
R N S INSTITUTE OF TECHNOLOGY

CHANNASANDRA, BANGALORE - 98

SOFTWARE TESTING

NOTES FOR 8TH SEMESTER INFORMATION SCIENCE

SUBJECT CODE: 06IS81

PREPARED BY

DIVYA K
1RN09IS016

8th Semester

Information Science

divya.1rn09is016@gmail.com

NAMRATHA R
1RN09IS028

8th Semester

Information Science

namratha.1rn09is028@gmail.com

SPECIAL THANKS TO

ANANG A – BNMIT & CHETAK M - EWIT

TEXT BOOKS:
FOUNDATIONS OF SOFTWARE TESTING – Aditya P Mathur, Pearson Education, 2008

SOFTWARE TESTING AND ANALYSIS: PROCESS, PRINCIPLES AND TECHNIQUES – Mauro Pezze, Michal Young, John
Wiley and Sons, 2008

Notes have been circulated on self risk. Nobody can be held responsible if anything is wrong or is improper information or insufficient information provided in it.

CONTENTS:

UNIT 1, UNIT 2, UNIT 3, UNIT 5, UNIT 7

 Visit: www.vtuplanet.com for my notes as well as Previous VTU papers

http://www.vtuplanet.com/

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 2

UNIT 1
BASICS OF SOFTWARE TESTING - 1

ERRORS AND TESTING
 Humans make errors in their thoughts, in their actions, and in the products that might result from

their actions.
 Humans can make errors in an field.

Ex: observation, in speech, in medical prescription, in surgery, in driving, in sports, in love and
similarly even in software development.

 Example:
o An instructor administers a test to determine how well the students have understood what

the instructor wanted to convey
o A tennis coach administers a test to determine how well the understudy makes a serve

Errors, Faults and Failures
Error: An error occurs in the process of writing a program
Fault: a fault is a manifestation of one or more errors
Failure: A failure occurs when a faulty piece of code is executed leading to an incorrect state that propagates to
program’s output

The programmer might misinterpret the requirements and consequently write incorrect code. Upon execution,
the program might display behaviour that does not match with the expected behaviour, implying thereby that a
failure has occurred.
 A fault in the program is also commonly referred to as a bug or a defect. The terms error and a bug or a
defect. The terms error and bug are by far the most common ways of referring to something wrong in the
program text that might lead to a failure. Faults are sometimes referred to as defects.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 3

 In the above diagram notice the separation of observable from observed behaviour. This separation is
important because it is the observed behaviour that might lead one to conclude that a program has failed.
Sometimes conclusion might be incorrect due to one or more reasons.

Test Automation:

 Testing of complex systems, embedded and otherwise, can be a human intensive task.
 Execution of many tests can be tiring as well as error-prone. Hence, there is a tremendous need for

software testing.
 Most software development organizations, automate test-related tasks such as regression testing,

graphical user interface testing, and i/o device driver testing.
 The process of test automation cannot be generalized.

General purpose tools for test automation might not be applicable in all test environments

Ex:
 Eggplant
 Marathon
 Pounder for GUI testing
 Load & performance testing tools

 eloadExpert
 DBMonster
 JMeter
 Dieseltest
 WAPT
 LoadRunner
 Grinder

Regression testing tools:
 Echelon
 Test Tube
 WinRunner
 X test

AETG is an automated test generator that can be used in a variety of applications.
Random Testing is often used for the estimation of reliability of products with respect to specific events.

Tools: DART
Large development organizations develop their own test automation tools due primarily to the unique nature
of their test requirements.

Developers and Testers as two Roles:

 Developer is one who writes code & tester is one who tests code. Developer & Tester roles are different
and complementary roles. Thus, the same individual could be a developer and a tester. It is hard to
imagine an individual who assumes the role of a developer but never that of a tester, and vice versa.

 Certainly, within a software development organization, the primary role of a individual might be to test
and hence hs individual assumes the role of a tester. Similarly, the primary role of an individual who
designs applications and writes code is that of a developer.

SOFTWARE QUALITY
 Software quality is a multidimensional quantity and is measurable.

Quality Attributes
 These can be divided to static and dynamic quality attributes.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 4

Static quality attributes
 It refers to the actual code and related documents.

Example: A poorly documented piece of code will be harder to understand and hence difficult to modify.
A poorly structured code might be harder to modify and difficult to test.

Dynamic quality Attributes:

 Reliability
 Correctness
 Completeness
 Consistency
 Usability
 performance

Reliability:
 It refers to the probability of failure free operation.

Correctness:

 Refers to the correct operation and is always with reference to some artefact.
 For a Tester, correctness is w.r.t to the requirements
 For a user correctness is w.r.t the user manual

Completeness:
 Refers to the availability of all the features listed in the requirements or in the user manual.
 An incomplete software is one that does not fuly implement all features required.

Consistency:
 Refers to adherence to a common set of conventions and assumptions.
 Ex: All buttons in the user interface might follow a common-color coding convention.

Usability:

 Refer to ease with which an application can be used. This is an area in itself and there exist
techniques for usability testing.

 Psychology plays an important role in the design of techniques for usability testing.
 Usability testing is a testing done by its potential users.
 The development organization invites a selected set of potential users and asks them to test the

product.
 Users in turn test for ease of use, functionality as expected, performance, safety and security.
 Users thus serve as an important source of tests that developers or testers within the organization

might not have conceived.
 Usability testing is sometimes referred to as user-centric testing.

Performance:
 Refers to the time the application takes to perform a requested task. Performance is considered as a

non-functional requirement.

Reliability:

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 5

 (Software reliability is the probability of failure free operation of software over a given time interval
& under given conditions.)

 Software reliability can vary from one operational profile to another. An implication is that one
might say “this program is lousy” while another might sing praises for the same program.

 Software reliability is the probability of failure free operation of software in its intended
environments.

 The term environment refers to the software and hardware elements needed to execute the
application. These elements include the operating system(OS)hardware requirements and any
other applications needed for communication.

Requirements, Behaviour and Correctness:
 Product(or) software are designed in response to requirements. (Requirements specify the

functions that a product is expected to perform.) During the development of the product, the
requirement might have changed from what was stated originally. Regardless of any change, the
expected behaviour of the product is determined by the tester’s understanding of the requirements
during testing.

 Example:
Requirement 1: It is required to write a program that inputs and outputs the maximum of these.
Requirement 2: It is required to write a program that inputs a sequence of integers and outputs the
sorted version of this sequence.

 Suppose that the program max is developed to satisfy requirement 1 above. The expected output of
max when the input integers are 13 and 19 can be easily determined to be 19.

 Suppose now that the tester wants to know if the two integers are to be input to the program on one
line followed by a carriage return typed in after each number.

 The requirement as stated above fails to provide an answer to this question. This example
illustrates the incompleteness requirements 1.

 The second requirement in (the above example is ambiguous. It is not clear from this requirement
whether the input sequence is to be sorted in ascending or descending order. The behaviour of sort
program, written to satisfy this requirement, will depend on the decision taken by the programmers
while writing sort. Testers are often faced with incomplete/ambiguous requirements. In such
situations a testers may resort to a variety of ways to determine what behaviour to expect from the
program under test).

 Regardless of the nature of the requirements, testing requires the determination of the expected
behaviour of the program under test. The observed behaviour of the program is compared with the
expected behaviour to determine if the program functions as desired.

Input Domain and Program Correctness

 A program is considered correct if it behaves as desired on all possible test inputs. Usually, the set of
all possible inputs is too large for the program to be executed on each input.

 For integer value, -32,768 to 32,767. This requires 232 executions.
 Testing a program on all possible inputs is known as “exhaustive testing”.
 If the requirements are complete and unambiguous, it should be possible to determine the set of all

possible inputs.

Definition: Input Domain
 The set of all possible inputs to program P is known as the input domain, or input space, of P.
 Modified requirement 2: It is required to write a program that inputs a sequence of integers and

outputs the integers in this sequence sorted in either ascending or descending order. The order of
the output sequence is determined by an input request character which should be “A” when an
ascending sequence is desired, and “D” otherwise while providing input to the program, the request
character is entered first followed by the sequence of integers to be sorted. The sequence is
terminated with a period.

Definition: Correctness

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 6

A program is considered correct if it behaves as expected on each element of its input domain.

Valid and Invalid Inputs:

 The input domains are derived from the requirements. It is difficult to determine the input domain for
incomplete requirements.

 Identifying the set of invalid inputs and testing the program against these inputs are important parts of
the testing activity. Even when the requirements fail to specify the program behaviour on invalid inputs,
the programmer does treat these in one way or another. Testing a program against invalid inputs might
reveal errors in the program.
Ex: sort program
 < E 7 19...>
The sort program enters into an infinite loop and neiter asks the user for any input nor responds to
anything typed by the user. This observed behaviour poins to a possible error in sort.

Correctness versus reliability:
 Though correctness of a program is desirable, it is almost never the objective of testing.
 To establish correctness via testing would imply testing a program on all elements in the input domain,

which is impossible to accomplish in most cases that are encountered in practice.
 Thus, correctness is established via mathematical proofs of programs.
 While correctness attempts to establish that the program is error-free, testing attempts to find if there

are any errors in it.
 Thus, completeness of testing does not necessarily demonstrate that a program is error-free.
 Removal of errors from the program. Usually improves the chances, or the probability, of the program

executing without any failure.
 Also testing, debugging and the error-removal process together increase confidence in the correct

functioning of the program under test.
 Example:

Integer x, y
Input x, y
If(x<y) this condition should be x≤ 𝑦
{
 Print f(x, y)
}
Else(x
{

Print g(x, y)
}

 Suppose that function f produces incorrect result whenever it is invoked with x=y and that f(x, y)≠ g(x, y),
x=y. In its present form the program fails when tested with equal input values because function g is invoked
instead of function f. When the error is removed by changing the condition x<y to x≤ 𝑦, the program fails
again when the input values are the same. The latter failure is due to the error in function f. In this program,
when the error in f is also removed, the program will be correct assuming that all other code is correct.

 A comparison of program correctness and reliability reveals that while correctness is a binary metric,
reliability is a continuous metric, over a scale from 0 to 1. A program can be either correct or incorrect, it is
reliability can be anywhere between 0 and 1. Intuitively when an error is removed from a program, the
reliability of the program so obtained is expected to be higher than that of the one that contains the error.

Program Use and Operational Profile:

 An operational profile is a numerical description
of how a program is used. In accordance with the
above definition, a program might have several
operational profiles depending on its users.

