y = odd year),
P (Y = even year) + P (Y = odd year) = 1, and
e−.25P (Y = odd year) = 1 − P (Y = odd year)

The probability that the battery fails during an odd year is

P (Y = odd year) = 1/(1 + e−.25) = .5622

(c) Due to the memoryless property of the exponential distribution, the remaining expected lifetime is 48
months.

21. Service time, Xi, is exponential (λ = 1/50) with cumulative distribution function

F (x) = 1 − e−x/50, x > 0

(a) The probability that two customers are each served within one minute is

P (X1 ≤ 60, X2 ≤ 60) = [F (60)]2 = (.6988)2 = .4883

(b) The total service time, X1 + X2, of two customers has an Erlang distribution (assuming independence)
with cumulative distribution function

F (x) = 1 −
1∑

i=0

[e−x/50(x/50)i/i!], x > 0

The probability that the two customers are served within two minutes is

P (X1 + X2 ≤ 120) = F (120) = .6916

22. A random variable, X, has a triangular distribution with probability density function

f(x) =
{

[2(x− a)]/[(b− a)(c− a)], a ≤ x ≤ b
[2(c− x)] /[(c− b)(c− a)], b ≤ x ≤ c

The variance is

V (X) = E(X2) − [E(X)]2

E(X) = (a + b + c)/3

E(X2) =
(

2
(b− a)(c− a)

)∫ b

a

x2(x− a)dx

+
(

2
(c− b)(c− a)

)∫ c

b

x2(c− x)dx

= [1/6(c− a)][c(c2 + cb + b2) − a(b2 + ab + a2)]
V (X) = [(a + b + c)2/18] − [(ab + ac + bc)/6]

23. The daily use of water, X, is Erlang (k = 2, θ = .25) with a cumulative distribution function

F (x) = 1 −
2−1∑
i=0

[e−x/2(x/2)i/i!], x > 0
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The probability that demand exceeds 4000 liters is

P (X > 4) = 1 − F (4) = .4060

24. Let Xi be defined as the lifetime of the ith battery and X = X1 + X2 + X3. Then X is Erlang
(k = 3, θ = 1/36) with cumulative distribution function

F (x) = 1 −
3−1∑
i=0

[e−x/12(x/12)i/i!], x > 0

The probability that three batteries are sufficient is

P (X > 30) = 1 − F (30) = .5438

25. Let X represent the time between dial up connections. The desired probability is Erlang distributed
with

Kθ = 1/15 and X = 30

The probability that the third connection occurs within 30 seconds is given by

F (30) = 1 −
2∑

i=0

e−
1
15 (30)[ 1

1530]i

i!

= .323

and its complement gives the desired probability, or 1 − .323 = .677.

26. Let X represent the life of a single braking system. Using the Erlang distribution, the probability of a
crash within 5,000 hours is given by

F (5, 000) = 1 −
∑1

i=0 e
−2(8,000)(5,000)[2(1/8, 000)(5, 000)]i

i!
= i− e−5/4 − e−5/4(5/4)
= 1 − .2865 − .3581 = .3554

The complement gives the desired probability, or,

p(no crash) = .6446

27. Let X represent the time until a car arrives. Using the Erlang distribution with

Kθ = 4 and X = 1

the desired probability is given by

F (1) = 1 −
2∑

i=o

e−4(1)[4(1)]i

i!
= .762

28. Let X be defined as the number of arrivals during the next five minutes. Then X is Poisson (α = 2.5)
with cumulative distribution function



CHAPTER 5. STATISTICAL MODELS IN SIMULATION 26

F (x) =
x∑
i=0

e−2.5(2.5)i/i!, x = 0, 1, . . .

The probability that two or more customers will arrive in the next five minutes is

P (X ≥ 2) = 1 − F (1) = .7127

29. Let X be defined as the grading time of all six problems. Then X is Erlang (k = 6, θ = 1/180) with
cumulative distribution function

F (x) = 1 −
6−1∑
i=0

[e−x/30(x/30)i/i!], x > 0

(a) The probability that grading is finished in 150 minutes or less is

P (X ≤ 150) = F (150) = .3840

(b) The most likely grading time is the mode = (k − 1)/kθ = 150 minutes.

(c) The expected grading time is
E(X) = 1/θ = 180 minutes

30. Let X be defined as the life of a dual hydraulic system consisting of two sequentially activated hydraulic
systems each with a life, Y , which is exponentially distributed (λ = 2000 hours). Then X is Erlang (k =
2, θ = 1/4000) with cumulative distribution function

F (x) = 1
2−1∑
i=0

[e−x/2000(x/2000)i/i!], x > 0

(a) The probability that the system will fail within 2500 hours is

P (X ≤ 2500) = F (2500) = .3554

(b) The probability of failure within 3000 hours is

P (X ≤ 3000) = F (3000) = .4424

If inspection is moved from 2500 to 3000 hours, the probability that the system will fail increases by .087.

32. Letting X represent the lead time in 100’s of units, the Erlang distribution with

β = K = 3, θ = 1, and X = 2

will provide the probability that the lead time is less than 2 with

F (2) = 1 −
2∑

i=o

e−66i

i!
= .938

The complement gives the desired probability, or

P (Lead Time ≥ 2) = 1 − .938 = .062
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33. Let X be the lifetime of the card in months. The Erlang distribution gives the desired probability where

β = K = 4, Kθ = 4(1/16) =
1
4
, and X = 24

Then

F (24) = 1 −
3∑

i=o

e66i

i!
= 1 − .151 = .849

The complement gives the desired probability, or

P (X ≥ 2 years) = 1 − .849 = .151

34. Let X be defined as the number on a license tag. Then X is discrete uniform (a = 100, b = 999) with
cumulative distribution function

F (x) = (x− 99)/900, x = 100, 101, . . . , 999

(a) The probability that two tag numbers are 500 or higher is

[P (X ≥ 500)]2 = [1 − F (499)]2 = .55562 = .3086

(b) Let Y be defined as the sum of two license tag numbers. Then Y is discrete triangular which can be
approximated by

F (y) =
{

(y − a)2/[(b− a)(c− a)], a ≤ y ≤ b
1 − [(c− y)2/[(c− a)(c− b)]], b ≤ y ≤ c

where a = 2(100) = 200, c = 2(999) = 1998, and b = (1998 + 200)/2 = 1099.

The probability that the sum of the next two tags is 1000 or higher is

P (Y ≥ 1000) = 1 − F (999) = .6050

35. A normally distributed random variable, X, with a mean of 10, a variance of 4, and the following
properties

P (a < X < b) = .90 and |µ− a| = |µ− b|
exists as follows

P (X < b) = P (X > a) = .95 due to symmetry
Φ[(b− 10)/2] = .95 b = 13.3

1 − Φ[(a− 10)/2] = .95 a = 6.7

36. Solution to Exercise 36:

Normal (10, 4)

F (8) − F (6) = F

(
8 − 10

2

)
− F

(
6 − 10

2

)
= F (−1) − F (−2) = (1 − .84134) − (1 − .97725)

= .13591
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Triangular (4, 10, 16)

F (8) − F (6) =
(8 − 4)2

(10 − 4)(16 − 4)
− (6 − 4)2

(10 − 4)(16 − 4)

= 1/6 = .1667

Uniform (4, 16)

F (8) − F (6) =
(8 − 4)
16 − 4

− (6 − 4)
16 − 4

= 1/6 = .1667

37. Letting X be the random variable

Z =
x− u

σ

2.33 =
x− 20

2
x = 24.66 (1%)

1.645 =
x− 20

2
x = 23.29 (5%)

1.283 =
x− 20

2
x = 22.57 (10%)

38. Let X be defined as I.Q. scores. Then X is normally distributed (µ = 100, σ = 15).

(a) The probability that a score is 140 or greater is

P (X ≥ 140) = 1 − Φ[140 − 100)/15] = .00383

(b) The probability that a score is between 135 and 140 is

P (135 ≤ X ≤ 140) = Φ[(140 − 100)/15] − Φ[(135 − 100)/15]
= .00598

(c) The probability that a score is less than 110 is

P (X < 110) = Φ[(110 − 100)/15] = .7475

39. Let X be defined as the length of the ith shaft, and Y as the linkage formed by i shafts. Then Xi is
normally distributed.
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(a) The linkage, Y , formed by the three shafts is distributed as

Y ∼ N

(
3∑

i=1

µi,
3∑

i=1

σ2
i

)
Y ∼ N(150, .25)

(b) The probability that the linkage is larger than 150.2 is

P (Y > 150.2) = 1 − Φ[(150.2 − 150)/.5] = .3446

(c) The probability that the linkage is within tolerance is

P (149.83 ≤ Y ≤ 150.21) = Φ[(150.21 − 150)/.5] − Φ[(149.83 − 150)/.5]

= .2958

40. Let X be defined as the circumference of battery posts. Then X is Weibull (γ = 3.25, β = 1/3, α = .005)
with cumulative distribution function

F (x) = 1 − exp[−((x− 3.25)/.005)1/3] , x ≥ 3.25

(a) The probability of a post having a circumference greater than 3.40 is

P (X > 3.40) = 1 − F (3.40) = .0447

(b) The probability of a post not meeting tolerance is

1 − P (3.3 < X < 3.5) = 1 − F (3.5) + F (3.3) = .9091

41. Let X be defined as the time to failure of a battery. Then X is Weibull (γ = 0, β = 1/4, α = 1/2) with
cumulative distribution function

F (x) = 1 − exp[−(2x)1/4], x ≥ 0

(a) The probability that a battery will fail within 1.5 years is

P (X < 1.5) = F (1.5) = .7318

(b) The mean life of a battery is

E(X) = (1/2)Γ(4 + 1) = 12 years

The probability of a battery lasting longer than twelve years is

P (X > 12) = 1 − F (12) = .1093

(c) The probability that a battery will last from between 1.5 and 2.5 years is

P (1.5 ≤ X ≤ 2.5) = F (2.5) − F (1.5) = .0440

42. Let X be the demand for electricity. Suppose

1000 = a < median = 1425 ≤ b = Mode

so that the probability that the demand is less than or equal to 1425 kwh is given by

F (1425) = 0.5 =
(1425 − 1000)2

(b− 1000)(1800 − 1000)
=

4252

(b− 1000(800)

implying b = 1451.56 kwh. Since 1451.56 ≥ 1425 we have Mode = 1451.56.

