Software engg | Supra.S

3¢ Unit

6 Software requirements
Contents
6.1 Functional and non-functional requirements
6.2 User requirements
6.3 System requirements
6.4 Interface specification
6.5 The software requirements document
Requirement Engineering?

The requirements for a system are the descriptions of the services provided by the

system and its operational constraints.

The process of finding out, analysing, documenting and checking these services

and constraints is called requirement engineering (RE).
Requirement?

The requirements for a system are the descriptions of the services provided by the
system and its operational constraints. It may range from a high level abstract
statement of a service of a system constraint to a detailed mathematical functional

specification.

Software engg i Supra.S

Types of requirement

1. User requirements are statements, in a natural language plus diagrams, of what
services the system is expected to provide and the constraints under which it must

operate.

2. System requirements set out the system’s functions, services and operational
constraints in detail. The system requirements document (sometimes called a
functiona specification) should be precise. It should define exactly what is to be
implemented. It may be part of the contract between the system buyer and the

software devel opers.
Figure 6.1 illustrates the distinction between user and system requirements.

From Figure 6.1 the user requirement is more abstract, and the system
requirements add detail, explaining the services and functions that should be
provided by the system to be devel oped.

Figure 6.1 User and User requirement definition
system requirements

1. LIBSYS shall keep track of all dats required by copynight licensing
agencies in the UK and elsewhere.

System requirements specification

1.1 On making a request for 2 dacument from LIBSYS, the requestor shall
Note: write any be presented wath a torm that recards details of the user and the request
three system made.
1.2 LIBSYS request forms shall be stored on the system for five years from
the date of the requesl.
1.3 All LIBSYS request forms must be indexed by user, by the name of the
material requested and by the supplier of the request.
1.4 LIBSYS shall maintain a log of all requests that have been made ta the
system.
1.5 For material where authors' lending rights apply, [can details shall be
sent monthly to copyright licensing agencies that have registered
witly LIBSYS,

requirements

Software engg i Supra.S

Figure 6.2 shows the types of readers for the user and system requirements

1. The readers of the system requirements need to know more precisely
what the system will do because they are concerned with how it will
support the business processes or because they are involved in the system
Implementation.

2. The readers of the user requirements are not usually concerned with how
the system will be implemented and may be managers who are not
interested in the detailed facilities of the system.

Figure 6.2 Readers of

different types of

specification User
requirements

Client managers
System end-users
- Client engineers
Contractor managers
System architects

System end-users
System Client engineers

requirements System architects

Software developers

6.1 Functional and non-functional requirements

Software system requirements are often classified as functional requirements,

nonfunctional requirements or domain requirements:

1. Functional requirements These are statements of services the system should
provide, how the system should react to particular inputs and how the system

should behave in particular situations. In some cases, the functional requirements

3

Software engg | Supra.S

may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions
offered by the system. They include timing constraints, constraints on the

development process and standards.

Non-functional requirements often apply to the system as a whole. They do
not usually just apply to individual system features or services.

3. Domain requirements These are requirements that come from the application

domain of the system and that reflect characteristics and constraints of that domain.
6.1.1 Functional requirements
1. The functional requirements for a system describe what the system should do.

2. These requirements depend on the type of software being developed, the
expected users of the software and the general approach taken by the organisation

when writing requirements.

3. Functional system requirements describe the system function in detail, its inputs

and outputs, exceptions, and so on.
4. Functional requirements Example

Here are examples of functional requirements for a university library system

called LIBSYS, used by students and faculty to order books and documents from

other libraries.

a. The user shall be able to search either al of the initial set of databases or
select a subset from it.

Software engg i Supra.S

b. The system shall provide appropriate viewers for the user to read

documents in the document store.

c. Every order shall be alocated a unique identifier (ORDER_ID), which the

user shall be able to copy to the account’s permanent storage area.

-The LIBSY S system is a single interface to a range of article databases. It
allows users to download copies of published articles in magazines, newspapers

and scientific journals.