 Example: sort program

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 7

Testing and Debugging
 (Testing is the process of determining if a program behaves as expected.) In the process one may

discover errors in the program under test. However, when testing reveals an error, (the process used to
determine the cause of this error and to remove it is known as debugging.) As illustrated in figure,
testing and debugging are often used as two related activities in a cyclic manner.
Steps are
1. Preparing a test plan
2. Constructing test data
3. Executing the program
4. Specifying program behaviour
5. Assessing the correctness of program behaviour
6. Construction of oracle

 Preparing a test plan:
(A test cycle is often guided by a test plan. When relatively small programs are being tested, a test plan is
usually informal and in the tester’s mind or there may be no plan at all.)
Example test plan: Consider following items such as the method used for testing, method for evaluating the
adequacy of test cases, and method to determine if a program has failed or not.
Test plan for sort:
The sort program is to be tested to meet the requirements given in example

1. Execute the program on at least two input sequence one with “A” and the other with “D” as request
characters.

2. Execute the program on an empty input sequence
3. Test the program for robustness against erroneous input such as “R” typed in as the request character.
4. All failures of the test program should be recorded in a suitable file using the company failure report

form.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 8

 Constructing Test Data:
 A test case is a pair consisting of test data to be input to the program and the expected output.
 The test data is a set of values, one for each input variable.
 A test set is a collection of zero or ore cases.

Program requirements and the test plan help in the construction of test data. Execution of the program
on test data might begin after al or a few test cases have been constructed.
Based on the results obtained, the testers decide whether to continue the construction of additional test
cases or to enter the debugging phase.
The following test cases are generated for the sort program using the test plan in the previous figure.

 Executing the program:
 Execution of a program under test is the next significant step in the testing. Execution of this step for

the sort program is most likely a trivial exercise. The complexity of actual program execution is
dependent on the program itself.

 Testers might be able to construct a test harness to aid is program execution. The harness initializes any
global variables, inputs a test case, and executes the program. The output generated by the program
may be saved in a file for subsequent examination by a tester.

In preparing this test harness assume that:
(a) Sort is coded as a procedure

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 9

(b) The get-input procedure reads the request character & the sequence to be sorted into variables
request_char, num_items and in_number, test_setup procedure-invoked first to set up the test includes
identifying and opening the file containing tests.
 Check_output procedure serve as the oracle that checks if the program under test behaves correctly.
 Report_failure: output from sort is incorrect. May be reported via a message(or)saved in a file.
 Print_sequence: prints the sequence generated by the sort program. This also can be saved in file for

subsequent examination.

 Specifying program behaviour:

State vector: collecting the current values of program variables into a vector known as the state vector.
An indication of where the control of execution is at any instant of time can be given by using an identifier
associated with the next program statement.

State sequence diagram can be used to specify the behavioural requirements. This same specification can then
be used during the testing to ensure if the application confirms to the requirements.

 Assessing the correctness of program
Behaviour: It has two steps:

1. Observes the behaviour
2. Analyzes the observed behaviour.

Above task, extremely complex for large distributed system
The entity that performs the task of checking the correctness of the observed behaviour is known as an oracle.

 But human oracle is the best available oracle.
 Oracle can also be programs designed to check the behaviour of other programs.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 10

 Construction of oracles:
 Construction of automated oracles, such as the one to check a matrix multiplication program or a sort

program, Requires determination of I/O relationship. When tests are generated from models such as
finite-state machines(FSMs)or state charts, both inputs and the corresponding outputs are available.
This makes it possible to construct an oracle while generating the tests.

Example: Consider a program named Hvideo that allows one to keep track of home videos. In the data
entry mode, it displays a screen in which the user types in information about a DVD. In search mode, the
program displays a screen into which a user can type some attribute of the video being searched for and
set up a search criterion.

 To test Hvideo we need to create an oracle that checks whether the program function correctly in data
entry and search nodes. The input generator generates a data entry request. The input generaor now
requests the oracle to test if Hvideo performed its task correctly on the input given for data entry.

 The oracle uses the input to check if the information to be entered into the database has been entered

correctly or not. The oracle returns a pass or no pass to the input generator.

TEST METRICS
 The term metric refers to a standard of measurement. In software testing, there exist a variety of metrics.

There are four general core areas that assist in the design of metrics schedule, quality, resources and size.

Schedule related metrics:
Measure actual completion times of various activities and compare these with estimated time to
completion.

Quality related metrics:
Measure quality of a product or a process

Resource related metrics:
Measure items such as cost in dollars, man power and test executed.

Size-related metrics:
Measure size of various objects such as the source code and number of tests in a test suite

Organizational metrics:
Metrics at the level of an organization are useful in overall project planning and management.
Ex: the number of defects reported after product release, averaged over a set of products developed and
marketed by an organization, is a useful metric of product quality at the organizational level.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 11

 Organizational metrics allow senior management to monitor the overall strength of the organization
and points to areas of weakness. Thus, these metrics help senior management in setting new goals and
plan for resources needed to realize these goals.

 Project metrics:
 Project metrics relate to a specific project, for example the I/O device testing project or a compiler

project. These are useful in the monitoring and control of a specific project.
1. Actual/planned system test effort is one project metrics. Test effort could be measured in terms

of the tester_man_months.

2. Project metric=
𝑛𝑜 .𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑓𝑢𝑙 𝑡𝑒𝑠𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑝ℎ𝑎𝑠𝑒

 Process metrics:
 Every project uses some test process. Big-bang approach well suited for small single person projects.

The goal of a process metric is to assess the goodness of the process.
 Test process consists of several phases like unit test, integration test, system test, one can measure how

many defects were found in each phase. It is well known that the later a defect is found, the consttier it
is to fix.

Product metrics: Generic
 Cyclomatic complexity

 Halstead metrics

Cyclomatic complexity
V(G)= E-N+2P
Program p containing N node, E edges and p connected procedures.
Larger value of V(G)higher program complexity & program more difficult to understand &test than one
with a smaller values.
V(G) values 5 or less are recommended

Halstead complexity
Number of error(B) found using program size(S) and effort(E)
B= 7.6𝐸0.667𝑆0.33

Product metrics: OO software
Metrics are reliability, defect density, defect severity, test coverage, cyclomatic complexity, weighted
methods/class, response set, number of children.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 12

Static and dynamic metrics:
Static metrics are those computed without having to execute the product.
Ex: no. of testable entities in an application. Dynamic metric requires code execution.
Ex: no. of testable entities actually covered by a test suite is a dynamic quality.

Testability:
 According to IEEE, testability is the “degree to which a system or component facilitates the

establishment of test criteria and the performance of tests to determine whether those criteria have
been met”.

 Two types:
 static testability metrics
dynamic testability metrics

Static testability metric:
Software complexity is one static testability metric. The more complex an application, the lower the testability,
that is higher the effort required to test it.

Dynamic metrics for testability includes various code based coverage criteria.
Ex: when it is difficult to generate tests that satisfy the statement coverage criterion is considered to have low
testability them one for which it is easier to construct such tests.

UNIT 1 QUESTION BANK

No. QUESTION YEAR MARKS
1 How do you measure Software Quality? Discuss Correctness versus Reliability

Pertaining to Programs?
Jan 10 10

2 Discuss Various types of Metrics used in software testing and Relationship? Jan 10 10
3 Define the following

i) Errors ii) Faults iii) Failure iv) Bug
June 10 4

4 Discuss Attributes associated with Software Quality? June 10 8
5 What is a Test Metric? List Various Test Metrics ?and Explain any two? June 10 8
6 Explain Static & Dynamic software quality Attributes? July 11 8
7 Briefly explain the different types of test metrics. July 11 8
8 What are input domain and program correctness? July 11 4
9 Why is it difficult for tester to find all bugs in the system? Why might not be

necessary for the program to be completely free of defects before its delivered to
customers?

Dec 11 10

10 Define software quality. Distinguish between static quality attributes and
dynamic quality attributes. Briefly explain any one dynamic quality attribute.

Dec 11 10

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 13

UNIT 2
BASICS OF SOFTWARE TESTING - 2

SOFTWARE AND HARDWARE TESTING
There are several similarities and differences between techniques used for testing software and hardware
Software application Hardware product

Does not integrate over time Does integrate over time

Fault present in the application will remain and no
new faults will creep in unless the application is
changed

VLSI chip, that might fail over time due to a fault that
did not exist at the time chip was manufactured and
tested

Built-in self test meant for hardware product, rarely,
can be applied to software designs and code

BIST intended to actually test for the correct
functioning of a circuit

It only detects faults that were present when the last
change was made

Hardware testers generate test based on fault-models
Ex: stuck_at fault model – one can use a set of input
test patterns to test whether a logic gate is functioning
as expected

 Software testers generate tests to test for correct functionality.
 Sometimes such tests do not correspond to any general fault model
 For example: to test whether there is a memory leak in an application, one performs a combination of

stress testing and code inspection
 A variety of faults could lead to memory leaks
 Hardware testers use a variety of fault models at different levels of abstraction
 Example:

o transistor level faults low level
o gate level, circuit level, function level faults higher level

 Software testers might not or might use fault models during test generation even though the model
exist

 Mutation testing is a technique based on software fault models
 Test Domain a major difference between tests for hardware and software is in the domain of tests
 Tests for VLSI chips for example, take the form of a bit pattern. For combinational circuits, for example a

Multiplexer, a finite set of bit patterns will ensure the detection of any fault with respects to a circuit
level fault model.

 For software, the domain of a test input is different than that for hardware. Even for the simplest of
programs, the domain could be an infinite set of tuples with each tuple consisting of one or more basic
data types such as integers and reals.

Example

Consider a simple twp-input NAND gate in Fig.
 A test bit vector V: (A=O, B=1) leads to output 0. Whereas the correct output should be 1: Thus V detects a
single S-a-1 fault to the A input of the NAND gate. There could be multiple stuck-at faults also.
 Test Coverage It is practically impossible to completely test a large piece of software, for example, an

OS as well as a complex integrated circuit such as modern 32 or 64 bit Microprocessor. This leads to a
notion of acceptable test coverage. In VLSI testing such coverage is measured using a fraction of the
faults covered to the total that might be present with respect to a given fault model.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 14

 The idea of fault coverage to hardware is also used in software testing using program mutation. A
program is mutated by injecting a number of faults using a fault model that corresponds to mutation
operators. The effectiveness or adequacy of a test case is assessed as a fraction of the mutants covered
to the total number of mutatis.

TESTING AND VERIFICATION
 Program verification aims at proving the correctness of progress by showing that is contains no errors.
 This is very different from testing that aims at uncovering errors in a program.
 While verification aims at showing that a given program works for all possible inputs that satisfy a set

of conditions, testing aims to show that the given program is reliable to that, no errors of any
significance were found.

