USN		i										CS82
-----	--	---	--	--	--	--	--	--	--	--	--	------

Eighth Semester B.E. Degree Examination, Dec. 07 / Jan. 08

Advanced Computer Architecture

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- a. Mention the two categories of parallel computers and explain them with their architecture. 1 (10 Marks)
 - b. Explain the different types of data dependence with an example for each.

(10 Marks)

2 Trace out the following program to detect parallelism using Bernstein's conditions.

 $P_1 : C = D \times E$

 $P_2 : M = G + C$

 $P_3 : A = B + C$

 $P_4 : C = L + M$

 $P_5: F = G \div E$

Assume that each step requires 1 step to execute and 2 adders are available.

Compare between sequential and parallel execution of the above program.

(07 Marks)

b. Define the following terms:

i) Grain packing ii) Coarse grain and iii) Fine grain.

(06 Marks)

c. Explain how grain packing can be done to compute the sum of the 4 elements in the resulting product matrix $C = A \times B$ where matrices A and B are of order 2×2 .

(07 Marks)

a. Discuss and compare the characteristics of CISC and RISC architectures. 3

(10 Marks)

b. Discuss and compare the following:

(10 Marks)

- i) Base scalar processing. ii) Super scalar processing and iii) Pipelining technique.
- 4 a. With respect to shared memory organization, explain the memory interleaving technique. (10 Marks)

- b. Explain set associative cache organization and discuss on its design trade offs. (10 Marks)
- a. For the non-linear pipeline having the reservation table shown below, find the following: 5 i) Greedy cycle ii) Latency cycle iii) Minimum average latency cycle.
 - iv) State Transition Diagram.

(10 Marks)

	1	2	3	4	5	6	7	8
S_1	X					X		X
S_2		X		X				ļ
S_3			X		X		X	

b. With respect to mechanisms for instruction pipelining, explain internal data forwarding and possible hazard between read and write operations. (10 Marks)

a. Draw an 8×8 Omega network using 2×2 switches. From your network show the followin simultaneous connections between input and output. (10 Marks

I/P	0.	4	3	6	7.	5	2	1
O/P :	6	7	0	4	3	1	2	5

Is the network blocked or not? If it is blocked, how can you resolve the conflicts?

- b. What do you mean by cache coherence problem? Explain the role of snoopy bus protocol related to this problem. (10 Marks
- 7 a. With respect to parallel programs, explain parallelization process and parallelization computation versus data. (08 Marks
 - b. Explain various parameters used under scalable multiprocessors for scalability.

(08 Marks

c. Discuss any one case study for parallel application.

(04 Marks

- **8** Write short notes on:
 - a. VLIW architecture.

(07 Marks

b. Arithmetic pipeline design.

(07 Marks

c. Control flow versus data flow.

(06 Marks