43. Letting X represent the time to failure
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(a) E(X) = 100Γ(1 + 2) = 1000Γ(3) = 2000 hours

(b) F (3000) = 1 − exp
[
− ( 3000

1000

) 1
2
]

F (3000) = 1 − e−1.732 = .823

44. Let X be defined as the gross weight of three axle trucks. Then X is Weibull (γ = 6.8, β = 1.5, α = 1/2)
with cumulative distribution function

F (x) = 1 − exp[−((x− 6.8)/.5)1.5], x ≥ 6.8

The weight limit, a, such that .01 of the trucks are considered overweight is

P (X > a) = 1 − F (a) = .01
exp[−((a− 6.8)/.5)1.5] = .01

a = 8.184 tons

45. Let X be defined as the car’s gas mileage. Then X is triangular (a = 0, c = 50) with an expected value,
E(X), equal to 25.3 miles per gallon.

The median can be determined by first finding the mode, b, by setting

E(X) = (a + b + c)/3 = 25.3

b = 25.9 miles per gallon,

then, determining which interval of the distribution contains the median by setting

F (b) = (x− a)2/[(b− a)(c− a)], a ≤ x ≤ b

to compute F (25.9) = .518, so the median is in the interval (0,25.9). The median is then computed by
finding x such that F (x) = .50, or median = 25.45 miles per gallon.

46. Let T represent the time to complete the route. Then T ∼ N(µT , σ2
T )

(a) µT =
∑

i µi = 38 + 99 + 85 + 73 + 52 + 90 + 10 + 15 + 30 = 492 minutes

(b) σ2
T =

∑
i σ

2
i = 16 + 29 + 25 + 20 + 12 + 25 + 4 + 4 + 9 = 144 minutes2 and σT = 12 minutes

Φ(z) = Φ
(
x−µ
σT

)
= Φ

(
480−492

12

)
= Φ(−1) = .3413

P (X > 480) = 1 − .3413 = .6587

(c) P (X > 2) = 1 − P (X < 2) = 1 −∑2
x=0

(
6
x

)
(.6587)x(.3413)6−x

= 1 − .108 = .892

(d) P (456 < X < 504) = F (504) − F (456)

= Φ
(

504−496
12

)− Φ
(

456−496
12

)
= Φ(2/3) − Φ(−3 1/3) = .7476 − .0001 = .7475

47. 1 − F (600) = exp[−(600/400)1/2] = e−(1.5)1/2 = e−1.22 = .295

48. R(x) = 1 − F (x) =
∑2

i=0 e
−.0001(32,000) [(.001)(32,000)]i

i! = .2364
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49. Solution to Exercise 49.
(a)

E(X2) =
∫ 92

85

x2(2)(x− 85)
119

dx +
∫ 102

95

x2(2)(102 − x)
170

dx = 3311.75 + 5349.41 = 8661.16

E(X) = (a + b + c)/3 = (85 + 92 + 102)/3 = 93

V (X) = E(X2) − [E(X)]2 = 8661.16 − (93)2 = 12.16◦F 2

(b)

0.5 = 1 − (102 − x)2

170
(102 − x)2 = 85

x = 92.8◦ F

(c) Mode = b = 92◦ F

50. (a) E(X) = 1.8 + 1/3 Γ(2 + 1) = 1.8 + 1/3(2) = 2.47 × 103 hours

F (2.47) = 1 − exp

[
−
(

2.47 − 1.80
.33

)1/2
]

= 1 − exp[−(2)1/2] = .757

P (X > 2.47) = 1 − .757 = .243

(b)

.5 = 1 − exp

[
−
(
x− 1.8
.33

)1/2
]
, where x = median

.5 = exp
[
−
(
x− 1.8
.33

)]1/2
1n .5 = −

(
x− 1.8
.33

)1/2

x = 1.96 × 103 hours

51.

F (4) = 1 −
1∑

i=0

e−2(1/4)4

[
[2(1/4)(4)]i

i!

]

= 1 −
1∑

i=0

e−22i

i!
= .594

P (X > 4) = 1 − .594 = .406



Chapter 6

Queueing Models

For Maple procedures that help in evaluating queueing models see the course web site at www.bcnn.net.

1. The tool crib is modeled by an M/M/c queue (λ = 1/4, µ = 1/3, c = 1 or 2). Given that attendants are
paid $6 per hour and mechanics are paid $10 per hour,

Mean cost per hour = $10c + $15L

assuming that mechanics impose cost on the system while in the queue and in service.

CASE 1: one attendant - M/M/1 (c = 1, ρ = λ/µ = .75)

L = ρ/(1 − ρ) = 3 mechanics

Mean cost per hour = $10(1) + $15(3) = $55 per hour.

CASE 2: two attendants - M/M/2 (c = 2, ρ = λ/cµ = .375)

L = cρ +
[
(cρ)c+1P0

]
/
[
c(c!)(1 − ρ)2

]
= .8727,

where

P0 =

{[
c−1∑
n=0

(cρ)n/n!

]
+ [(cρ)c(1/c!)(1/(1 − ρ))]

}−1

= .4545

Mean cost per hour = $10(2) + $15(.8727) = $33.09 per hour

It would be advisable to have a second attendant because long run costs are reduced by $21.91 per hour.

2. A single landing strip airport is modeled by an M/M/1 queue (µ = 2/3). The maximum arrival rate, λ,
such that the average wait, wQ, does not exceed three minutes is computed as follows:

wQ = λ/[µ(µ− λ)] ≤ 3

or
λ = µ/[1/µwQ + 1] ≤ .4444 airplanes per minute.

Therefore, λmax = .4444 airplanes per minute.

3. The Port of Trop is modeled by an M/M/1/4 queue (λ = 7, µ = 8, a = 7/8, N = 4). The expected
number of ships waiting or in service, L, is

L =
a[1 − (N + 1)aN + NaN+1]

(1 − aN+1)(1 − a)
= 1.735 ships

32
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since λ 
= µ and system capacity is N = 4 ships.

4. String pulling at City Hall is modeled by an M/M/2 queue (λ = 1/10, µ = 1/15, ρ = .75).

(a) The probability that there are no strings to be pulled is

P0 =

{[
c−1∑
n=0

(cρ)n/n!

]
+ [(cρ)c(1/c!)/(1 − ρ)]

}−1

= .1429

(b) The expected number of strings waiting to be pulled is

LQ =
[
(cρ)c+1P0

]
/
[
c(c!)(1 − ρ)2

]
= 1.929 strings

(c) The probability that both string pullers are busy is

P (L(∞) ≥ 2) =
[
(cρ)2P0

]
/ [c!(1 − ρ)] = .643

(d) If a third string puller is added to the system, (M/M/3 queue, c = 3, ρ = .50), the measures of performance
become

P0 = .2105, LQ = .2368, P (L(∞) ≥ 3) = .2368

5. The bakery is modeled by an M/G/1 queue (µ = 4, σ2 = 0). The maximum arrival rate, λ, such that the
mean length of the queue, LQ, does not exceed five cakes is

LQ = [λ2/2µ2(1 − λ/µ)] ≤ 5 cakes

λ2 + 40λ− 160 ≤ 0

λ ≤ 3.6643 cakes per hour.

6. The physical examination is modeled as an M/G/1 queue. The arrival rate is λ = 1/60 patient per
minute. The mean service time is 15 + 15 + 15 = 45 minutes, so the service rate is µ = 1/45 patient per
minute. Thus, ρ = λ/µ = 3/4. The variance of the service time is σ2 = 152 + 152 + 152 = 675 minutes, the
sum of the variance of three exponentially distributed random variables, each with mean 15. Applying the
formula for LQ for the M/G/1 queue we obtain

LQ =
ρ2(1 + σ2µ2)

2(1 − ρ)
= 1

1
2

patients.