 Program verification and testing are best considered as complimentary techniques.
 In the developments of critical applications, such as smart cards or control of nuclear plants, one often

makes use of verification techniques to prove the correctness of some artifact created during the
development cycle, not necessarily the complete program.

 Regardless of such proofs, testing is used invariably to obtain confidence in the correctness of the
application.

 Testing is not a perfect process in that a program might contain errors despite the success of a set of
tests; verification might appear to be a perfect process as it promises to verify that a program is free
from errors.

 Verification reveals that it has its own weakness.
 The person who verified a program might have made mistakes in the verification process’ there might

be an incorrect assumption on the input conditions; incorrect assumptions might be made regarding
the components that interface with the program.

 Thus, neither verification nor testing is a perfect technique for proving the correctness of program.

DEFECT MANAGEMENT
Defect Management is an integral part of a development and test process in many software development
organizations. It is a sub process of a the development process. It entails the following:

 Detect prevention
 Discovery
 Recording and reporting
 Classification
 Resolution
 Production

Defect Prevention
It is achieved through a variety of process and tools: They are,

 Good coding techniques.
 Unit test plans.
 Code Inspections.

Defect Discovery
 Defect discovery is the identification of defects in response to failures observed during dynamic testing

or found during static testing.
 It involves debugging the code under test.

Defect Classification
Defects found are classified and recorded in a database. Classification becomes important in dealing with the
defects. Classified into

 High severity-to be attended first by developer.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 15

 Low severity.

Example: Orthogonal defect classification is one of the defect classification scheme which exist called ODC, that
measures types of defects, this frequency, and Their location to the development phase and documents.

Resolution
Each defect, when recorded, is marked as ‘open’ indicating that it needs to be resolved. It required careful
scrutiny of the defects, identifying a fix if needed, implementing the fix, testing the fix, and finally closing the
defect indicating that every recorded defect is resolved prior to release.

Defect Prediction
 Organizations often do source code Analysis to predict how many defects an application might contain

before it enters the testing the phase.
 Advanced statistical techniques are used to predict defects during the test process.
 Tools are existing for Recording defects, and computing and reporting defect related statistics.

o BugZilla - Open source
o Fog-Buzz - commercially available tools.

EXECUTION HISTORY
Execution history of a program, also known as execution trace, is an organized collection of information about
various elements of a program during a given execution. An execution slice is an executable subsequence of
execution history. There are several ways to represent an execution history,
 Sequence in which the functions in a given program are executed against a given test input,
 Sequence in which program blocks are executed.
 Sequence of objects and the corresponding methods accessed for object oriented languages such as Java

An execution history may also included values of program variables.

 A complete execution history recorded from the start of a program’s execution until its termination
represents a single execution path through the program.

 It is possible to get partial execution history also for some program elements or blocks or values of
variables are recorded along a portion of the complete path.

TEST GENERATION STRATEGIES

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 16

Test generation uses a source document. In the most informal of test methods, the source document resides in
the mind of the tester who generates tests based on knowledge of the requirements.

Fig summarizes the several strategies for test generation. These may be informal techniques that assign
value to input variables without the use of any rigorous or formal methods. These could also be techniques that
identify input variables, capture the relationship among these variables, and use formal techniques for test
generation such as random test generation and cause effect graphing.

 Another set of strategies fall under the category of model based test generation. These strategies
require that a subset of the requirements be modelled using a formal notation.

 FSMs, statecharts, petrinets and timed I/O automata are some of the well known and used formal
notations for modelling various subset requirements.

 Sequence & activity diagrams in UML also exist and are used as models of subsets of requirements.
 There also exist techniques to generate tests directly from the code i.e. code based test generation.
 It is useful when enhancing existing tests based on test adequacy criteria.
 Code based test generation techniques are also used during regression testing when there is often a

need to reduce the size of the suite or prioritize tests, against which a regression test is to be performed.

 STATIC TESTING

 Static testing is carried out without executing the application under test.
 This is in contrast to dynamic testing that requires one or more executions of the application under test.
 It is useful in that it may lead to the discovery of faults in the application, ambiguities and errors in the

requirements and other application-related document, at a relatively low cost,
 This is especially so when dynamic testing expensive.
 Static testing is complementary to dynamic testing.
 This is carried out by an individual who did not write the code or by a team of individuals.
 The test team responsible for static testing has access to requirenments document, application, and all

associated documents such as design document and user manual.
 Team also has access to one or more static testing tools.

A static testing tool takes the application code as input and generates a variety of data useful in the test
process.

WALKTHROUGHS
 Walkthroughs and inspections are an integral part of static testing.
 Walkthrough are an integral part of static testing.
 Walkthrough is an informal process to review any application-related document.

eg:
requirements are reviewed---->requirements walkthrough
code is reviewed---->code walkthrough
 (or)
 peer code review

Walkthrough begins with a review plan agreed upon by all members of the team.
Advantages:

 improves understanding of the application.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 17

 both functional and non functional requirements are reviewed.
 A detailed report is generated that lists items of concern regarding the requirements.

INSPECTIONS
 Inspection is a more formally defined process than a walkthrough. This term is usually associated with

code.
 Several organizations consider formal code inspections as a tool to improve code quality at a lower cost

than incurred when dynamic testing is used.
Inspection plan:

i. statement of purpose
ii. work product to be inspected this includes code and associated documents needed for inspection.

iii. team formation, roles, and tasks to be performed.
iv. rate at which the inspection task is to be completed
v. Data collection forms where the team will record its findings such as defects discovered, coding

standard violations and time spent in each task.

Members of inspection team

a) Moderator: in charge of the process and leads the review.
b) Leader: actual code is read by the reader, perhaps with help of a code browser and with monitors for all

in the team to view the code.
c) Recorder: records any errors discovered or issues to be looked into.
d) Author: actual developer of the code.

It is important that the inspection process be friendly and non confrontational.
Use of static code analysis tools in static testing
 Static code analysis tools can be provide control flow and data flow information.
 Control flow information presented in terms of a CFG, is helpful to the inspection team in that it allows

the determination of the flow of control under different conditions.
 A CFG can be annotated with data flow information to make a data flow graph.
 This information is valuable to the inspection team in understanding the code as well as pointing out

possible defect.

Commercially available static code analysis tools are:
o Purify IBM Rationale
o Klockwork Klockwork
o LAPSE (Light weight analysis for program security in eclipse) open source tool

(a) CFG clearly shows that the definition of x at block 1 is used at block-3 but not at block 5.In fact the definition
of x at block 1 is considered killed due to its redefinition at block 4.
(b) CFG indicates the use of variable y in the block 3.If y is not defined along the path from start to block 3,then
there is a data-flow error as a variable is used before it is defined.
Several such errors can be detected by static analysis tools.
->compute complexity metrics, used as a parameter in deciding which modules to inspect first.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 18

Model-Based Testing and Model checking:
o Model based testing refers to the acts of modeling and the generation of tests from a formal model of

application behavior.
o Model checking refers to a class of techniques that allow the validation of one or more properties from a

given model of an application.

o Above diagram illustrates the process of model-checking. A model, usually finite state is extracted from

some source. The source could be the requirements and in some cases, the application code itself.
o One or more desired properties are then coded to a formal specification language. Often, such

properties are coded in temporal logic, a language for formally specifying timing properties. The model
and the desired properties are then input to a model checker. The model checker attempts to verify
whether the given properties are satisfied by the given model.

o For each property, the checker could come up with one of three possible answer:
o the property is satisfy
o the property is not satisfied.
o or unable to determine

o In the second case, the model checker provides a counter example showing why the property is not
satisfied.

o The third case might arise when the model checker is unable to terminate after an upper limit on the
number of iterations has reached.

o While model checking and model based testing use models, model checking uses finite state models
augmented with local properties that must hold at individual states. The local properties are known as
atomic propositions and augmented models as kripke structure.

CONTROL FLOW GRAPH
o A CFG captures the flow of control within a program. Such a graph assists testers in the analysis of a

program to a understand its behaviour in terms of the flow of control. A CFG can be constructed
manually without much difficulty for relatively small programs, say containing less than about 50
statements.

o However, as the size of the program grows, so does the difficulty of constructing its CFG and hence
arises the need for tools.

o A CFG is also known by the names flow graph or program and it is not to be confused with program-
dependence graph(PDG).

Basic Block
 Let P denotes a program written in a procedural programming language, be it high level as C or Java or

low level such as the 80x86 assembly. A basic block, or simply a block, in P is a sequence of consecutive
statements with a single entry and a single exit point.

 Thus, a block has unique entry and exit points.
 Control always enters a basic block at its entry point and exits from its exit point. There is no possibility

of exit or a halt at any point inside the basic block except at its exit point. The entry and exit points of a
basic block co inside when the block contains only one statement.

 example: the following program takes two integers x and y and output x^y.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 19

 There are a total of 17 lines in this program including the begin and end. The execution of this program
begins at line 1 and moves through lines 2, 3 and 4 to the line 5 containing an if statement. Considering
that there is a decision at line 5, control could go to one of two possible destinations at line 6 and 8.
Thus, the sequence of statements starting at line 1 and ending at line 5 constitutes a basic block. Its only
entry point is at line 1 and the only exit point is at line 5.

Note: ignored lines 7 and 13 from the listing
because these are syntactic markers, and so
are begin and end that are also ignored.

Flow Graph: Definition and pictorial representation
 A flow graph G is defines as a finite set N of nodes and a finite set E of a directed edges. In a flow graph

of a program P, we often use a basic block as a node and edges indicate the flow of control across basic
blocker.

 A pictorial representation of a flow graph is often used in the analysis of control behaviour of a
program. Each node is represented by a symbol, usually an oval or a rectangular box. These boxes are
labelled by their corresponding block numbers. The boxes are connected by lines representing edges.
Arrows are used to indicate the direction of flow. These edges are labelled true or false to indicate the
path taken when the condition evaluates to true and false respectively.

 N={start,1,2,3,4,5,6,7,8,9,end}
 E={(start,1),(1,2),(1,3),(2,4),(3,4),(4,5),(5,6),(6,5),(5,7),(7,8),(7,9),(9,end)}

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 20

Path
 A path through a flow graph is considered complete if the first node along the path is considered

complete if the first node along the path is start and the terminating node is END.
 A path p through a flow graph for a program p is considered feasible if there exists at least one test case

which when input to p causes p to be traversed. If no such test case exists, then p is considered
infeasible. Whether a given path p through a program p is feasible is in general an undecidable problem.