-Consider the second example requirement for the library system that refers
to ‘appropriate viewers’ provided by the system. The library system can deliver

documentsin arange of formats.

5. In principle, the functiona requirements specification of a system should be

both complete and consistent.

Completeness means that all services required by the user should be defined.
Consistency means that requirements should not have contradictory
definitions.

6.1.2 Non-functional requirements

1. These are constraints on the services or functions offered by the system. They

include timing constraints, constraints on the development process and standards.

2. Failing to meet a non-functional requirement can mean that the whole system is
unusable.

For example, if an aircraft system does not meet its reliability requirements,
it will not be certified as safe for operation; if a rea-time control system fails to

meet its performance requirements, the control functions will not operate correctly.

5

Software engg i Supra.S

3. Non-functional requirements arise through user needs, because of budget
constraints, because of organisational policies, because of the need for
interoperability with other software or hardware systems, or because of external

factors such as safety regulations or privacy legidation.

Figure 6.3 is a classification of non-functional requirements.

| Non-functional
requrements

Product Organisational Extemal
requirements requirements requirements
Efficiency Relability Portability Intemperability Ethical
TequITEments requirements requirements requirernents requirements
Usability Delivery Implementation || | Standards Legislative
requiremants requirements requirements requirements requirements
Performance Space Prvacy | Safety
requirments requiraments reguirEmants requiremeants
Figure 6.3 Types of
non-functional
requirements

4. The types of non-functional requirements are:

a. Product requirements These requirements specify product behaviour.

Software engg i Supra.S

Examples : performance requirements on how fast the system must execute
and how much memory it requires; reliability requirements that set out the

acceptable failure rate; portability requirements; and usability requirements.

b. Organisational requirements These requirements are derived from

policies and procedures in the customer’s and developer’s organisation.

Examples process standards that must be wused; implementation

requirements such as the programming language or design method used;

c. External requirements These requirements are derived from factors
external to the system and its development process.

Examples interoperability requirements that define how the system interacts

with systems in other organizations.
5-Non-functional Requirement Example

Figure 6.4 shows examples of product, organisational and external requirements
taken from the library system LIBSY S

Figure 6.4 Examples

of non-functional Product requirement
requirements 8.1 The user interface for LIBSYS shall be implemented as simple HTML without
frames or Lava applets.

Organisational requirement
832 The system development process and deliverable documents shall conform to
the process and deliverables defined in XYZCo-SP-STAN-95,

External requirement
10.6 The system shall not disclose any personal information about system users
apart from their name and library reference number ta the library staff who se the

system.

Software engg i Supra.S

6-Goals and verifiable Requirements —
A common problem with non-functional requirementsis that they can be difficult

to verify. Users or customers intention is ease of use, the ability of the system to

recover from fallure.

Figure 6.5 System
goals and verfiable system goal
Iequiements The system should be easy fo use by expenenced contrallers and should be

organised in such & way that user emors are minimised.

A verifiable non-functional requirement

Experienced controllers shal be able to use all the system functions after a tofal of
two hours' fraining, After this raining, the average number of emors made by
experienced users shall nat exceed two per day.

-Figure 6.6 shows a number of possible metrics that can be used to specify
non functional system properties, to measure whether or not the system has met its

non-functional requirements.

Software engg i Supra.S

Al Pt Mewe |
o 5pecih!ring Property Measure
non-functional Speed Processed transactions/second

requirements Uset/Event response time
Screen fefresh time

Size K bytes
Number of RAM chips

Ease of use Training fime
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portabilty Percentage of farget-dependent statements
Number of target systems

6.1.3 Domain requirements

1. Domain requirements are derived from the application domain of the system
rather than from the specific needs of system users. They usualy include
specialised domain terminology or reference to domain concepts.

2. Domain requirements are important because they often reflect fundamentals of
the application domain. If these requirements are not satisfied, it may be
Impossible to make the system work satisfactorily.

Software engg | Supra.S

3. Example:
The LIBSY S system includes a number of domain requirements:

a. There shall be a standard user interface to all databases that shall be based
on the Z39.50 standard.
b. Because of copyright restrictions, some documents must be deleted

immediately on arrival.