7. The tool crib is modeled as an M/G/1 queue with arrival rate λ = 10 per hour, service rate µ = 60/4 = 15
per hour, and service-time variance σ2 = (2/60)2 = (1/30)2 hours. Thus, ρ = λ/µ = 2/3. The wages for
non-productive waiting in line amounts to 15wQ per mechanic’s visit to the tool crib. Since there are λ = 10
visits per hour on average, the average cost per hour of having mechanics delayed is λ($15wQ) = $15LQ,
using LQ = λwQ. Applying the formula for LQ for the M/G/1 queue we obtain

LQ =
ρ2(1 + σ2µ2)

2(1 − ρ)
= 0.833 mechanics.

Thus, the average cost per hour is $15LQ = $12.50.
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8. The airport is modeled as an M/G/1 queue with arrival rate λ = 30/60 = 0.5 per minute, service rate
µ = 60/90 = 2/3 per minute, and service-time variance σ2 = 0. The runway utilization is ρ = λ/µ = 3/4.
Applying the formulas for the M/G/1 queue we obtain

LQ =
ρ2(1 + σ2µ2)

2(1 − ρ)
= 1.125 aircraft

wQ =
LQ

λ
= 2.25 minutes

w = wQ +
1
µ

= 3.75 minutes

L =
λ

µ
+ LQ = 1.875 aircraft.

9. The machine shop is modeled by an M/G/1 queue (λ = 12/40 = .3/hour, µ = 1/2.5 = .4/hour,
ρ = .75, σ2 = 1).

(a) The expected number of working hours that a motor spends at the machine shop is

w = µ−1 + [λ(µ−2 + σ2)]/[2(1 − ρ)] = 6.85 hours

(b) The variance that will reduce the expected number of working hours, w, that a motor spends in the shop
to 6.5 hours is calculated by solving the equation in (a) for σ2:

σ2 = [(w − µ−1)(2(1 − ρ))]/λ− µ−2

σ2 = .4167 hours2.

10. The self-service gasoline pump is modeled by an M/G/1 queue with (λ = 12/hour, µ = 15/hour,
ρ = .8, σ2 = 1.3332min2 = .02222 hour2. The expected number of vehicles in the system is

L = ρ + [ρ2(1 + σ2µ2)]/[2(1 − ρ)] = 2.5778 vehicles.

11. The car wash is modeled by an M/G/1 queue (λ = 1/45, µ = 1/36, ρ = .8, σ2 = 324).

(a) The average time a car waits to be served is

wQ = 90 minutes

(b) The average number of cars in the system is

L = 2.8 cars

(c) The average time required to wash a car is

1/µ = 36 minutes.

12. The cotton spinning room is modeled by an M/M/c/10/10 queue with (λ = 1/40, µ = 1/10, N = K =
10). Given that operators are paid $10 per hour, and idle looms cost $40 per hour, the mean cost per hour
of the system is

Mean cost per hour = $10c + $40L

The table below is generated for various levels of c.
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c LQ L wQ(min) K − L Cost
1 5.03 6.02 50.60 3.98 $250.80
2 1.46 3.17 8.55 6.83 146.80
3 0.32 2.26 1.65 7.74 120.40
4 0.06 2.05 0.30 7.95 122.00
5 0.01 2.01 0.05 7.99 130.40

(a) The number of operators that should be employed to minimize the total cost of the room is three,
resulting in a total cost of $120.40.

(b) Four operators should be employed to ensure that, on the average, no loom should wait for more than
one minute for an operator (i.e., to ensure wQ ≤ 1 min.). In this case, a loom will only have to wait an
average of wq = 0.3 min. = 18 seconds for a cost of $122.00.

(c) Three operators should be employed to ensure that an average of at least 7.5 looms are running at all
times (i.e., to ensure K − L ≥ 7.5 looms)

13. Given an M/M/2/10/10 queue (λ = 1/82, µ = 1/15, c = 2, K = 10, N = 10), the average number of
customers in the queue is LQ = 0.72. The average waiting time of a customer in the queue is

WQ = LQ/λe = 0.72/0.09567 = 7.526 time units.

The value of λ such that LQ = L/2 is found by trial and error to be

λ = 0.0196

14. Assuming Figure 6.6 represents a single-server LIFO system, the time in system, Wi, of the ith customer
can be found to be W1 = 2,W2 = 5,W3 = 9,W4 = 3, W5 = 4, so

∑N
i=1 Wi = 23.

Also, λ̂ = N/T = 5/20 = 0.25

ŵ =
N∑
i=1

wi/N = 4.6 time units

L̂ = (1/T )
∞∑
i=0

iTi = 1.15 customers

Note that: L̂ = 1.15 = (.25)(4.6) = λ̂ŵ

Allowing T −→ ∞, and N −→ ∞, implies that L̂ −→ L, λ̂ −→ λ, and ŵ −→ w, and

L̂ = λ̂ŵ becomes L = λw

The total area under the L(t) function can be written as:∫ T

0

L(t)dt =
N∑
i=1

Wi

Note that LIFO did not change the equations.

15. (a) Assume Figure 6.6 is for a FIFO system with c = 2 servers. As before, N = 5 and T = 20,
so λ̂ = N/T = 0.25 customer/time unit. The solution for this system is given by Figure 6.8. Hence,
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W1 = 2,W2 = 8 − 3 = 5, W3 = 10 − 5 = 5,W4 = 14 − 7 = 7, and W5 = 20 − 16 = 4. To show L̂ = λ̂ŵ, one
proceeds as in Exercise 14.

(b) Assume Figure 6.6 is for LIFO system with c = 2 servers. The solution is identical to that of Exercise
11.

16. (d) The values of µ1, µ2, and p needed to achieve a distribution with mean E(X) = 1 and coefficient of
variation cv = 2 can be determined as follows:

Note that
E(X) = p/µ1 + (1 − p)/µ2

and
(cv)2 = [2p(1 − p)(1/µ1 − 1/µ2)2]/[E(X)]2 + 1

By choosing p = 1/4 arbitrarily, the following equations can be simultaneously solved

1/(4µ1) + 3/(4µ2) = 1 and 3/8(1/µ1 − 1/µ2)2 + 1 = 4

Solving the left equation for µ1 yields
µ1 = µ2/(4µ2 − 3)

Substituting µ1 into the right equation and solving for µ2 yields

µ2 = 1/(1 −
√

2/2) = 3.4142

µ1 = 3.4142/[4(3.4142 − 3)] = .3204

17. In Example 6.18, the milling machine station is modeled by M/M/c/K/K queue (λ = 1.20, µ = 1/5,K =
10). A table comparing the relevant parameters of the system for c = 1, 2, and 3 is given below:

c = 1 c = 2 c = 3
LQ 5.03 1.46 0.32

L− LQ 0.994 1.708 1.936
ρ 0.994 0.854 0.645

As more servers are hired, the average server utilization, ρ, decreases; but the average queue length, LQ,
also decreases.

18. Modeling the system as an M/M/c/12/12 queue we need λe to obtain ρ = λe/(cµ), where λ = 1/20 and
µ = 1/5. Results are given in the table below:

c λe ρ
1 0.200 0.999
2 0.374 0.934
3 0.451 0.752

19. The lumber yard is modeled by a M/M/c/N/K queue (λ = 1/3, µ = 1, N = K = 10).

(a) Assume that unloading time is exponentially distributed with mean 1/µ = 1 hour. Also assume that
travel time to get the next load of logs and return is exponentially distributed with mean 1/λ = 3 hours. The
exponential distribution is highly variable (mean=std.dev.) and therefore it may be reasonable for travel
times provided the trucks travel varying distances and/or run into congested traffic conditions. On the other
hand, actual unloading times are probably less variable than the exponential distribution.

(b) With one crane to unload trucks, c = 1.
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The average number of trucks waiting to be unloaded is

LQ = 6 trucks.

The average number of trucks arriving at the yard each hour is

λe = 1.0 trucks/hour.

The fraction of trucks finding the crane busy upon arrival is

1 − P0 = .997 = 99.7%

The long run proportion of time the crane is busy is

ρ = 1.0

(c) With two cranes to unload trucks, c = 2.
A table comparing one crane and two cranes follows:

one crane two cranes
c 1 2
LQ 6.0 2.47
λe 1.0 1.88

busy 0.997 0.844
ρ 1.0 0.94

(d) The value of a truckload is $200 and the cost of a crane is $50 per hour independent of utilization. The
cost per hour is $50 (number of cranes) - $200 (number of arrivals per hour), or cost per hour = $50c−$200λe.

Cost ($) per hour Cost ($) per hour
c λe Exercise 19(d) Exercise 19(e)
1 1.000 -150.00 90.00
2 1.883 -276.60 -177.80
3 2.323 -314.60 -286.20
4 2.458 -291.60 -284.80
5 2.493 -248.60 -247.40

Three cranes should be used because the value of logs received per hour is $314.60 more than the cost of
three cranes, and is higher than with any other option.