 This statement implies that it is not possible to write an algorithm that takes as inputs an arbitrary
program and a path through that program, and corr

TYPES OF TESTING
 Framework consists of a set of five classifies that serve to classify testing techniques that fall under the

dynamic testing category.Dynamic testing requires the excution of program under test.Static testing
consists of testing for the review and analysis of the program.

 five classifiers of testing:-
o 1.C1:source of test generation
o 2.C2:life cycle phase in which testing takes place
o 3.C3:goal of a specific testing activity.
o 4.C4:characteristics of the artifact under test
o 5.C5:test process

Classifier C1: Source of test generation
 Black box Testing: Test generation is an essential part of testing. There are a variety of ways to generate

tests, listed in table. Tests could be generated from informally or formally specified requirements and
without the aid of the code that is under test. Such form of testing is commonly referred to as black box
testing.

Model based or specification based testing:
 Model based or specification based testing occurs when the requirements are formally specified as for

example, using one or more mathematical or graphical notations such as, z, statecharts, event sequence
graphs

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 21

White box testing:
 White box testing refers to the test activity where in code is used in the generation of or the assessment

of the test cases.
 Code could be used directly or indirectly for test generation.

o In the direct case, a tool, or a human tester examines the code and focuses on a given path to be
covered. A test is generated to cover path.

o In the indirect case, test generated using some black box testing is assessed against some code
based coverage criterion.

 Additional tests are then generated to cover the uncovered positions of the code by the analyzing which
parts of the code are feasible.

 Control flow, data flow, and mutation testing can be used for direct as well as indirect code-based test
generation.

Interface testing:
 Tests are often generated using a components interface.
 Interface itself forms a part of the components requirements and hence this form of testing is black box

testing. However, the focus on the interface leads us to consider interface testing in its own right.
Techniques such as

o --->pairwise testing
o --->interface mutation

Pairwise testing:
 Set of values for each input is obtained from the components requirement.

Interface mutation:
 The interface itself, such as function coded in /c orCORBA component written in an IDL,serves to

extract the information needed to perform interface mutation.
o pairwise testing:is a black box testing
o interface mutation:is a white box testing

Ad-hoc testing:
 In adhoc testing,a tester generates tests from requirements but without the use of any systematic

method.

Random testing:
 Random testing uses a systematic method to generate tests.Generation of tests using random testing

requires modeling the input space randomly.

Classifier C2: Life cycle phase
 Testing activities take place throughout the software life cycle.
 Each artifact produced is often subject to testing at different levels of rigor and using different testing

techniques.
Unit testing:
 Programmers write code during the early coding phase.
 They test their code before it is integrated with other system components.
 This type of testing is referred to as the unit testing.

System testing:
 When units are integrated and a large component or a subsystem formed, programmers do integration

testing of the sub system.
 System testing is to ensure that all the desired functionality is in the system and works as per its

requirements.
 Note: test designed during unit testing are not likely to be used during integrating and system testing.

Acceptance testing:
 two types:

o -alpha testing

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 22

o -beta testing
 Carefully selected set if customers are asked to test a system before commercialization.
 This form of testing is referred to as beta testing.
 In case of contract software, the customer who contracted the development performs acceptability

testing prior to making the final decisions as to whether to purchase the application for deployment.

Classifier C3: Goal-directed testing
There exists a variety of goals of course finding any hidden errors is the prime goal of testing, goal-oriented
testing books for specific type of failure.
Robustness testing:
 Robustness testing refers to the task of testing an application for robustness against unintended inputs.

It differs from functional testing in that the tests for robustness are derived from outside of the valid (or
expected) input space, whereas in the former the tests are derived from the valid input space.

Stress testing:
 In stress testing, one checks for the behavior of an application under stress. Handling of overflow of

data storage, for example buffers, can be checked with the help of stress testing.
Performance testing:
 The term performance testing refers to that phase of testing where an application tested specifically

with performance requirements in the view.
 Ex: An application might be required to process 1,000billing transactions per minute on a specific intel

processer-based machine and running a specific OS.
Load testing:
 The term load testing refers to that phase of testing in which an application is loaded with respect to

one or more applications. The goal is to determine if the application continues to perform as required
under various load conditions.

 Ex: a database server can be loaded with requests from a large number of simulated users.

Classifier C4: Artifact under test
Table 1.7 is a partial list of testing techniques named after the artifact that is being tested. For ex, during the
design phase one might generate a design using SDL notation. This form of testing is known as design testing.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 23

While testing a batch processing application, it is also important to include an oracle that will check the result
of executing each test script. This oracle might be a part of the test script itself. It could, for example, query the
contents of a database after performing an operation that is intended to change the status of the database.

Classifier C5: Test process models
Software testing can be integrated into the software development life cycle in a variety of ways. This leads to
various models for the tests process listed in the table 1.8

Testing in the waterfall model:
 The waterfall model is one of the earliest and least used, software life cycle.
 Figure 1.23 shows different phases in a development process based on the waterfall model. While

verification and validation of documents produced in each phase is an essential activity, static as well as
dynamic testing occurs toward the end if the process.

 Waterfall model requires adherence to an inherently sequential process, defects introduced in the early
phases and discovered in the later phases could be costly to correct.

 There is a very little iterative or incremental development when using the waterfall model.

Testing in the V-model:
The v-model, as shown in the fig, explicitly specifies testing activities associated with each phase of the
development cycle. These activities begin from the start and continue until the end of life cycle. The testing
activities are carried out parallel with the development activities.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 24

Spiral testing:
 The term spiral testing is not to be confused with spiral model, through they both are similar in that

both can be visually represented as a spiral of activities.
 In the spiral testing, the sophisticated of testing of test activities increases with the stages of an evolving

prototype.
 In the early stages, when a prototype is used to evaluate how an application must evolve, one focuses on

test planning. The focus at this stage is on how testing will be performed in the remainder of the project.
 Subsequent iterations refine the prototype based on more precise set of requirements.
 Further test planning takes place and unit & integration tests are performed.
 In the final stage ,when the requirements are well defined, testers focus on system and acceptance

testing.

Agile testing:
Agile testing involves in addition to the usual steps such as test planning, test design and test execution.
Agile testing promotes the following ideas:
 Include testing -related activities throughout a development project starting from the requirement phase.
 Work collaboratively with the customer who specifies requirements in terms of tests.
 testers and development must collaborate with each other rather than serve as adversaries and
 Test often and in small chunks.

THE SATURATION EFFECT
 The saturation effect is an abstraction of a phenomenon observed during the testing of complex

software systems.
 The horizontal axis the figure refers to the test effort that increase over time.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 25

 The test effort can be measured as, for ex, the number of test cases executed or total person days spent
during the test and debug phase.

 The vertical axis refers to the true reliability (solid lines) and the confidence in the correct behavior
(dotted lines) of the application under test evolves with an increase in test effort due to error
correction.

 The vertical axis can also be labeled as the cumulative count of failures that are observed over time, that
is as the test effort increases.

 The error correction process usually removes the cause of one or more failures.

Confidence and true reliability:
Confidence in fig refers to the confidence of the test manager in the true reliability of the application under test.

 Reliability in the figure refers to the probability of failure free operation of the application under test in

its intended environment.
 The true reliability differs from the estimated reliability in that the latter is an estimate of the

application reliability obtained by using one of the many statistical methods.
o 0-indicates lowest possible confidence
o 1-the highest possible confidence

 Similarly,
o 0-indicates the lowest possible true reliability
o 1-the highest possible true reliability.

Saturation region:
->assumes application A in the system test phase.
->the test team needs to generate tests, set up the test environment, and run A against the test.

1. Assume that the testers are generated using a suitable test generation method (TGAT 1) and that
each test either passes or fails.

2. If we measure the test effort as the combined effort of testing, debugging and fixing the errors the
true reliability increases as shown in the fig.

False sense of confidentiality:
 This false sense of confidence is due to the lack of discovery of new faults, which in turn is due to the

inability of the tests generated using TGA1 to exercise the application code in ways significantly
different from what has already been exercised.

 Thus, in the saturation region, the robust states of the application are being exercised, perhaps
repeatedly, whereas the faults lie in the other states.

Reducing delta:
 Empirical studies reveal that every single test generation method has its limitations in that the resulting

test set is unlikely to detect all faults in an application.
 The more complex an application, the more unlikely it is that tests generated using any given method

will detect all faults.
 This is one of the prime regions why tests use or must use multiple techniques for test generation.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 26

Impact on test process:
 A knowledge and application of the saturation effect are likely to be of value of any test team while

designing and implementing a test process.

UNIT 2 QUESTION BANK

No. QUESTION YEAR MARKS
1 Define the following:

i)Testability ii)Verification
June 10 4

2 What is defect management? List the different activities. Explain any two. June 10 8
3 Explain the following:

i) Static testing ii) Model based testing and model checking.
June 10 8

4 Explain how CFG assists the tester in analysis of program to understand the
behavior in terms of flow of control with examples?

June 11 10

5 Describe the following test classifiers:
i) Source of test generation; ii) Life cycle phase; iii)Test process models.

June 11 10

6 Explain Variety of ways in which Software testing can be integrated into the
Software development life cycle.

Dec 11 10

7 Consider the following program:
1) begin 10) while(power 1=0){
2) int x,y,power; 11) z=z*x;
3) float z; 12) power=power-1;
4) input(x,y); 13) }
5) if(y<0) 14) if(y<0)
6) power=-y; 15) z=1/z;
7) else 16) output(z);
8) power=y; 17) end
9) z=1;
Identify the basic blocks, their entry points and exit points. Draw the control flow
graph.

Dec 11 6

8 Write a short notes on the saturation effect Dec 11 4

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 27

UNIT 3
TEST GENERATION FROM REQUIREMENTS-1

INTRODUCTION
 A requirement specification can be informal, rigorous, formal, or a mix of these three approaches.
 The more formal the specification, the higher are the chances of automating the test generation process.
 The following figure shows variety of test generation techniques

 Often, high level designs are also considered as a part of specification
 Requirements serve as a source for the identification of a input domain of the application to be

developed
 A variety of test generation techniques are available to select a subset of the input domain to serve as

test set against which the application will be tested

THE TEST SELECTION PROBLEM
 Let D denote the input domain of program p, the test selection problem is to select a subset of tests such

that execution of p against each element of T will reveal all errors in p.
 In general, there does not exist any algorithm, to construct such a test. However, there are heuristics

and model based methods that can be used to generate tests that will reveal certain type of faults.
 The challenge is to construct a test set T subset of D that will reveal as many errors in p as possible.
 Test selection is primarily difficult because of the size and complexity of the input domain of p.
 In most practical problems, the input domain is large, that it has many elements, and often complex,

that is the elements are of different types such as integers, strings, real, Boolean and structure
 The large size of the input domain prevents testers from exhaustively testing the program under test

against all possible inputs
 The complexity makes it harder to select individual tests

Example: Complex input domain
Consider a procedure p in a payroll-processing system that takes an employee’s record as input and computes
weekly salary. Employee’s record consists of
ID: int;
Name: string; Complex
Rate: float;
Hrs_worked: int;

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 28

EQUIVALENCE PARTITIONING
 Test selection using equivalence partitioning allows a tester to subdivide the input domain into

relatively small number of sub-domains, say N>1 refer fig(a) , which are disjoint, each subset is known
as an equivalence class.