-The first requirement is a design constraint. It specifies that the user interface
to the database must be implemented according to a specific library standard.

-The second requirement has been introduced because of copyright laws that
apply to material used in libraries. It specifies that the system must include an
automatic delete-on-print facility for some classes of document.

4. Major problems

a. They are written in the language of the application domain and it is often
difficult for software engineers to understand them.

b. Domain experts may leave information out of a requirement simply because
It is so obvious to them. However, it may not be obvious to the developers of the

system, and they may therefore implement the requirement in the wrong way.

6.2 User requirements

1. The user requirements for a system should describe the functional and
nonfunctional requirements so that they are understandable by system users
without detailed technical knowledge (you should not use software jargon,
structured notations or formal notations, or describe the requirement by describing
the system implementation. You should write user requirements in simple

language, with simple tables and forms and intuitive diagrams).

10

Software engg i Supra.S

2. They should only specify the external behavior of the system and should avoid,

asfar as possible, system design characteristics.

However, various problems can arise when requirements are written in natural
language sentences in a text document:

a. Lack of clarity It is sometimes difficult to use language in a precise and
unambiguous way without making the document wordy and difficult to read.

b.Requirements confusion Functional requirements, non-functional
requirements, system goals and design information may not be clearly
distinguished.

c. Requirements amalgamation together as a single requirement.

3. Asanillustration of some of these problems, consider one of the requirements
for the library shown in Figure 6.8.

Figure 6.8 A user

requirement for an 45 LIBSYS shall provide a financial accounting system that maintains records of al
accounting system payments made by users of the system. System managers may configure this system
in LIBSYS so hat reqular users may receive discounted rates.

A). This requirement includes both conceptual and detailed information.
the conceptual- that there should be an accounting system as an inherent
part of LIBSYS.
the detail- that the accounting system should support discounts for regular
LIBSY S users.

11

Software engg i Supra.S

B). It is necessary to separate user requirements from more detailed system
requirements in a requirements document. Otherwise, non-technical readers of the

user requirements Get confused.

C). The user requirement should simply focus on the key facilities to be
provided. Asin Figure 6.10 to focus only on the essentia system features.

Fgure 610
A definition of an 16.1 Grid facilities

editor grid facil
i o The editor shall provide a grid facility where a matrix of horizontal and vertial
lines provide a background to the editor window. This grid shall be a passive gnd
where the alignment of entities is the user’s responsibility:

Rationale: A grid helps the user to create a tidy diagram with well-spaced
entities. Although an active grid, where entities ‘snap-to’ grid lines can be
useful, the positioning Is imprecise. The user is the best person to decide
where entities should be positioned.

Speatfication; ECLIPSE/WS/ Tools/DE/FS Section 5.6
Source: Ray Wilson, Glasgow Office

4. Guidelines to minimise misunderstandings when writing user requirements,

a). Invent a standard format and ensure that all requirement definitions adhere
to that format.
b) Use language consistently. distinguish between mandatory and desirable
requirements.
Mandatory requirements are requirements that the system must support and
are usually written using “shall’.
Desirable requirements are not essential and are written using ‘should’.
c) Usetext highlighting (bold, italic or colour) to pick out key parts of the
requirement. Avoid, as far as possible, the use of computer jargon.

12

Software engg i Supra.S

6.3 System requirements

1. System requirements are expanded versions of the user requirements that
are used by software engineers as the starting point for the system design. Explain
how the user requirements should be provided by the system.

2. ldedly, the system requirements should simply describe the externa
behavior of the system and its operational constraints. They should not be
concerned with how the system should be designed or implemented. But it is not
possible in practice.

a) Intial architecture of the system have to be designed to structure the
requirements specification.

b) systems must interoperate with other existing systems. These constrain the
design, and these constraints impose requirements on the new system.

c) The use of a specific architecture to satisfy non-functiona requirements
may be necessary.