(e) In addition to the above costs, the cost of an idle truck and driver is $40 per hour. Then,

cost = $50c + $40LQ − $200λe

and three cranes should be installed as shown in the table above, since the value of the logs is $286.20 more
than the combined cost of three cranes and LQ = .71 idle trucks and drivers on the average.

20. The tool crib is modeled by an M/M/c/N/K queue (λ = 1.20, µ = 1.3, N = K = 10, c = 1 or 2). As in
Exercise 1,

mean cost per hour = $6c + $10L

Case 1: one attendant (c = 1)

LQ = 2.82
λe = 0.311
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L = 3.75
Mean cost per hour = $6(1) + $10(3.75) = $43.50

Case 2: two attendants (c = 2)

LQ = 0.42
L = 1.66
Mean cost per hour = $6(2) + $10(1.66) = $28.60

A second attendant reduces mean costs per hour by $43.50 - $28.60 = $14.90.

21. For an M/G/∞ queue with λ = 1000/hour and 1/µ = 3 hours,

Pn =
e−λ/µ(λ/µ)n

n!

If c is the number of parking spaces, the probability we need more than c spaces is

∞∑
n=c+1

Pn = 1 −
c∑

n=0

Pn

By trial and error we find that c = 3169 spaces makes this probability < 0.001.

22. If the overall arrival rate increases to λ = 160/hour, then λ1 = .4λ = 64, λ2 = .6λ = 96, and λ3 =
λ1 + λ2 = 160. The offered load at service center 2 is λ2/µ2 = 96/20 = 4.8, so we need at least c = 5 clerks.
At service center 3, λ3/µ3 = 160/90 = 1.8, so we need at least c = 2 clerks.

23. The system can be approximated as an M/M/c queue with arrival rate λ = 24 per hour and service rate
µ = 1/2 per minute = 30 per hour. Currently c = 1 server (copy machine), but the proposal is for c = 2
servers. The steady-state probability that the line reaches outside the store is

p =
∞∑
n=5

Pn = 1 −
4∑

n=0

Pn

For the M/M/1 queue p ≈ 0.33, while for the M/M/2 queue p ≈ 0.01. Thus, adding another copier
substantially reduces the likelihood of having a line reach outside the store.

24. The system can be approximated as an M/M/c/N queue. In both system designs the capacity is N = 7
cars. Currently there are c = 4 servers (stalls), and the proposal is to change to c = 5 stalls. The arrival
rate is λ = 34 cars per hour, so the rate at which cars are lost is λP7.

The expected service time is

3(0.2) + 7(0.7) + 12(0.1) = 6.7 minutes per car

implying a service rate of approximately µ = 9 cars per hour. Clearly the service time is not exponentially
distributed, but we are approximating it as exponentially distributed with the same mean.

When c = 4 we have λP7 ≈ (34)(0.14) = 4.8 cars per hour lost, but when c = 5 we have λP7 ≈
(34)(0.08) = 2.7 cars per hour lost.



Chapter 7

Random-Number Generation

1. Place 10 slips of paper into a hat, where each slip has one of the integers 0, 1, 2, . . . , 9 written on it. Draw
two slips of paper (one-at-a-time, with replacement), and let the resulting numbers be F, S. Then set

R = 0.FS

This procedure generates random numbers on the interval [0, 0.99].

2. Video gambling games, military draft, assigning subjects to treatments in a pharmaceutical experiment,
state lotteries and pairing teams in a sports tournament.

3. Let X = −11 + 28R.

4. Solution to Exercise 4:

X0 = 27, a = 8, c = 47, m = 100

X1 = (8 × 27 + 47)mod 100 = 63, R1 = 63/100 = .63

X2 = (8 × 63 + 47)mod 100 = 51, R2 = 51/100 = .51

X3 = (8 × 51 + 47)mod 100 = 55, R3 = 55/100 = .55

5. None. A problem would occur only if c = 0 also.

6. Solution to Exercise 6:

X0 = 117, a = 43,m = 1, 000

X1 = [43(117)]mod 1, 000 = 31

X2 = [43(31)]mod 1, 000 = 333

X3 = [43(333)]mod 1, 000 = 319

X4 = [43(319)]mod 1, 000 = 717

7. Solution to Exercise 7:

R(i) .11 .54 .68 .73 .98
i/N .20 .40 .60 .80 1.0

i/N −R(i) .09 – – .07 .02
R(i) − (i− 1)/N .11 .34 .28 .13 .18

39
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D+ = max1≤i≤N (i/N −R(i)) = .09

D− = max1≤i≤N (R(i) − (i− 1)/N) = .34

D = max(D+, D−) = .34

The critical value, Dα, obtained from Table A.8 is

D.05 = .565

since D < D.05, the hypothesis that there is no difference between the true distribution of {R1, R2, . . . , R5}
and the uniform distribution on [0, 1] cannot be rejected on the basis of this test.

8. Let ten intervals be defined each from (10i− 9) to (10i) where i = 1, 2, . . . , 10. By counting the numbers
that fall within each interval and comparing this to the expected value for each interval, Ei = 10, the
following table is generated:

Interval Oi (Oi − Ei)2/Ei

(01-10) 9 0.1
(11-20) 9 0.1
(21-30) 9 0.1
(31-40) 6 1.6
(41-50) 17 4.9
(51-60) 5 2.5
(61-70) 10 0.0
(71-80) 12 0.4
(81-90) 7 0.9
(91-00) 16 3.6

100 14.2= χ2
0

From Table A.6, χ2
.05,9 = 16.9. Since χ2

0 < χ.05,9, then the null hypothesis of no difference between the
sample distribution and the uniform distribution is not rejected.

9. The numbers are given a “+” or a “−” depending on whether they are followed by a larger or smaller
number:

+ − + −−− + + + + − + − + + + −− + + + −−−−

+ + + − + − + −− + − + − + −−− + + −− + +

There are a = 27 runs in this sequence.

For N = 50,

µa = (2N − 1)/3 = 33, and
σ2
a = (16N − 29)/90 = 8.5667

Z0 = (a− µa)/σa = −2.05
zα/2 = z.025 = 1.96

Since Z0 < −z.025, the null hypothesis of independence can be rejected.
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10. A “+” sign is used to denote an observation above the mean (.495) and a “−” sign will denote an
observation below the mean.

+ − + −− + −−−−−− + + − + − + − + − + − + +−
+ + + + −−− + −− + −− + + −− + + + − + −− +

n1 = 24, n2 = 26, and b = 31
µb = [(2n1n2)/N ] + 1/2 = 25.46
σ2
b = [2n1n2(2n1n2 −N)]/[N2(N − 1)] = 12.205

Z0 = (b− µb)/σb = 1.586
zα/2 = z.025 = 1.96

Since −z.025 < Z0 < z.025, the null hypothesis of independence cannot be rejected.

11. The lengths of runs up and down are

1, 1, 1, 3, 4, 1, 1, 1, 3, 2, 3, 4, 3, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 2

E(Yi) = [2/(i + 3)!][N(i2 + 3i + 1) − (i3 + 3i2 − i− 4), i ≤ N − 2
E(Yi) = 2/N !, i = N − 1
E(Y1) = (2/24)[50(5) − (−1)] = 20.917
E(Y2) = (2/120)[50(11) − 14] = 8.933
E(Y3) = (2/720)[50(19) − 48] = 2.506

E(Y≥4) = µa − E(Y1) − E(Y2) − E(Y3)
= (2n− 1)/3 − (20.917 + 8.933 + 2.506) = 0.644

Run Length Observed Runs Expected Runs [Oi−E(Yi)]
2

E(Yi)

(i) (Oi) E(Yi)
1 14 20.917 2.2874
2 6 8.933
3 5 2.506 0.0696

≥ 4 2 0.644
χ2

0 = 2.3570

χ2
.05,1 = 3.84

since χ2
0 < χ2

.05,1, the null hypothesis of independence cannot be rejected. Notice that we grouped run
lengths i = 2, 3,≥ 4 together into a single cell with Oi = 13 and E(Yi) = 12.083.

12. Solution to Exercise 12:

The sequence is as follows:

+ − + −− + −−−−− + + − + − + − + − + − + + −
+ + + + −−− + −− + −− + + −− + + + − + −− +
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Run length, i 1 2 3 4

Observed Runs, Oi 19 8 2 2

n1 = 24 and n2 = 26
w1 = 2(24/50)(26/50) = .4992
w2 = (24/50)2(26/50) + (24/50)(26/50)2 = .2496
w3 = (24/50)3(26/50) + (24/50)(26/50)3 = .1250
E(I) = 24/26 + 26/24 = 2.00
E(A) = 50/2.00 = 25
E(Y1) = 50(.4992)/2.00 = 12.48
E(Y2) = 50(.2496)/2.00 = 6.24
E(Y3) = 50(.1250)/2.00 = 3.125

Run Length Observed Runs Expected Runs [Oi−E(Yi)]
2

E(Yi)

(i) (Oi) E(Yi)
1 19 12.48 3.41
2 8 6.24 .50
3 2 3.125

≥ 4 2 3.155 .83
4.74

χ2
.05,2 = 5.99

Therefore, do not reject the hypothesis of independence on the basis of this test. Notice that we grouped
run lengths i = 3,≥ 4 together into a single cell with Oi = 4 and E(Yi) = 6.28.