 The equivalence classes are created assuming that the program under test exhibits the same behavior

on all elements that is tests, within a class.
 One test is selected from each equivalence class
 When the equivalence classes created by two tester’s are identical, tests generated are different.

Fault targeted

 The entire set of inputs can be divided into at least two subsets
 One containing all expected(E) or legal inputs
 Other containing all unexpected(u) or illegal inputs

E and u are further divided into subsets (refer fig below)

Example:
Consider an application A that takes an integer denoted by ‘age’ as input, legal values of ‘age’ are in the range [1,
2, 3 ,.........., 120]
Set of input vales is now divided into E and u.

E=[1, 2,....., 120] u= the rest.
 Furthermore, E is subdivided into [1, 2,, 61] and [162, 163,,120]

 Invalid inputs below 1 and above 120 are to be treated differently leading to subdivision of u

into two categories.

 Test selected using equivalence partitioning technique aims at targeting faults in A w.r.t inputs

in any of the four regions.

According to
requirement R1

According to
requirement R2

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 29

Relations And Equivalence Partitioning

 A relation is a set of n-ary-tuples
Example: a method addList that returns the sum of elements in a list of integers defines a binary
relation.

 Each pair in the relation consists of a list and an integer that denotes the sum of all elements in the list.
Example: ((1,5), 6) and ((-3,14,3), 14)

 The relation computed by addList is defined as follows:
 addList: LZ

where, L is a set of all lists of integers and Z is set of integers.
Suppose hat addList has an error (empty list) then,
addList: LZ U{error}

 Relations that help a tester partition the input domain of a program are usually of the kind= R:II ,
where Iinput domain

 Below example shows a few ways to define equivalence classes based on the knowledge of
requirements and the program text.
Example: the word count method takes a word w and a filename f as input and returns the number of
occurrences of w in the text contained in the file name f.
If no file with name ‘f’ exists, an exception is raised.

1. begin
2. string w, f;
3. input (w, f);
4. if(!exists(f))[raise exception; return(0)};
5. if (length(w)==0){return(0)};
6. return(getcount(w, f));
7. end

using the partitioning method, we obtain the following eg:classes
E1: consists of pairs(w, f) where w is a string and f denotes a file that exists.
E2: consists of pairs (w, f) where w is a string and f denotes a file that does not exists.

Eq.class w f

E1 non-null Exists, non empty

E2 non-null Does not exist

E3 non-null Exists, empty

E4 null Exists, non empty

E5 null Does not exist

E6 null Exists, empty

 So we note that the number of eq. Classes without any knowledge of program code is 2, whereas that
with the knowledge of partial code is 6.

 Equivalence classes based on program output
Quest 1: does the program ever generate a 0?
Quest 2: what are the max and min possible values of the output?
These two questions lead to following eq. Classes
E1: output value v is 0
E2: output value v is, the max. Possible
E3: output value v is, the min. Possible
E4: All other output values.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 30

Equivalence Classes For Variables
Table (a) and (b) offer guidelines for partitioning variables into equivalence classes based on their type.

Compound data types – any input data value that has
more than one independent attribute is a compound
type. While generating equivalence classes for such
inputs, one must consider legal and illegal values for
each component of the structure.

Unidimensional versus Multi-Dimensional Partitioning
Unidimensional partitioning (commonly used)

 One way to partition the input domain is to consider one input variable at a time.
 Thus each input variable leads to a partition of the input domain.
 We refer to this style of partitioning as unidimensional equivalence partitioning

Multidimensional partitioning

 Another way is to consider the input domain I as the set product of the input variables and define a
relation on I.

 This procedure creates one partition consisting of several equivalence classes.
 We refer to this method as multidimensional equivalence partitioning

Example: consider the application that requires two integers input x and y. Each of these inputs is expected to
lie in the following ranges
3≤ x ≤7 and 5≤ y ≤9

For unidimensional partitioning, we apply the partitioning guidelines to x and y individually. This leads to six
equivalence classes

E1: x<3 E4: y<5
E2: 3≤ x ≤7 E5: 5≤ y ≤9
E3: x>7 E6: y>9

For multidimensional partitioning, we consider the input domain to be the set product XxY. This leads to 9
equivalence classes

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 31

E1: x<3, y<5 E5: 3≤ x ≤7, 5≤ y ≤9
E2: x<3, 5≤ y ≤9 E6: 3≤ x ≤7, y>9
E3: x<3, y>9 E7: x>7, y>5
E4: 3≤ x ≤7, y<5 E8: x>7, 5≤ y ≤9
E9: x>7, y>9

Figure: geometric representation of equivalence classes derived using uni-dimensional partitioning based on x

and y in (a) and (b) respectively and using multi-dimensional partitioning as in (c)

Systematic Procedure for Equivalence Partitioning
1. Identify the input domain:

Read the requirements carefully and identify all input and output variables, their types, and any conditions
associated with their use .Environment variables also serve as input variables. Given the set of values each
variable can assume, an approximation to the input domain is the product of these sets.

2. Equivalence classing:
Partition the set of values of each variable into disjoint subsets. Each subset is an equivalence class.
Together, the equivalence classes based on an input variable partition the input domain. Partitioning the
input domain using values of one variable is done based on the expected behaviour of the program.
Values for which the program is expected to behave in the “same way” are grouped together. Note that the
“same way” needs to be defined by the tester.

3. Combine equivalence classes:
This step is usually omitted, and the equivalence classes defined for each variable are directly used to select
test cases. However, by combining the equivalence classes, one misses the opportunity to generate useful
tests.
Eq. classes are combined using multidimensional approach.

4. Identify infeasible equivalence classes:
An infeasible equivalence class is one that contains combination of input data that cannot be generated
during test. Such an equivalence class may arrive due to several reasons.

Example: boiler control system (BCS)
 The control software (cs) is required to offer several options.

One of the options, c (for control), is used by a human operator to give one of three commands (cmd).
 Change the boiler temperature (temp).
 Shut down the boiler (shut).
 Cancel the request (cancel).

 Command temp causes cs to ask the operator to enter the amount by which the temperature is to be
changed (tempch) Values of tempch are in the range -10 to 10 in increments of 5 degrees Fahrenheit.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 32

 Selection of option c forces the BCS to examine variable V. If V is set t GUI, the operator is asked to enter one
of the three commands via GUI. However, if V is set to file, BCS obtains the command from a command line.

 The command file may contain any one of the three commands, together with the value of the temperature

to be changed if the command is temp. The filename is obtained from the variable
 Inputs for the boiler-control software. V and F are environment variables. Values of cmd (command) and

tempch (temperature change) are input via the GUI or a data file depending on V. F specifies the data file.

 Identify the input domain:

First we examine the requirements identify input variables, their types, and values.
These are listed below:

variable kind type Value(s)

V Environment Enum { GUI, file }

F Environment String A file name

cmd Input via GUI or file Enum { temp, cancel shut }

tempch Input via GUI or file enum { -10, -5, 5, 10 }

Therefore, domain subset of S= V×F×cmd×tempch
Eg: (GUI ,-, temp,-5)
 (-) is Don’t care
 Equivalence classing:

Variable partition

V {{GUI}, {file}, {undefined}}

F f_valid, f_invalid

 cmd {{temp}, {cancel}, {shut}, {c_invalid}}

tempch {{t_valid}, {t_invalid}}

 Combine equivalence class:

Note that tinvalid, tvalid, finvalid and fvalid denote sets of values. “ undefined ” denotes one
value.
 Discard infeasible equivalence classes:

Note that the GUI requests for the amount by which the boiler temp has to be changed only
when the operator selects temp for cmd. Thus all eq. Classes that match the following template
are infeasible.
{(V, F, {cancel, shut, cinvalid}, tvalid U tinvalid)}

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 33

Test Selection Based On Equivalence Classes
Given a set of equivalence classes that form a partition of the input domain, it is relatively straightforward to
select tests. However, complications could arise in the presence of infeasible data and don't care values. In the
most general case, a tester simply selects one test that serves as a representative of each equivalence class.

GUI Design And Equivalence Classes
 While designing equivalence classes for programs that obtain input exclusively from a keyboard, one

must account for the possibility of errors in data entry.
 For example, the requirement for an application. The application places a constraint on an input

variable X such that it can assume integral values in the range 0..4. However, testing must account for
the possibility that a user may inadvertently enter a value for X that is out of range.

 Suppose that all data entry to the application is via a GUI front end. Suppose also that the GUI offers
exactly five correct choices to the user for X. In such a situation it is impossible to test the application
with a value of X that is out of range. Hence only the correct values of X will be input.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 34

BOUNDARY VALUE ANALYSIS
 BVA is a test selection technique that targets faults in applications at the boundaries of equivalence

classes.
 While equivalence partitioning selects tests from within equivalence classes, boundary-value analysis

focuses on tests at and near the boundaries of equivalence classes.
 Certainly, tests derived using either of the two techniques may overlap.
 Once the input domain has been identified, test selection using boundary value analysis proceeds as

follows:
1. Partition the input domain using one-dimensional partitioning:

This leads to as many partitions as there are input variables. Alternately, a single partition of an
input domain can be created using multidimensional partitioning.

2. Identify the boundaries for each partition:
Boundaries may also be identified using special relationships among the inputs.

3. Select test data such that each boundary value occurs in at least one test input
BVA example

 Consider a method “fp” (find price) that takes two inputs –‘code’ and ‘qty’, both are integers.
1. Create equivalence classes

Assuming that an item code must be in the range 99 to 999 and qty in the range 1 to 100,
Equivalence classes for ‘code’

E1: values less than 99
E2: values in the range
E3: values greater than 999

Equivalence classes for ‘qty’
E4: values less than 1
E5: values in the range
E6: values greater than 100

2. Identify boundaries
Below fig shows equivalence classes and boundaries for (a) code and (b) qty. Values at and near the
boundary are listed and marked with and “X” and “*” respectively.