3. Natural language is often used to write system requirements specifications
as well as user requirements. However , natural language specifications can be

confusing and hard to understand:

a) Natural language understanding relies on the specification readers and
writers using the same words for the same concept. This leads to
mi sunderstandings because of the ambiguity of natural language.

b) A natural language requirements specification is overflexible. We can say
the same thing in completely different ways. It is up to the reader to find out
when requirements are the same and when they are distinct.

c) Thereisno easy way to modularise natural language requirements. It may be

difficult to find all related requirements.

13

Software engg i Supra.S

It is essential to write user requirements in a language that non-specialists can
understand.

Therefore consider system requirements in more specialised notations (Figure
6.11). These include stylised, structured natural language, graphical notations.

Figure 6.11 Notation Description

NMotations for

requirements Structured natural This approach depenids on defining standard forms or
specification language templates to express the requirements specification.

Design desciption This approach uses a language like & programming language

languages but with mare abstract features to speafy the requirements by
defining an operational model of the system. This approach is
not now widely used although it can be useful for interface

specifications.

Graphical notations A graphical language, supplemented by text annotations is
used to define the functional requirements for the system. An
early example of such a graphical language was SADT (Ross,
1977) (Schoman and Ross, 1977). Now, use-case descriptions
(Jacobsen, et al, 1993) and sequence diagrams are commonly
used (Stevens and Pooley, 1999),

Mathematical These are notations based on mathematical concepts such as

specifications finite-state machines or sets. These unambiguous specifications
reduce the arguments between customer and contractor about
system functionality. However, most customers don't
understand formal specifications and are reluctant to accept it
a5 a system contract.

6.3.1 Structur ed language specifications

1. Structured natural language is a way of writing system requirements
where the freedom of the requirements writer is limited and all requirements are
written in a standard way.

2. The advantage of this approach is that it maintains most of the
expressiveness and understandability of natural language but ensures that some

degree of uniformity isimposed on the specification.

14

Software engg i Supra.S

Form Based specification

1. Specid-purpose forms were designed to describe the input, output and
functions of an software system. The system requirements were specified
using these forms,

2. To use a form-based approach to specify system requirements, define one
or more standard forms or templates to express the requirements.

An example of such a form-based specification is shown in Figure 6.12. The
insulin pump bases its computations of the user’s insulin requirement on the rate of

change of blood sugar levels.

oSl i Punp Cotl sotwaespsni2]
requirements Insulin Pump/Control Software/SRS/3.3.2

specification using a

shndaid Satin Compute insulin dose: Safe sugar level

Computes the dose of insulin to be delivered when the current
measured sugar level is in the safe zone between 3 and 7 units

Current sugar reading (12}, the previous two readings (10 and r1)
Current sugar reading from sensor. Other readings from memaory.
CompDose-the dose in insulin to be delivered

SHINY

Main control loop

Action: CompDose is zero if the sugar level is stable or falling or if the level is
increasing but the rate of increase is decreasing, If the level is increasing and the
rate of increase is increasing, then CompDose is computed by dividing the difference
between the cument sugar level and the previous level by 4 and rounding the result
If the result, is rounded to zero then CompDose is set to the minimum dose that
can be delivered.

Requires Two previous readings so that the rate of change of sugar level can
be computed.

Pre-condition The insulin reservoir contains at least the maximum allowed single
dose of insulin.

Post-condition 10 is replaced by r1 then r1 is replaced by 12
Side effects None

15

Software engg i Supra.S

When a standard form is used for specifying functional requirements, the following
information should be included:
1. Description of the function or entity being specified
2. Description of itsinputs and where these come from
3. Description of its outputs and where these go to
4. Indication of what other entities are used (the requires part)
5. Description of the action to be taken
6. If a functional approach is used, a pre-condition setting out what must be true
before the function is called and a post-condition specifying what is true after the
functionis called
7. Description of the side effects (if any) of the operation.
3. Advatages
1.Using formatted specifications removes some of the problems of natural
language specification.
2.Variability in the specification is reduced and requirements are organised more
effectively.
4. Disadvantages

1. It isdifficult to write requirements in an unambiguous way, particularly when

complex computations are required.
2. Things cannot be specified clearly.