13. Solution to Exercise 13:

ρ̂14 = (1/8)[(.48)(.61) + (.61)(.37) + (.37)(.37) + (.37)(.99) + (.99)(.09)
+(.09)(.55) + (.55)(.60) + (.60)(.19)] − .25 = −.0495

σ
ρ̂14

= .1030

Z0 = −.0495/.1030 = −0.48

Since −z.025 < Z0 < z.025, the null hypothesis of independence cannot be rejected on the basis of significant
autocorrelation.

14. Solution to Exercise 14:

Gap Length Relative
Classes Frequency Frequency SN (x) F (x) |F (X) − SN (x)|

0-3 33 .3000 .3000 .3439 .0439
4-7 23 .2091 .5091 .5695 .0604
8-11 23 .2091 .7182 .7176 .0006
12-15 15 .1364 .8546 .8146 .0400
16-19 7 .0636 .9182 .8784 .0398
20-23 5 .0455 .9637 .9202 .0435
24-27 1 .0091 .9728 .9497 .0231
28-31 0 0 .9728 .9657 .0071
32-35 2 .0182 .9910 .9775 .0135
36-39 1 .0091 1.0 .9852 .0148

110
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D = max |F (x) − SN (x)| = .0604, and

Dα = D.05 = .136. Since D < D.05, the null hypothesis of independence cannot be rejected on the basis of
this test.

15. Solution to Exercise 15:

(a)

P (4 different digits) = (.9)(.8)(.7) = .5040
P (exactly one pair) = ( 4

2 )(.1)(.9)(.8) = .4320
P (two pairs) = ( 3

2 )(.1)(.9)(.1) = .0270
P (triplet) = ( 4

3 )(.1)(.1)(.9) = .0360
P (4 like digits) = (.1)(.1)(.1) = .0010

(b)
P (5 different digits) = (.9)(.8)(.7)(.6) = .3024
P (exactly one pair) = ( 5

2 )(.1)(.9)(.8)(.7) = .5040
P (2 different pairs) = 15(.1)(.9)(.1)(.8) = .1080
P (triplet and pair) = ( 5

3 )(.1)(.9)(.1) = .0090
P (exactly one triplet) = ( 5

3 )(.1)(.1)(.9)(.8) = .0720
P (4 like digits) = ( 5

4 )(.1)(.1)(.1)(.9) = .0045
P (5 like digits) = (.1)(.1)(.1)(.1) = .0001

16. Solution to Exercise 16:

Combination Observed Expected (Oi−Ei)
2

Ei

i Oi Ei

4 different digits 565 504 7.3829
1 pair 392 432 3.7037
2 pairs 17 27 3.7037
3 like digits 24 36
4 like digits 2 1 3.2703
Totals 1000 1000 18.0606

χ2
.05,3 = 7.81 < χ2

0 = 18.0806

Reject the null hypothesis of independence based on this test. Notice that we grouped “3 like digits” and “4
like digits” into a single cell with Oi = 26 and Ei = 37.

17. Solution to Exercise 17(c): a = 1 + 4k −→ k = 1237.5 which is not an integer. Therefore, maximum
period cannot be achieved.

18. Solution to Exercise 18:

X1 = [7 × 37 + 29] mod 100 = 88
R1 = .88
X2 = [7 × 88 + 29] mod 100 = 45
R2 = .45
X3 = [7 × 45 + 29] mod 100 = 44
R3 = .44

19. Use m = 25

X1 = [9 × 13 + 35] mod 25 = 2
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X2 = [9 × 2 + 35] mod 25 = 3
X3 = [9 × 3 + 35] mod 25 = 12

21. Solution to Exercise 21:

X1 = [4951 × 3579] mod 256 = 77
R1 = 77/256 = .3008

23. Solution to Exercise 23:

Case (a) Case (b) Case (c) Case (d)
i Xi Xi Xi Xi

0 7 8 7 8
1 13 8 1 8
2 15 7 8
3 5
4 7

Inferences:
Maximum period, p = 4, occurs when X0 is odd and a = 3 + 8k where k = 1. Even seeds have the minimal
possible period regardless of a.

24. X1,0 = 100, X2,0 = 300, X3,0 = 500
The generator is

X1,j+1 = 157 X1,j mod 32363
X2,j+1 = 146 X2,j mod 31727
X3,j+1 = 142 X3,j mod 31657
Xj+1 = (X1,j+1 −X2,j+1 + X3,j+1) mod 32362

Rj+1 =

{
Xj+1
32363 , if Xj+1 > 0
32362
32363 = 0.999 , if Xj+1 = 0

The first 5 random numbers are
X1,1 = [157 × 100] mod 32363 = 15700
X2,1 = [146 × 300] mod 31727 = 12073
X3,1 = [142 × 500] mod 31657 = 7686
X1 = [15700 − 12073 + 7686] mod 32362 = 11313
R1 = 11313/32363 = 0.3496

X1,2 = 5312
X2,2 = 17673
X3,2 = 15074
X2 = 2713
R2 = 0.0838

X1,3 = 24909
X2,3 = 10371
X3,3 = 19489
X3 = 1665
R3 = 0.0515

X1,4 = 27153
X2,4 = 22997
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X3,4 = 13279
X4 = 17435
R4 = 0.5387

X1,5 = 23468
X2,5 = 26227
X3,5 = 17855
X5 = 15096
R5 = 0.4665

29. Two results that are useful to solve this problem are

(c + d) mod m = c mod m + d mod m

and that if g = h mod m, then we can write g = h − km for some integer k ≥ 0. The last result is true
because, by definition, g is the remainder after subtracting the largest integer multiple of m that is ≤ h.

(a) Notice that

Xi+2 = aXi+1 mod m

= a[aXi mod m] mod m

= a[aXi − km] mod m (for some integer k ≥ 0)

= a2Xi mod m− akm mod m

= a2Xi mod m (since akm mod m = 0).

(b) Notice that

(anXi) mod m = {(an mod m) + [an − (an mod m)]}Xi mod m

= {(an mod m)Xi mod m} + {[an − (an mod m)]Xi mod m}
= {(an mod m)Xi mod m} + {kmXi mod m} (for some integer k ≥ 0)

= (an mod m)Xi mod m.

(c) In this generator a = 19, m = 100 and X0 = 63. Therefore, a5 mod 100 = 195 mod 100 = 99. Thus,
X5 = (99)(63) mod 100 = 37.



Chapter 8

Random-Variate Generation

1. Solution to Exercise 1:
Step 1.

cdf = F (x) =
{

e2x/2, −∞ < x ≤ 0
1 − e−2x, 0 < x < ∞

Step 2. Set F (X) = R on −∞ < X < ∞
Step 3. Solve for X to obtain

X =
{

1/2 ln 2R 0 < R ≤ 1/2
−1/2 ln(2 − 2R) 1/2 < R < 1

2. Solution to Exercise 2:
Step 1.

cdf = F (x) =
{

1 − x + x2/4, 2 ≤ x < 3
x− x2/12 − 2, 3 < x ≤ 6

Step 2. Set F (X) = R on 2 ≤ X ≤ 6

Step 3. Solve for X to obtain

X =
{

2 + 2
√

2 0 ≤ R ≤ 1/4
6 − 2

√
3 − 3R 1/4 < R ≤ 1

The true mean is (a + b + c)/3 = (2 + 3 + 6)/3 = 11/3.

3. Triangular distribution with a = 1, b = 4, c = 10. Total area = 1 = base × height/2 = 9h/2, so h = 2/9

Step 1: Find cdf F (x) = total area from 1 to x.

For 1 ≤ x ≤ 4, f(x)/h = (x− 1)/(4 − 1) by similar triangles so

F (x) = (x− 1)f(x)/2 = (x− 1)2/27

For 4 < x ≤ 10, f(x)/h = (10 − x)/(10 − 4) by similar triangles so

F (x) = 1 − (10 − x)f(x)/2 = 1 − (10 − x)2/54.

Step 2: Set F (X) = R on 1 ≤ X ≤ 10.

Step 3: Solve for X.

46
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X =
{

1 +
√

27R, 0 ≤ R ≤ 9/27
10 −√54(1 −R), 9/27 < R ≤ 1

4. Triangular distribution with a = 1, c = 10 and E(X) = 4. Since (a + b + c)/3 = E(X), the mode is at
b = 1. Thus, the height of the triangular pdf is h = 2/9. (See solution to previous problem. Note that the
triangle here is a right triangle.)

Step 1: Find cdf F (x) = total area from 1 to x.

= 1 − (total area from x to 10).

By similar triangles, f(x)/h = (10 − x)/(10 − 1), so

F (x) = 1 − (10 − x)f(x)/2 = 1 − (10 − x)2/81, 1 ≤ x ≤ 10.

Step 2: Set F (X) = R on 1 ≤ X ≤ 10.