3. Construct test set
Test selection based on boundary value analysis technique requires that tests must include, for each variable,
values at and around the boundary.
Consider the following test set

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 35

 Consider the following faulty code skeleton for method “fp”

 t1 and t6 tests indicate that value of ‘code’ is incorrect. But these two tests fails to check that the validity

check on ‘qty’ is missing from the program.
 none of the other tests will be able to reveal the missing-code error. By separating the correct and

incorrect values of different input variable we increase the possibility of detecting the missing-code
error.

CATEGORY PARTITION METHOD
 Category partition method is a systematic approach to the generation of tests from requirements.
 The method consists of mix of manual and automated steps.
 Below fig shows the steps in the generation of tests using the category-partition method.
 Tasks in solid boxes are performed manually and generally difficult to automate.
 Dashed boxes indicate tasks that can be automated.

Step 1: analyse specification
Here the tester identifies each functional unit that can be tested separately.

Step 2: identify categories
For each testable unit, the given specification is analysed and the inputs isolated.
Next e determine characteristics (or a category)of each parameter and environmental object.

Step 3: partition categories
For each category, the tester determine different cases against which the functional unit must be tested.
Each case is also referred to as a choice.
One or more cases are expected for each category.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 36

Step 4: identify constraints
A constraint is specified using a property list and selector expression.
Property lit has the following form:
 [property p1,p2....]
 where, property is the keyword and p1, p2... names of individual properties.
A selector expression take one of the following forms.
 [if p]
 [if p and p2 and...]
 Ex for special properties- [error] , [single]

Step 5: (Re) write test specification
Tester now writes a complete test specification.
The specification is written in a test specification language (TSL) conforming to a precise syntax.

 Step 6: process specification
TSL specification written in step 5 is processed by an automatic test-frame generator.
This results in a number of test frames.
The test frames are analysed by the tester for redundancy.

Step 7: Evaluate generator output
Here tester examines the test frames for any redundancy or missing cases.
This might lead to a modification in the test specification (step 5) and a return to step 6.

Step 8: Generate these scripts
Test cases generated from test frames are combined into test scripts.
A test script is a grouping of test cases.
Generally, test cases that do not require any changes in settings of the environment objects are grouped
together.
This enables a test driver to efficiently execute the tests.

UNIT 3 QUESTION BANK
No. QUESTION YEAR MARKS
1 Explain the following

i) Equivalence Partitioning ii)Boundary Value Analysis
June 10 4

2 Explain the steps associated in creating equivalence classes for the given problem
requirements?

June 10 8

3 Identify the steps in generation of tests in category partition Method? Explain any
two?

June 10 8

4 Describe the steps involved in a systematic procedure for equivalence partitioning
by considering boiler control system as an example.

June 11 10

5 Explain the steps involved in the generation of tests using the category partition
method with suitable examples.

June 11 10

6 What is Equivalence Partitioning? Explain the systematic procedure for Equivalence
Partitioning by considering Boiler Control System Example.

Dec 11 10

7 What is boundary value analysis? Explain the procedure for BVA by considering
your own example

Dec 11 10

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 37

UNIT 5
STRUCTURAL TESTING

OVERVIEW
 Testing can reveal a fault only when execution of the faulty element causes a failure
 Control flow testing criteria are defined for particular classes of elements by requiring the execution of

all such elements of the program
 Control flow elements include statements, branches, conditions and paths.
 A set of correct program executions in which all control flow elements are exercised does not guarantee

the absence of faults
 Execution of a faulty statement may not always result in a failure
 Control flow testing complements functional testing by including cases that may not be identified from

specifications alone
 Test suites satisfying control flow adequacy criteria would fail in revealing faults that can be caught

with functional criteria
 Example – missing path faults
 Control flow testing criteria are used to evaluate the thoroughness of test suites derived from functional

testing criteria by identifying elements of the programs
 Unexecuted elements may be due to natural differences between specification and implementation, or

they may reveal flaws of the software or its development process
 Control flow adequacy can be easily measured with automatic tools

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 38

Figure 5.1: The C function cgi decode, which translates a cgi-encoded string to a plain ASCII string (reversing
the encoding applied by the common gateway interface of most web servers).

Figure 5.2: Control Flow graph of function cgi decode from previous Figure

Table 5.1: Sample test suites for C function cgi decode from Figure 5.1

STATEMENT TESTING
 Statements are nothing but the nodes of the control flow graph.

 Statement adequacy criterion:

Let T be a test suite for a program P. T satisfies the statement adequacy criterion for P, iff, for each
statement S of P, there exists at least one test case in T that causes the execution of S.
This is equivalent to stating that every node in the control flow graph model of the program 1 is visited
by some execution path exercised by a test case in T.

 Statement coverage:

The statement coverage Cstatement of T for P is the fraction of statements of program P executed by at
least one test case in T

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 39

𝐶𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

 T satisfies the statements adequacy criterion if Cstatement = 1

 Basic block coverage: Nodes in a control flow graph often represent basic blocks rather than individual

statements, and so some standards refers to basic coverage or node coverage

 Examples: in program 1, it contains

 A test suite To = {“ “,”test”,”testcase%1Dadequacy }

𝐶𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 =
17

18
 = 94% or node coverage =

10

11
 = 91%

So it does not satisfy the statement adequacy criteria
 A test suite 𝑇1 ={“adequate + test%0Dexecution %TU”}

𝐶𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 =
18

18
=1 or 100%

So it satisfies the statement adequacy criterion

 A test suite 𝑇2={“%3D”,”%A”,”a+b”,”test”}

𝐶𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 =
18

18
=1 or 100%

 Coverage is not monotone with respect to the size of the test suites, i.e., test suites that contain fewer

test cases may achieve a higher coverage than test suites that contain more test cases.
 Criteria can be satisfied by many test suites of different sizes.
 A test suite with fewer test cases may be more difficult to generate or may be less helpful in debugging.
 Designing complex test cases that exercise many different elements of a unit is seldom a good way to

optimize a test suite, although it may occasionally be justifiable when there is large and unavoidable
fixed cost (e.g., setting up equipment) for each test case regardless of complexity.

 Control flow coverage may be measured incrementally while executing a test suite.
 The increment of coverage due to the execution of a specific test case does not measure the absolute

efficacy of the test case.
 Measures independent from the order of execution may be obtained by identifying independent

statements.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 40

Figure 5.3: The control flow graph of function cgi decode0 which is obtained from the program of Figure 5.1

after removing node F.

BRANCH TESTING
 A test suite can achieve complete statement coverage without executing all the possible branches in a

program.
 Consider, for example, a faulty program cgi d ecod e0 obtained from program cgi d ecod e by removing line 41.
 The control flow graph of program cgi d ecod e0 is shown in Figure 5.3.
 In the new program there are no statements following the false branch exiting node

 Branch adequacy criterion requires each branch of the program t be executed by at least one test case.

Let T be a test suite for a program P. T satisfies the branch adequacy criterion for P. Iff , for each branch B
of P, there exists at least one test case in T that causes the execution of B.
This is equivalent to stating that every edge the control flow graph model of program P belongs to some
execution path exercised by a test case in T

 The branch coverage 𝐶𝐵𝑟𝑎𝑛𝑐 ℎ of T for P is the fraction of branches of program P executed by at least one

test case in T

𝐶𝐵𝑟𝑎𝑛𝑐 ℎ=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑏𝑟𝑎𝑛𝑐 ℎ𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑟𝑎𝑛𝑐 ℎ𝑒𝑠

T satisfies the branch adequacy criterion if 𝐶𝐵𝑟𝑎𝑛𝑐 ℎ = 1
Examples:

 𝑇3={“ “,”+%0D+4J”}

100% statement coverage

88% branch coverage 𝐶𝐵𝑟𝑎𝑛𝑐 ℎ =
7

8
= 0.88

 𝑇2={“%3D”,”%A”,”a+b”,”test”}

100% statement coverage
100% branch coverage

𝐶𝐵𝑟𝑎𝑛𝑐 ℎ =
8

8
 = 1

Test suite T2 satisfies the branch adequacy criterion, and would reveal the fault. Intuitively, since traversing all
edges of a graph causes all nodes to be visited, test suites that satisfy the branch adequacy criterion for a
program P also satisfy the statement adequacy criterion for the same program.

CONDITION TESTING

 Branch coverage is useful for exercising faults in the way a computation has been decomposed into
cases. Condition coverage considers this decomposition in more detail, forcing exploration not only of
both possible results of a boolean expression controlling a branch, but also of different combinations of
the individual conditions in a compound boolean expression.

 Condition adequacy criteria overcome this problem by requiring different basic conditions of the

decisions to be separately exercised.

 Basic condition adequacy criterion: requires each basic condition to be covered

A test suite T for a program P covers all basic conditions of P, i.e. it satisfies the basic condition

adequacy criterion, iff each basic condition in P has a true outcome in at least one test case in T and a

false outcome in at least one test in T.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 41

 Basic condition coverage (𝐶𝑏𝑎𝑠𝑖𝑐 _𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) of T for is the fraction of the total no. of truth values assumed

by the basic in T 𝐶𝑏𝑎𝑠𝑖𝑐 _𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑜 .𝑜𝑓 𝑡𝑟𝑢𝑡 ℎ 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑏𝑎𝑠𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

2×𝑛𝑜 .𝑜𝑓 𝑏𝑎𝑠𝑖𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

 Basic conditions versus branches

o Basic condition adequacy criterion can be satisfied without satisfying branch coverage

 For ex: the test suite 𝑇4= {“first + test %9ktet%k9”}
 Satisfies basic condition adequacy criterion, but not the branch condition adequacy

criterion. (Therefore the outcome of decision at line 27 is always false)
o Thus branch and basic condition adequacy criterion are not directly comparable (neither implies

the other)

Branch and condition adequacy criterion: A test suite satisfies the branch and condition adequacy criterion if it
satisfies both the branch adequacy criterion and the condition adequacy criterion.
A more complete extension that includes both the basic condition and the branch adequacy criteria is the
compound condition adequacy criterion, which requires a test for each possible combination of basic conditions.