Tabular specification

1. Tables are particularly useful when there are a number of possible
dternative situations and need to describe the actions to be taken for each

of these.

16

Software engg i Supra.S

2. Graphical models are most useful when you need to show how state
changes or where you need to describe a sequence of actions.

3. Figure 6.13 is a revised description of the computation of the insulin
dose.

4. Figure 6.14 illustrates the sequence of actions when a user wishes to
withdraw cash from an automated teller machine (ATM).

In Figure 6.14, there are three basi ¢ sub-sequences.

a) Validate card The user’s card is validated by checking the card number and
user’s PIN.

b)Handle request The user’s request is handled by the system. For a
withdrawal, the database must be queried to check the user’s balance and to debit
the amount withdrawn. Notice the exception here if the requestor does not have
enough money in their account.

¢). Complete transaction The user’s card is returned and, when it is removed,
the cash and recelipt are delivered.

17

Software engg i Supra.S

Figure 6.13 Tabular
specification of
computation

Figure 6.14
Sequence diagram of
ATM withdrawal

Conditian
Sugar level falling (12 < r1)
Sugar level stable (12 =11)

Sugar level increasing and rate of increase
deceasing ((r2 — 11) < (r] — r0))

Sugar level increasing and rate of increase
stable or increasing, ((r2 - r1) > (11 - 10))

;% A

Cand

v

Card number

Action
CompDose =0
CompDose =0

CompDose =10

CompDose = round ({r2 - r1)/4)
Hi rounded result = 0 then
CompCiose = MinimumDose

Database

Card OK

PIN request

Pk

Option menu

<<exreption>
invalid card

I Withdraw request - Balance request

SNl P === Valifate card

Balance

Amount reguest B

Amount

P

I Dbt {amount)

<prtEphion Debit response

insufficient cash B

-

— Card

Card removed

Cash

Cash removed
Receipt

18

Completa
transaction

Software engg i Supra.S

6.4 I nterface specification

Almost all software systems must operate with existing systems that have already
been implemented and installed in an environment. If the new system and the
existing systems must work together, the interfaces of existing systems have to be
precisely specified.

There are three types of interface that may have to be defined:

1. Procedural interfaces where existing programs or sub-systems offer a range of
services that are accessed by calling interface procedures. These interfaces are
sometimes called Application Programming Interfaces (APIS).

2. Data structures that are passed from one sub-system to another. Graphical data
models are the best notations for this type of description.

Example: program descriptionsin Java or C++ can be generated automatically
from these descriptions.

3.Representations of data (such asthe ordering of bits) that have been established
for an existing sub-system. These interfaces are most common in embedded, real -
time system.

Figure 6.15 is an example of a procedural interface definition defined in Java. In
this case, the interface is the procedural interface offered by a print server. This
manages a queue of requests to print files on different printers. Users may
examine the queue associated with a printer and may remove their print jobs from

that queue. They may also switch jobs from one printer to another.

Figure 6.15 The lava

PDL description ol 4 interface Printserver |

print server interface
/f defines an abswract printer Server

// requires: interface Printer. interface PrintDoc
S provides: initialize, print, displayPrintQueue, cancelPrintlob, switchPrinter

wnid initialize { Printer p) ;

void print { Pranter p, PrintDoc d) ;

void displayPrintQueue (Printer p) ;

void cancelPrintlob (Printer p, PrnntDoc d) ;

wnid switchPrinter (Printer pl, Printer p7, PrintDoc d) ;
| //PrintScrecr

19

Software engg i Supra.S

6.5 The softwar e requirements document

1. The software requirements document (sometimes called the software
requirements specification or SRS) is the official statement of what the system
developers should implement. It should include both the user requirements for a
system and a detailed specification of the system requirements.

2. The requirements document has a diverse set of users, ranging from the
senior management of the organisation that is paying for the system to the
engineers responsible for developing the software.