Step 3: X = 10 −√81(1 −R), 0 ≤ R ≤ 1

5. Solution to Exercise 5:

X =
{

6(R− 1/2) 0 ≤ R ≤ 1/2√
32(R− 1/2) 1/2 ≤ R ≤ 1

6. X = 2R1/4, 0 ≤ R ≤ 1

7. Solution to Exercise 7:
F (x) = x3/27, 0 ≤ x ≤ 3
X = 3R1/3, 0 ≤ R ≤ 1

8. Solution to Exercise 8:
Step 1:

F (x) =
{

x/3, 0 ≤ x ≤ 2
2/3 + (x− 2)/24, 2 < x ≤ 10

Step 2: Set F (X) = R on 0 ≤ X ≤ 10.

Step 3:

X =
{

3R, 0 ≤ R ≤ 2/3
2 + 24(R− 2/3) = 24R− 14, 2/3 < R ≤ 1

9. Use Inequality (8.14) to conclude that, for R given, X will assume the value x in RX = {1, 2, 3, 4} provided

F (x− 1) =
(x− 1)x(2x− 1)

180
< R ≤ x(x + 1)(2x + 1)

180
= F (x)

By direct computation, F (1) = 6/180 = .033, F (2) = 30/180 = .167, F (3) = 42/180 = .233, F (4) = 1.
Thus, X can be generated by the table look-up procedure using the following table:

x 1 2 3 4
F (x) .033 .167 .233 1
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R1 = 0.83 −→ X = 4
R2 = 0.24 −→ X = 4
R3 = 0.57 −→ X = 4

10. Weibull with β = 2, α = 10. By Equation (9.6)

X = 10[− ln(1 −R)]0.5

11. The table look-up method for service times:

Input Output Slope
i ri xi ai
1 0 15 244.89
2 .0667 30 112.53
3 .2000 45 89.98
4 .3667 60 128.59
5 .6000 90 150.00
6 .8000 120 450.11
7 .9333 180 1799.10
8 1.0000 300 —

12. The table look-up method for fire crew response times, assuming 0.25 ≤ X ≤ 3:

Input Output Slope
i ri xi ai
1 0 .25 3.29
2 .167 .80 2.65
3 .333 1.24 1.26
4 .500 1.45 2.28
5 .667 1.83 5.60
6 .833 2.76 1.44
7 1.000 3.00 —

13. By Example 8.5, �17R� generates uniform random variates on {1, 2, . . . , 17}, thus

X = 7 + �17R�
generates uniform random variates on {8, 9, . . . , 24}.

15. The mean is (1/p) − 1 = 2.5, so p = 2/7 . By Equation (9.21),

X = �−2.97 ln(1 − R) − 1�

17. Use X = −3.7 lnR.

19. Generate X = 8[− lnR]4/3
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If X ≤ 5, set Y = X.

Otherwise, set Y = 5.

(Note: for Equation 8.6, it is permissible to replace 1 −R by R.)

20.
Method 1: Generate X1 ∼ U(0, 8) and X2 ∼ U(0, 8).

Set Y = min(X1, X2).

Method 2: The cdf of Y is

F (y) = P (Y ≤ y) = 1 − P (Y > y)
= 1 − P (X1 > y,X2 > y)
= 1 − (1 − y/8)2, 0 ≤ y ≤ 8

by independence of X1 and X2.

F (Y ) = 1 − (1 − Y/8)2 = R

implies
Y = 8 − 8

√
1 −R, 0 ≤ R ≤ 1.

21. Assume Xi is exponentially distributed with mean 1/λi, where 1/λ1 = 2 hours and 1/λ2 = 6 hours.
Method 1 is similar to that in Exercise 20.

Method 2: The cdf of Y is

F (y) = P (Y ≤ y) = 1 − P (Y > y)
= 1 − P (X1 > y,X2 > y)
= 1 − e−λ1ye−λ2y

= 1 − e−(λ1+λ2)y

Therefore Y is exponential with parameter λ1 + λ2 = 1/2 + 1/6 = 2/3.

Generate Y = −1.5 lnR.

Clearly, method 2 is twice as efficient as method 1.

22. Generate R1, R2, . . . Rn.

Set Xi =
{

1 if Ri ≤ p
0 if Ri > p.

Compute X =
∑n

i=1 Xi

23. Solution to Exercise 23:
Step 1: Set n = 0

Step 2: Generate R

Step 3: If R ≤ p, set X = n, and go to step 4.
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If R > p, increment n by 1 and return to step 2.

Step 4: If more geometric variates are needed, return to step 1.

28. Recall that one can obtain exponentially distributed variates with mean 1 using the inverse cdf trans-
formation

X = F−1(1 −R) = − ln(1 −R).

The reverse transformation (known as the probability-integral transformation) also works: If X is exponen-
tially distributed with mean 1, then

R = F (X) = 1 − e−X

is uniform (0, 1). This gets us from X to R; we then use the inverse cdf for the triangular distribution to go
from R to a triangularly distributed variate.



Chapter 9

Input Modeling

12. Solution to Exercise 12:
ln X̄ − 1.255787∑20

i=1 lnXi = 21.35591
1/M = 5.319392
θ = 0.3848516
β = 2.815

13. Solution to Exercise 13:

j β̂j

∑20

i=1
X β̂j

i

∑20

i=1
X β̂

i j ln Xi

∑20

i=1
X β̂

i j(ln Xi)
2 f(β̂j) f ′(β̂j) β̂j+1

0 2.539 1359.088 2442.221 4488.722 1.473 -4.577 2.861
1 2.861 2432.557 4425.376 8208.658 .141 -3.742 2.899
2 2.899 2605.816 4746.920 8813.966 .002 -3.660 2.899
3 2.899 2607.844 4750.684 8821.054 .000 -3.699 2.899

β̂ = 2.899

α̂ = 5.366

14. H0: Data are uniformly distributed

R(i) .0600 .0700 · · · .4070 · · · .8720 · · · .9970

1/3 .0333 .0667 · · · .4333 · · · .7333 · · · 1.0000

1/3−R(i) — — · · · .0653 · · · — · · · .0030

R(i) − (i− 1)/30 .0600 .0367 · · · .0070 · · · .1720 · · · .0303

D+ = .0653

D− = .1720

D = max(.0653, .1720) = .1720

D.05,30 = .24 > D = .1720

Therefore, do not reject H0

16. Solution to Exercise 16:

(a) α = X̄ = 1.11
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xi Oi pi Ei
(Oi−Ei)

2

Ei

0 35 .3296 32.96 .126
1 40 .3658 36.58 .320
2 13 .2030 20.30 2.625
3 6 .0751 7.51
4 4 .0209 2.09
5 1 .0046 .46

≥6 1 .0010 .10 .333
Totals 100 1.0000 100 3.404 = χ2

0

χ2
.05,2 = 5.99

Therefore, do not reject H0. Notice that we have grouped cells i = 3, 4, 5 ≥ 6 together into a single cell with
Oi = 12 and Ei = 10.16.

(b) α = 1

xi Oi pi Ei
(Oi−Ei)

2

Ei

0 35 .3679 36.79 .087
1 40 .3679 36.79 .280
2 13 .1839 18.39 1.580
3 6 .0613 6.13
4 4 .0153 1.53
5 1 .0031 .31

≥6 1 .0006 .06 1.963
Totals 100 1.0000 100 3.910 = χ2

0

χ2
.05,3 = 7.81

Therefore, do not reject H0. Notice that we have grouped cells 3, 4, 5 ≥ 6 into a single cell with Oi = 12 and
Ei = 8.03.

17. Solution to Exercise 17:

H0 = Data are exponentially distributed

λ̂ = X̄ = 1.206

S = 1.267

i Oi
(Oi−Ei)

2

Ei

1 8 .013
2 11 .853
3 9 .053
4 5 1.333
5 10 .333
6 7 .213

Totals 50 2.798=χ2
0

χ2
.05,4 = 9.49

Therefore, do not reject H0
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18. Using the Arena Input Analyzer, the Kolmogorov-Smirnov statistic for normality is 0.0985, which
corresponds to a p-value greater than 0.15. The chi-square test statistic with 5 intervals (yielding 2 degrees
of freedom) is 4.85, which corresponds to a p-value of 0.09. With 7 intervals (yielding 4 degrees of freedom),
the chi-square statistic is 5.98, corresponding to a p-value of 0.21. These statistics show no strong evidence
against the hypothesis of normality, although the chi-square statistic with 2 degrees of freedom could be
interpreted as rejecting the hypothesis of normality.