For ex: the compound condition at line 27 would require covering the three paths in the following tree

Consider the number of cases required for compound condition coverage of the following two Boolean
expressions, each with five basic conditions. For the expression a && b && c && d && e, compound
condition coverage requires:

MCDC
o An alternative approach that can be satisfied with the same number of test cases for boolean

expressions of a given length regardless of short-circuit evaluation is the modified condition adequacy

criterion, also known as modified condition / decision coverage or MCDC.
o Key idea: Test important combinations of conditions, avoiding exponential blowup
o A combination is “important” if each basic condition is shown to independently affect the outcome of

each decision
o MC/DC can be satisfied with N+1 test cases, making it attractive compromise b/w no. of required test

cases & thoroughness of the test

PATH TESTING
 Path adequacy criterion:

A test suite T for a program P satisfies the path adequacy criterion iff, for each path p of P there exists at
least one test case in T that causes the execution of p.
This is equivalent to stating that every path in the CFG model of prog p is exercised by a test case in T

 Path coverage:

The path coverage 𝐶𝑝𝑎𝑡 ℎ of T for P is the fraction of path of program P executed by at least one test case

in T

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 42

 𝐶𝑝𝑎𝑡 ℎ =
𝑛𝑜 .𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑝𝑎𝑡 ℎ𝑠

 𝑛𝑜 .𝑜𝑓 𝑝𝑎𝑡 ℎ𝑠

 Practical path coverage criteria

 The no. of paths in a program with loops is unbounded, so the previously defined criterion

cannot be satisfied for these programs. For program with loops, the denominator in the

computation of path coverage is infinite, thus the path coverage becomes zero.

 To obtain a practical criterion, it is necessary to partition the infinite set of path into a finite

number of classes and require only that representatives from each class be explored.

 Useful criteria can be obtained by

- Limiting the no. of paths to be covered i.e.(no. of traversals of loops)

- Limiting the length of the paths to be traversed

- Limiting the dependencies among selected paths

 Boundary interior criterion groups together paths that differ only in the sub-path they follow when

repeating the body of a loop.

 Fig below shows deriving a tree from CFG to derive sub-paths for boundary/interior testing

(a) Is the CFG of come C function

(b) Is a tree derived from (a) by following each path in the CFG up to the first repeated node. The set of

paths from the root of the tree to each leaf is the required set of sub-paths for boundary/interior

coverage.

Figure 5.4: Deriving a tree from a control flow graph to derive sub-paths for boundary/interior testing. Part (i) is the control flow graph
of the C function cgi decode, identical to Figure 14.1 but showing only node identifiers without source code. Part (ii) is a tree derived
from part (i) by following each path in the control flow graph up to the first repeated node. The set of paths from the root of the tree to
each leaf is the required set of sub-paths for boundary/ interior coverage.

 Limitations of boundary interior adequacy

If (a) { The sub-path through this control flow can include or
 S1; exclude each of the statements.
}

If (b) { Si, so that in total N branches result in 2𝑁 paths that must be
 S2; traversed
}
If (c) {
S3; choosing input data to force execution of one particular path
} may be very difficult, or even impossible if the conditions
 ... are not independent
If (X){

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 43

Sn;
}

 Loop boundary adequacy criterion: it is a variant of boundary/interior criterion that treats loop

boundaries similarly but is less stringent w.r.t. other differences among paths

A test suite T for a program P satisfies the loop boundary adequacy criterion, iff, for each loop l in P.
 In at least one execution, control reaches the loop, and then the loop control condition evaluated

to False at the first time it is evaluated.

 In at least one execution, control reaches the loop, and then the body of the loop is executed

exactly once before control leaves the loop.

 In at least one execution, the body of the loop is repeated more than once.

 Linear code sequence and a jump(LCSAJ) adequacy

 LCSAJ is defined as a body of code through which the flow of control may proceed sequentially

terminated by a jump in the control flow.

 𝑇𝐸𝑅1= statement coverage

 𝑇𝐸𝑅2= branch coverage

 𝑇𝐸𝑅𝑛+1= coverage of n consequtive LCSAJs

 Cyclomatic testing:

 Cyclomatic number is the number of independent paths in the CFG

o A path is representable as a bit vector, where each component of the vector represents

an edge.

o “Dependence” is ordinary linear dependence b/w (bit) vectors

 If e=number of edges,

 n=number of nodes,
 c=number of connected components of a graph,
then,
 cyclomatic number = e – n + c for any arbitrary graph
 e – n + 2 for a CFG

 Cyclomatic testing does not require that any particular basis set is covered. Rather it counts the

number of independent paths that have actually been covered, and the coverage criterion is

satisfied when this count reaches the cyclomatic complexity of the code under test.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 44

Figure 5.5: A C function for searching and dynamically rearranging a linked list, excerpted from a symbol
table package. Initialization of the back pointer is missing, causing a failure only if the search key is found in the
second position in the list.

Figure 5.6: The control flow graph of C function search with move-to-front feature.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 45

Figure 5.7: The boundary/interior sub-paths for C function search.

PROCEDURE CALL TESTING
 The criteria considered to this point measure coverage of control flow within individual procedures.
 They are not well suited to integration testing or system testing.
 Moreover, if unit testing has been effective, then faults that remain to be found in integration testing

will be primarily interface faults, and testing effort should focus on interfaces between units rather than
their internal details.

 In some programming languages (FORTRAN, for example), a single procedure may have multiple entry
points, and one would want to test invocation through each of the entry points.

 More common are procedures with multiple exit points.
 Exercising all the entry points of a procedure is not the same as exercising all the calls
 For example, procedure A may call procedure C from two distinct points, and procedure B may also call

procedure C. In this case, coverage of calls of C means exercising all three of the points of calls.
 Commonly available testing tools can measure coverage of entry and exit points.
 Coverage of calls requires exercising each statement in which the parser and scanner access the symbol

table, but this would almost certainly be satisfied by a set of test cases exercising each production in the
grammar accepted by the parser.

 In object-oriented programming, local state is manipulated by procedures called methods, and
systematic testing necessarily concerns sequences of method calls on the same object.

COMPARING STRUCTURAL TESTING CRITERIA

Figure 5.8: The subsumption relation among structural test adequacy criteria

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 46

 Power and cost of structural test adequacy criteria described earlier can be formally compared using
the subsumes relation.

 The relations among these criteria are illustrated in the above figure.
 They are divide into two broad categories

 Practical criteria
 Theoretical criteria

[Explain more looking at the diagram]

THE INFEASIBILITY PROBLEM
 Sometimes no set of test cases is capable of satisfying some test coverage criteria for a particular

program, because the criterion requires the execution of a program elements that can never be

executed

 Ex:

- Execution of statements that cannot be executed as a result of

o Defensive programming

o Code reuse

- Execution of conditions that cannot be satisfied as a result of interdependent conditions

- Paths that cannot be executed as a result of interdependent decisions.

 Large amount of “fossil” code may indicate serous maintainability problems, but some unreachable

code is common even in well designed well maintained systems.

 Solutions to the infeasibility problem

 Make allowances for it by setting a coverage goal less than 100%

Ex: 90% coverage of basic blocks, 10% allowance for infeasible blocks
 Require justification of each element left uncovered. This approach is taken in some quality

standards, like RTCA/DO-178B & EUROCAE ED-12B for MC/DC

 However, it is more expensive (because it requires manual inspection and understanding of each
element left uncovered) and is unlikely to be cost-effective for criteria that impose test obligations for
large numbers of infeasible paths.

 This problem, even more than the large number of test cases that may be required, leads us to conclude
that stringent path-oriented coverage criteria are seldom useful.

UNIT 5 QUESTION BANK
No. QUESTION YEAR MARKS
1 Explain the branch testing, with an example. June 10 4
2 Explain the following:

i)procedure call testing ii)path testing
June 10 8

3 Explain in detail, condition testing and the infeasibility problem associated with it. June 10 8
4 Describe the following with an example:

i)Statement testing ii)Branch testing
June 11 10

5 Explain the path testing for C-function for searching to nearly and dynamically re-
arranging a linked list. Also describe the control flow graph for the above C-
function.

June 11 10

6 What is structural testing? Explain statement testing and branch testing with
examples.

Dec 11 10

7 Distinguish between white box and black box testing categories. Dec 11 4
8 What is path testing? Draw a flow graph for the biggest of three numbers program

and calculate the cyclomatic complexity.
Dec 11 6

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 47

UNIT 7
TEST CASE SELECTION AND ADEQUACY,

TEST EXECUTION

OVERVIEW
 The key problem in software testing is selecting and evaluating test cases
 Ideally we should like an “adequate” test suite to be one that ensures correctness of the product.

Unfortunately, the goal is not attainable.
 The difficulty of proving that some set of test cases is adequate in this sense is equivalent to the

difficulty of proving that the program is correct. In other words, we could have “adequate” testing in
this sense only if we could establish correctness without any testing at all.

 So, in practice we settle for criteria that identify inadequacies in test suites.
 If no test in the test suite executes a particular program statement, we might similarly conclude that the

test suite is inadequate to guard against faults in that statement.

TEST SPECIFICATIONS AND CASES
 A Test Case Includes input, the expected output, pass/fail criteria and the environment in which the test

is being conducted. Here the term input means all the data that is required to make a test case.
 A Test Case specification is a requirement to be satisfied by one or more test cases.
 Specification-based testing uses the specification of the program as the point of reference for test input

data selection and adequacy.
 A test specification can be drawn from system, interface or program.
 The distinction between a test case and test specification is similar to the distinction between program

specification and program.
 Software Test cases derived from specifications of interface and programs are generally termed as glass

box or white box testing.

Test cases should uncover errors like:
 Comparison of different data types
 Incorrect logical operators are precedence
 Expectation of equality when precision error makes equality unlikely
 Incorrect comparison or variables
 Improper or non-existent loop termination.
 Failure to exit when divergent iteration is encountered
 Improperly modified loop variables.

A test specification drawn from system, program and module interface specification often describes program
inputs, but they can just as well specify any observable behavior that could appear in specifications.

Testing Terms
Test case
A test case is a set of inputs, execution conditions, and a pass/fail criterion.

Test case specification
A test case specification is a requirement to be satisfied by one or more actual test cases.

Test obligation

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 48

A test obligation is a partial test case specification, requiring some property deemed important to thorough
testing. We use the term obligation to distinguish the requirements imposed by a test adequacy criterion from
more complete test case specifications.

Test suite
A test suite is a set of test cases. Typically, a method for functional testing is concerned with creating a test
suite. A test suite for a program, system, or individual unit may be made up of several test suites for individual
modules, subsystems or features.

Test or test execution
 We use the term test or test execution to refer to the activity of executing test cases and evaluating their
results. When we refer to “a test”, we mean execution of a single test case, except where context makes it clear
that the reference is to execution of a whole test suite.

Adequacy criterion
A test adequacy criterion is a predicate that is true (satisfied) or false (not satisfied) of a {program, test suite}
pair. Usually a test adequacy criterion is expressed in the form of a rule for deriving a set of test obligations
from another artefact, such as a program or specification. The adequacy criterion is then satisfied if every test
obligation is satisfied by at least one test case in the suite.