19. H0 = Data are normally distributed

µ̂ = X̄ = 99.222

σ̂2 = S2 = 103.41

Number of χ2
0 χ2

.05,k−3 Decision
Cells (k)

10 3.2 14.1 Do not reject H0

8 1.2 11.1 Do not reject H0

5 1.0 5.99 Do not reject H0

20. H0: Data are normally distributed

µ̂ = X̄ = 4.641

σ̂2 = S2 = 2.595

Number of χ2
0 χ2

.05,k−3 Decisions
Cells (k)

10 5.6 14.1 Do not reject H0

8 1.52 11.1 Do not reject H0

5 .6 5.99 Do not reject H0

21. H0: Data are exponentially distributed

λ̂ = 1/X̄ = 1/9.459 = .106

i Oi
(Oi−Ei)

2

Ei

1 7 .8
2 3 .8
3 5 0.0
4 5 0.0
5 5 0.0
6 6 .2
7 5 0.0
8 7 .8
9 4 .2
10 3 .8

Totals 50 3.6 = χ2
0

χ2
.05,8 = 15.5

Therefore, do not reject H0

22. H0: Data are Poisson distributed

α = X̄ = .48
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xi Oi pi Ei
(Oi−Ei)

2

Ei

0 31 .6188 30.94 .0001
1 15 .2970 14.85 .0015
2 3 .0713 3.565

≥3 1 .0129 .645 .0140
Totals 50 1.0000 50.00 .0120 = χ2

0

χ2
.05,1 = 3.84

Therefore, do not reject H0. Notice that we grouped cells i = 2, 3 into a single cell with Oi = 4 and Ei = 4.21.

Note: In Section 9.4.1 it was stated that there is no general agreement regarding the minimum size of Ei

and that values of 3, 4 and 5 have been widely used. We prefer Ei > 5. If we follow our suggestion in this
case, the degrees of freedom will equal zero, which results in an undefined tabular value of χ2. The concern
is that a very small Ei will result in an undue contribution to χ2

0. With Ei = 4.21 this is certainly not a
cause for concern. Thus, combining cells as shown is appropriate.

23. Solution to Exercise 23:

a) The data seem positively dependent.

b) The sample correlation is ρ̂ = 0.9560.

c) To fit a bivariate normal distribution we need the sample means, sample variances, and sample correlation.

Sample mean µ̂ Sample Variance σ̂2

Milling Time 17.7 (6.7)2

Planning Time 13.1 (3.6)2

Obtain ρ̂ from part (b).

26. For an AR(1) process
µ̂ = X = 20
φ̂ = ρ̂ = 0.48
σ̂2
ε = σ̂2 = (1 − φ̂2)(3.93)2(1 − 0.482) = 11.89

For an EAR(1) process
λ̂ = 1/X = 0.05
φ̂ = ρ̂ = 0.48

A histogram and q-q plot suggest that AR(1) is a better fit since the distribution appears more normal than
exponential.

27. Both exponential and lognormal models look feasible for this data (the Arena Input Analyzer gives p-
values > 0.15 for the Kolmogorov-Smirnov test in both cases). Since many transactions in a bank are routine
and brief, but there are occasional very long transaction times, an exponential model can be justified.
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Verification and Validation of
Simulation Models

1. Solution to Exercise 1:

(a) System: µ0 = 22.5
Model:

Ȳ = (18.9 + 22.0 + . . . + 20.2)/7 = 20.614
SY = 1.36

Test for significance (H0 : E(Y ) = µ0)

t0 = (20.614 − 22.5)/(1.36/
√

7) = −3.67

For α = 0.05, t6,0.025 = 2.45
Since |t0| > 2.45, reject null hypothesis

(b) Power of the test
δ = 2/1.36 = 1.47
For α = 0.05 and n = 7, δ(1.47) = 0.10
Power = 1 − 0.10 = 0.90
Sample size needed for β ≤ 0.20
Assume that σ = 1.36
Then for α = 0.05 and δ = 1.47, n = 6 observations

2. Solution to Exercise 2:

(a) System: µ0 = 4
Model:

Ȳ = (3.70 + 4.21 + . . . + 4.05)/7 = 4.084
Sy = 0.2441

Test for significance (H0 : E(Y ) = µ0)

t0 = (4.084 − 4)/(0.2441/
√

7) = 0.91

For α = 0.01, t6,0.005 = 3.71
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Since |t0| < 3.71, do not reject null hypothesis

(b) Sample size needed for β ≤ 0.10
δ = 0.5/0.2441 = 2.05
for α = 0.01 and δ = 2.05, n = 7 observations.
Then, assuming that the population standard deviation is 0.2441, the current power of the test is 0.90.

3. Solution to Exercise 3:

(a) Test for significance (H0 : µd = 0)
Letting di = yi − zi, d̄ = 3.35, Sd = 1.526

t0 = 3.35/(1.526/
√

4) = 4.39

For α = 0.05, t3,0.025 = 3.18
Since |t0| > 3.18, reject the null hypothesis.

(b) Sample size needed for β ≤ 0.20
δ = 2/1.526 = 1.31
For α = 0.05, β ≤ 0.20 and δ = 1.31
n = 8 observations.
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Output Analysis for a Single Model

For additional solutions check the course web site at www.bcnn.net.

3. The 95% confidence interval based on only 5 replications is [1.02, 16.93], which is much wider than the
interval based on all 10 replications. From the ensemble averages across five replications, and upper and
lower confidence limits, it is not possible to detect a trend in the data.

6. It was assumed that orders could be partially fulfilled before backlogging occurred.

(a) For the (50,30) policy, the average monthly cost over 100 months, Ȳr., for replication r (r = 1, 2, 3, 4), is
given by

Ȳ1· = $233.71, Ȳ2· = $226.36, Ȳ3· = $225.78, Ȳ4· = $241.06.

By Equation (12.39), the point estimate is

Ȳ.. = $231.73 and by Equation (12.40), S2 = ($7.19)2.

An approximate 90% confidence interval is given by

$231.73 ± t0.05,3($7.19)/
√

4, (t0.05,3 = 2.353) or [$223.27, $240.19]

(b) The minimum number of replications is given by

R = min{R > R0 : tα/2,R−1S0/
√
R ≤ $5} = 8

where R0 = 4, α = 0.10, S0 = $7.19 and ε = $5.

The calculation proceeds as follows:
R ≥ (z.05S0/ε)2 = [1.645(7.19)/5]2 = 5.60

R 6 7 8
t.05,R−1 1.94 1.90 1.86

t.05,R−1S0/ε
2 7.78 7.46 7.15

Thus, four additional replications are needed.

7. Solution to Exercise 7:

(a) The following estimates were obtained for the long-run monthly cost on each replication.

Ȳ1· = $412.11, Ȳ2· = $437.60, Ȳ3· = $411.26, Ȳ4· = $455.75, Ȳ·· = $429.18, S = $21.52
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An approximate 90% c.i. for long-run mean monthly cost is given by

$429.18 ± 2.353($21.52)/
√

4, or

[$403.86, $454.50]

(b) With R0 = 4, α = 0.10, S0 = $21.52, and ε = $25 the number of replications needed is

min{R ≥ R0 : tα/2,R−1S/
√
R < $25} = 5

Thus, one additional replication is needed to achieve an accuracy of ε = $25.
To achieve an accuracy of ε = $5, the total number of replications needed is

min{R ≥ R0 : t.05,R−1S0/
√
R < 5} = 53.

The calculations for ε = $5 are as follows:

R ≥ [z.05S0/ε]2 = [1.645(21.52)/5]2 = 50.12

R 51 52 53
t.05,R−1 1.675 1.674 1.674

[t.05,R−1S0/ε]2 52.9 52.9 52.9

Therefore, for ε = $5, the number of additional replications is 53 − 4 = 49.

10. Ten initial replications were made. The estimated profit is $98.06 with a standard deviation of S0 =
$12.95.

For α = 0.10 and absolute precision of ε = $5.00, the sample size is given by

min{R ≥ 10 : tα/2,R−1(12.95)/
√
R < $5}

R tα/2,R−1S0/
√
R

19 5.15
20 5.01
21 4.87

Thus, 21 replications are needed. Based on 21 replications the estimated profit is:

Ȳ = $96.38, S = $13.16

and a 90% c.i. is given by
$96.38 ± t.05,20S/

√
21

or $96.38 ± $4.94.

If ε = $0.50 and α = 0.10, then the sample size needed is approximately 1815.

13. The table below summarizes the results from each replication:

Response Time (hrs.) Average Utilization
for Job Type at each Station

Replications 1 2 3 4 1 2 3 4

1 146.6 88.82 82.81 42.53 0.509 0.533 0.724 0.516
2 146.4 89.79 80.45 46.48 0.517 0.537 0.772 0.569
3 144.4 88.40 81.59 45.01 0.468 0.516 0.692 0.491
4 144.3 88.00 82.13 47.17 0.486 0.489 0.673 0.496
5 144.9 88.29 82.53 43.26 0.471 0.473 0.627 0.461

Ȳ.. 145.3 88.66 81.90 44.89 0.465 0.510 0.698 0.507
S 1.103 .697 .932 1.998 0.022 0.028 0.054 0.049
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A 97.5% c.i. for utilization at each work station is given by

Station 1, [.463, .518]

Station 2, [.475, .544]

Station 3, [.631, .765]

Station 4, [.457, .556]

Note that by the Bonferroni inequality, Equation (12.20), the overall confidence level is 90% or greater.

A 95% c.i. for mean total response time (hrs.) of each job type is given by

Job type 1, [143.6, 147.0]

Job type 2, [87.57, 89.75]

Job type 3, [80.44, 83.36]

Job type 4, [41.77, 48.01]

Note that the overall confidence level is 80% or greater.
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Alternative System Designs

For additional solutions check the course web site at www.bcnn.net.

2. Using common random numbers, the following results were obtained:

Policy

Rep. (50,30) (50,40) (100,30) (100,40)
1 $233.71 $226.21 $257.73 $261.90
2 $226.36 $232.12 $252.58 $257.89
3 $225.78 $221.02 $266.48 $258.16
4 $241.06 $243.95 $270.61 $270.51
Ȳ·i $231.73 $230.83 $261.85 $262.12
Si $7.19 $9.86 $8.19 $5.89

To achieve an overall αE = 0.10, compute 97.5% confidence intervals (c.i.) for mean monthly cost for each
policy by using

Ȳ·i ± t.0125,3Si/
√

4, (t.0125,3 = 4.31 by interpolation)

Policy c.i.
(50,30) $231.73 ± $15.49
(50,40) $230.83 ± $21.25
(100,30) $261.85 ± $17.65
(100,40) $262.12 ± $12.69

The overall confidence level is at least 90%.

To obtain confidence intervals which do not overlap, policies (50,30) and (50,40) should be estimated with
an accuracy ε = ($231.73 − $230.83)/2 = $.45, and policies (100,30) and (100,40) with ε = ($262.12 −
$261.85)/2 = $.135.

An estimate for R is given by

R >
[
zα/2Si

ε

]2
with z.0125 = 2.24
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Policy R (replications)
(50,30) 1281
(50,40) 2411
(100,30) 18,468
(100,40) 9551

The above number of replications might take excessive computer time and thus be too expensive to run. A
better technique would be to compute c.i.’s for the differences.

At a 90% level, policies (50,30) and (50,40) appear to be better than the other two. A 90% c.i. for the
difference between the (50,30) and (50,40) policies is given by

$.9025 ± t.05,3 × 6.250/
√

4 or [−$6.451, $8.256].

Since this interval includes zero, no significant difference is detected.

3. Using common random numbers, the following results were obtained for 4 replications:

Policy

Rep (50,30) (50,40) (100,30) (100,40) D
1 $412.11 $405.69 $419.57 $398.78 $6.91
2 $437.60 $409.54 $429.82 $410.60 -$1.06
3 $411.26 $399.30 $470.17 $416.37 -$17.07
4 $455.75 $418.01 $466.55 $438.95 -$20.94

Ȳi $429.18 $408.14 $446.53 $416.18 -$8.04= D̄
Si $21.52 $7.82 $25.60 $16.86 $13.17 = SD

It appears that the (50,40) policy dominates the other three policies. A 90% c.i. was computed for the
mean difference in cost between the (50,40) and (100,40) policies. The differences, sample mean difference
and sample standard deviation are given in the table above. It is clear that a 90% c.i. will contain zero.
Thus, there is no significant difference between the 2 policies. The 90% c.i. is −$8.04 ± $15.47. A complete
analysis would compute c.i.’s for all differences, perhaps discard clearly inferior policies, and then replicate
the remaining ones to determine the best policy.

6. Using common random numbers, 21 replications were made for different ordering sizes. The table below
summarizes the results:

Estimate of Estimated Standard
Q (cards) Mean Profit ($) Deviation ($)

250 85.05 51.17
300 96.38 13.16
350 101.4 20.89
356 101.8 20.92
357 101.9 20.88
360 101.9 21.00
375 101.5 21.71
400 99.91 22.83
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Based on Exercise 11.10, a 90% c.i. for mean total profit at Q = 300 was $96.38 ± $4.94. To obtain an
accuracy of ε = $5.00 at α = 0.10 additional replications should be made for Q in the range 350 to 400.
Confidence intervals for differences could be computed to determine a range of Q significantly better than
other Q.

9. Use ci > λi/µi applied one station at a time.

Station 1

Station 1 receives types 1, 2 and 4 arrivals. Therefore,

Arrival rate λ1 = .4(.25) + .3(.25) + .1(.25) = .20 per hour

Mean service time 1
µ1

= .4
.8 (20) + .3

.8 (18) + .1
.8 (30) = 20.5 hours

c1 > λ1/µ1 = .20(20.5) = 4.1, c1 = 5 servers.

Station 2

If station 1 is stable (i.e. has 5 or more servers), then departures occur at the same rate as arrivals. Station
2 receives type 1 arrivals from station 1 and type 3 arrivals from the outside. Therefore,

Arrival rate λ2 = .4(.25) + .2(.25) = .15 per hour

Mean service time 1
µ2

= .4
.6 (30) + .2

.6 (20) = 26.67 hours

c2 > λ2/µ2 = .15(26.67) = 4.00, c2 = 5 servers

Station 3

Station 3 receives types 1, 2, and 3 arrivals. Therefore,

Arrival rate λ3 = .4(.25) + .3(.25) + .2(.25) = .225 per hour

Mean service time 1
µ3

= .4
.9 (75) + .3

.9 (60) + .2
.9 (50) = 64.44 hours

c1 > λ3/µ3 = .225(64.44) = 14.50, c3 = 15 servers

Station 4

Station 4 receives all arrivals. Therefore,

Arrival rate λ4 = .25 per hour

Mean service times 1
µ4

= .4(20) + .3(10) + .2(10) + .1(15) = 14.5 hours

c4 > λ4/µ4 = .25(14.5) = 3.63, c4 = 4 servers

For c1 = 5, c2 = 5, c3 = 15, and c4 = 4 the following results are obtained for one replication with T0 = 200
hours and TE = 800 hours.

Jobs Average Response Time (hours)
Type 1 170.3
Type 2 106.8
Type 3 106.6
Type 4 56.44
All jobs 126.8

Station Estimated Server Utilization
1 .754
2 .751
3 .828
4 .807
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Additional replications should be conducted and standard errors and confidence intervals computed. In
addition, initialization bias should be investigated. Since λ4/c4µ4 was calculated to be 3.63/4 = .9075 and
ρ̂4 = .807, it appears that significant bias may be present for T0 = 200 hours and TE = 800 hours.

13. Let S be the set-up time, which is exponentially distributed with mean 20. Let Pj be the time to process
the jth application, which is normally distributed with mean 7 and standard deviation 2. For a particular
design point, x, we generate n replications of total processing time as follows:

for i = 1 to n
do

generate S
for j = 1 to x
do

generate Pj
enddo
Yi = S + P1 + P2 + · · · + Px

enddo

15. Because the samples across design points are dependent, MSE/Sxx is a biased estimator of the variance
of β̂1, and the degrees of freedom are not n− 2.

18. Let m be the number of buffer spaces (m = 50 in this problem). Since x1 + x2 + x3 = m, x3 is
determined once x1 and x2 are specified. Thus, what we really need are all assignments to x1 and x2 such
that x1 + x2 ≤ m. Clearly there are m + 1 possible assignments for x1; specifically, 0, 1, 2, . . . ,m. If x1 is
assigned value 1, then there are m + 1 − 1 possible assignments for x2; specifically, 0, 1, 2, . . . ,m − 1. If we
sum over the possible assignments for x1 we obtain

m∑
)=0

(m + 1 − 1) =
(m + 1)(m + 2)

2

which is 1326 when m = 50.

The scheme we will develop for sampling (x1, x2, x3) will first sample x1, then x2 given the value of x1, and
finally compute x3 = m− x2 − x1.

Let n = (m + 1)(m+ 2)/2, the number of possible outcomes for (x1, x2, x3), all equally likely. The marginal
probability that x1 = m is 1/n, since (m, 0, 0) is the only way it can happen. The marginal probability that
x1 = m− 1 is 2/n since (m− 1, 1, 0) and (m− 1, 0, 1) are the only ways it can happen. Arguing this way we
can show that

P (x1 = j) =
m− j + 1

n

for j = 0, 1, 2, . . . ,m. Thus, we can use one of the general methods for sampling from discrete distributions
to sample x1.

Now given x1, we can show that the marginal distribution of x2 is discrete uniform on {0, 1, . . . ,m− x1}, a
distribution that is easy to sample. And finally, x3 = m− x2 − x1.

19. For this problem the true optimal solution can be computed analytically: x∗ = 2.611 years, giving an
expected cost of $11,586. This solution is obtained by minimizing the expected cost, which can be written
as

2000x +
∫ ∞

0

20000 I(y ≤ 1)
e−y/x

x
dx

where I is the indicator function.
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20. For this problem the true optimal solution can be computed analytically: x∗ = 2.611 years, giving an
expected cost of $11,586. This solution is obtained by minimizing the expected cost, which can be written
as

2000x +
∫ ∞

0

20000 I(y ≤ 1)
e−y/x

x
dx

where I is the indicator function.

21. There are two optimal solutions, x∗ = 9, 10, with objective function value approximately 0.125.



Chapter 13

Simulation of Manufacturing and
Material Handling Systems

For solutions check the course web site at www.bcnn.net.
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Chapter 14

Simulation of Computer Systems

For solutions check the course web site at www.bcnn.net.
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