ADEQUACY CRITERIA
 Adequacy criteria are the set of test obligations. We will use the term test obligation for test

specifications imposed by adequacy criteria, to distinguish them from test specifications that are
actually used to derive test cases.

 Where do test obligations come from?
 Functional (black box, specification based): from software specifications.
 Structural (white or glass box): from code.
 Model based: from model of system.
 Fault based: from hypothesized faults (common bugs).

 A test suite satisfies an adequacy criterion if
 All the tests succeed (pass).
 Every test obligation in the criterion is satisfied by at least one of the test cases in the test suite.
Example: A statement coverage adequacy criterion is satisfied by a particular test suite for a program if
each executable statement in the program is executed by at least one test case in the test suite.

 Satisfiability:
 Sometimes no test suite can satisfy criteria for a given program.
Example: if the program contains statements that can never be executed, then no test suite can satisfy
the statement coverage criterion.

 Coping with unsatisfiability:
 Approach 1: Exclude any unsatisfiable obligation from the criterion.
Example: modify statement coverage to require execution only of statements that can be executed.
But we can’t know for sure which are executable.
 Approach 2: Measure the extent to which a test suite approaches an adequacy criterion.

Example: If a test suite satisfies 85 of 100 obligations, we have reached 85% coverage.
o A coverage measure is the fraction of satisfied obligations.
o Coverage can be a useful indicator.

- Of progress toward a thorough test suite
o Coverage can also be a dangerous seduction

- Coverage is only a proxy for thoroughness or adequacy.
- It is easy to improve coverage without improving a test suite.
- The only measure that really matters is (cost) effectiveness.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 49

COMPARING CRITERIA
Empirical approach: would be based on extensive studies of the effectiveness of different approaches to
testing in industrial practice, including controlled studies to determine whether the relative effectiveness of
different testing method, depends on the kind of software being tested, the kind of organization in which the
software is developed & tested, and a myriad of other potential confounding factors.
Analytical approach: answers to questions of relative effectiveness would describe conditions under which
one adequacy criterion is guaranteed to be more effective than another, or describe in statistical terms their
relative effectiveness.

Analytic comparisons of the strength of test coverage depend on a precise definition of what it means for one
criterion to be “stronger” or “more effective” than another.
A test suite Ta that does not include all the test cases of another test suite Tb may fail revealing the potential
failure exposed by the test cases that are in Tb but not in Ta.
Thus, if we consider only the guarantees that a test suite provides, the only way for one test suite Ta to be
stronger than another suite Tb is to include all test cases of Tb plus additional ones

To compare criteria, then, we consider all the possible ways of satisfying the criteria.
 if every test suite that satisfies some criterion A is a superset of some test suite that satisfies criterion B, or
equivalently, every suite that satisfies A also satisfies B, then we can say that A “subsumes” B

The subsumes relation
A test adequacy, a subsumes test coverage criterion B iff, for every program P, every test set satisfying A wrt P also
satisfies B wrt P

Empirical studies of particular test adequacy criteria do suggest that there is value in pursuing stronger
criteria, particularly when the level of coverage attained is very high.
Adequacy criteria do not provide useful guarantees for fault detection, so comparing guarantees is not a
useful way to compare criteria

TEST EXECUTION – OVERVIEW
 Test execution must be sufficiently automated for frequent re-execution without little human

involvement
 The purpose of run-time support for testing is to enable frequent hands-free re-execution of a test suite.
 A large suite of test data may be generated automatically from a more compact and abstract set of test

case specifications

FROM TEST CASE SPECIFICATION TO TEST CASES
 Test design often yields test case specifications, rather than concrete data.
 Example 1: “A large positive number”, not 420023
 Example 2: “a sorted sequence, length>2”, not “alpha, beta, chi, omega”
 A rule of thumb is that, while test case design involves judgement and creativity, test case generation

should be a mechanical step.
 Automatic generation of concrete test cases from more abstract test case specifications reduce the

impact of small interface changes in the course of development.
 Corresponding changes to the test suite are still required with each program change, but changes to test

case specifications are likely to be smaller and more localized than changes to the concrete test cases.
 Instantiating test cases that satisfy several constraints may be simple if the constraints are independent,

but becomes more difficult to automate when multiple constraints apply to the same item.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 50

SCAFFOLDING
 Code developed to facilitate testing is called scaffolding, by analogy to the temporary structures erected

around a building during construction or maintenance.
 Scaffoldings may include
Test drivers (substituting for a main or calling population)
Test harness (substituting for parts of the deployment environment)
Stubs (substituting for functionally called or used by the software under test)

 The purpose of scaffolding is to provide controllability to execute test cases and observability to judge
the outcome of test execution.

 Sometimes scaffolding is required to simply make module executable, but even in incremental
development with immediate integration of each module, scaffolding for controllability and
observability may be required because the external interfaces of the system may not provide sufficient
control to drive the module under test through test cases, or sufficient observability of the effect.

 Example: consider an interactive program that is normally driven through a GUI. Assume that each
night the person goes through a fully automate and unattended cycle of integration compilation, and
test execution.

 It is necessary to perform some testing through the interactive interface, but it is neither necessary nor
efficient to execute all test cases that way. Small driver programs, independent of GUI can drive each
module through large test suites in a short time.

GENERIC VERSUS SPECIFIC SCAFFOLDING
How general should scaffolding be? To answer

 We could build a driver and stubs for each test case or at least factor out some common code of the
driver and test management (e.g., JUnit)

 ... or further factor out some common support code, to drive a large number of test cases from data... or
further, generate the data automatically from a more abstract model (e.g., network traffic model)

 Fully generic scaffolding may suffice for small numbers of hand-written test cases
 The simplest form of scaffolding is a driver program that runs a single, specific test case.
 It is worthwhile to write more generic test drivers that essentially interpret test case specifications.
 A large suite of automatically generated test cases and a smaller set of handwritten test cases can share

the same underlying generic test scaffolding
 Scaffolding to replace portions of the system is somewhat more demanding and again both generic and

application-specific approaches are possible
 A simplest stub – mock – can be generated automatically by analysis of the source code
 The balance of quality, scope and cost for a substantial piece of scaffolding software can be used in

several projects
 The balance is altered in favour of simplicity and quick construction for the many small pieces of

scaffolding that are typically produced during development to support unit and small-scale integration
testing

 A question of costs and re-use – Just as for other kinds of software

TEST ORACLES
 In practice, the pass/fail criterion is usually imperfect.
 A test oracle may apply a pass/fail criterion that reflects only a part of the actual program specification,

or is an approximation, and therefore passes some program executions it ought to fail
 Several partial test oracles may be more cost-effective than one that is more comprehensive
 A test oracle may also give false alarms, failing an execution that is ought to pass.
 False alarms in test execution are highly undesirable.
 The best oracle we can obtain is an oracle that detects deviations from expectation that may or may not

be actual failure.

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 51

Two types
 Comparison based oracle

Fig: a test harness with a comparison based test oracle processes test cases consisting of (program input,

predicted output) pairs.

o With a comparison based oracle , we need predicted output for each input
o Oracle compares actual to predicted output, and reports failure if they differ.
o It is best suited for small number of hand generated test cases example: for handwritten Junit

test cases.
o They are used mainly for small, simple test cases
o Expected outputs can also be produced for complex test cases and large test suites
o Capture-replay testing, a special case in which the predicted output or behavior is preserved

from an earlier execution
o Often possible to judge output or behavior without predicting it

 Partial oracle

o Oracles that check results without references to predicted output are often partial, in the sense
that they can detect some violations of the actual specification but not others.

o They check necessary but not sufficient conditions for correctness.
o A cheap partial oracle that can be used for a large number of test cases is often combined with a

more expensive comparison-based oracle that can be used with a smaller set of test cases for
which predicted output has been obtained

o Specifications are often incomplete
o Automatic derivations of test oracles are impossible

SELF-CHECKS AS ORACLES
 An oracle can also be written as self checks

-Often possible to judge correctness without predicting results.
 Typically these self checks are in the form of assertions, but designed to be checked during execution.
 It is generally considered good design practice to make assertions and self checks to be free of side

effects on program state.
 Self checks in the form of assertions embedded in program code are useful primarily for checking

module and subsystem-level specification rather than all program behaviour.
 Devising the program assertions that correspond in a natural way to specifications poses two main

challenges:
 Bridging the gap between concrete execution values and abstractions used in specification
 Dealing in a reasonable way with quantification over collection of values

RNSIT SOFTWARE TESTING NOTES

Prepared By: DIVYA K [1RN09IS016] & NAMRATHA R [1RN09IS028] Page 52

 Structural invariants are good candidates for self checks implemented as assertions
 They pertain directly to the concrete data structure implementation
 It is sometimes straight-forward to translate quantification in a specification statement into iteration in

a program assertion
 A run time assertion system must manage ghost variables
 They must retain “before” values
 They must ensure that they have no side effects outside assertion checking
 Advantages:

-Usable with large, automatically generated test suites.
 Limits:

-often it is only a partial check.
-recognizes many or most failures, but not all.

CAPTURE AND REPLAY
 Sometimes it is difficult to either devise a precise description of expected behaviour or adequately

characterize correct behaviour for effective self checks.
Example: even if we separate testing program functionally from GUI, some testing of the GUI is
required.

 If one cannot completely avoid human involvement test case execution, one can at least avoid
unnecessary repetition of this cost and opportunity for error.

 The principle is simple:
The first time such a test case is executed, the oracle function is carried out by a human, and the
interaction sequence is captured. Provided the execution was judged (by human tester) to be correct,
the captured log now forms an (input, predicted output) pair for subsequent automated testing.

 The savings from automated retesting with a captured log depends on how many build-and-test cycles
we can continue to use it, before it is invalidated by some change to the program.

 Mapping from concrete state to an abstract model of interacting sequences is some time possible but is
generally quite limited.

No. QUESTION YEAR MARKS

1. Explain the following:
i)Test Case ii)Test case Specification iii)Test Suite iv)Adequacy
Criteria.

June 10 4

2. Explain in detail, the scaffolding and test oracles, with reference to test
execution.

June 10 8

3. Discuss: i)Test case specification to test cases ii)capture and replay. June 10 8

4. Explain the adequacy criteria. June 11 8

5. Describe the test oracles with a neat diagram. June 11 8

6. What is scaffolding? Explain. June 11 4

7. Define the following testing terms:
i)Test case ii)Test case specification iii)Test obligation iv)Test suite
v)Smoke testing.

Dec 11 10

8. What is scaffolding? Distinguish between generic and specific
scaffolding. Briefly explain the differences.

Dec 11 10