Figure 6.16, illustrates possible users of the document and how they use it.

E‘ E:;?Ji?élwfeg::m o Spedtfy the requrrements and
7 S0 System read ther_n to check that they
costamers — meet their needs, Customers
specify changes to the
requirements.
Use the requirements
Managers i | document to plan a bid for
the system and to plan the
system development process.
System Use the requirements to
engineers ™ understand what system is
to be developed.
System test Use the requirements 1o
engineers ™ develop validation tests for
the system.
system Use the requirements 1o
Fantenancs »| Understand the system and
engineers the ralationships between its
parts.

20

Software engg i Supra.S

3. Thelevel of detall that you should include in a requirements document depends
on the type of system that is being developed and the devel opment process used.
4. |EEE suggests standard for requirements documents:
1. Introduction
1.1 Purpose of the requirements document
1.2 Scope of the product
1.3 Definitions, acronyms and abbreviations
1.4 References
1.5 Overview of the remainder of the document
2. General description
2.1 Product perspective
2.2 Product functions
2.3 User characteristics
2.4 General constraints
2.5 Assumptions and dependencies
3. Specific requirements cover functional, non-functional and interface
requirements. Thisis obviously the most substantial part of the document but
because of the wide variability in organisational practice, it is not appropriate
to define a standard structure for this section. The requirements may
document external interfaces, describe system functionality and performance,
specify logical database requirements, design constraints, emergent system
properties and quality characteristics.
4. Appendices
5. Index
By contrast, when the software is part of a large system engineering project that

includes interacting hardware and software systems, it is often essential to define

21

Software engg i Supra.S

the requirements to a fine level of detail. This means that the requirements
documents are likely to be very long and should include most if not al of the

chapters shown in Figure 6.17.

Figure 617 .
TR ahiE Chapter Description
EL:UTE;:L'ET"E"E Preface This should define the expected readership of the document

and describe its version history, including a rationale for the
creation of a new version and a summary of the changes
made in each version,

Introduction This should describe the need for the system. It should briefly
describe its functions and explain how it will work with other
systems. It should describe how the system fits inta the
owerall business or strategic objectives of the organisation
commissioning the software.

Glossary This should define the technical terms used in the document.
You should not make assumptions about the expenence or
expertise of the reader.

User requirements The sewvices provided for the user and the non-functional
definition system requirements should be desoibed in this section. This
description may use natural language, diagrams or other
notations that are understandable by customers. Product
and process standards which must be followed should be
specified.

System architecture This chapter should present a high-evel overview of the
anticipated system architecture showing the distribution of
functions across system modules. Architectural components
that are reused should be highlighted.

System requirements This should describe the fundional and non-functional

specification requirements in more detail. If necessary, further detail
may also be added to the non-functional requirements,
e.g. interfaces to other systems may be defined

System models This should set out one or more system models showing
the relationships between the system components and the
systemn and its environment These might be object models,
data-flow models and semantic data models.

System evolution This should describe the fundamental assumptions on which
the system is based and anticipated changes due to hardware
evoiution, changing user needs, etc

Appendices These should provide detailed, specific information which
is related to the application which is being developed.
Examples of appendices that may be induded are hardware
and database descriptions. Hardware requirements define the
minimal and optimal configurations for the system. Database
requirements define the logical organisation of the data used
by the system and the relationships between data.

Index Several indexes to the document may be included. As well
as & normal alphabetic index, there may be an index of
diagrams, an index of functions, etc

e ————
22

Software engg | Supra.S

2" chapter
/.Requirements engineering processes

Contents

7.1 Feasibility studies

7.2 Requirements éicitation and analysis
7.3 Requirements validation

7.4 Requirements management

1. The godl of the requirements engineering process is to create and maintain
a system requirements document.

2. The overall process includes four high-level requirements engineering
sub-processes.

a. These are concerned with assessing whether the system is
useful to the business (feasibility study);

b. discovering requirements (elicitation and analysis);

c. converting these requirements into some standard form
(specification);

d. checking that the requirements actually define the system that
the customer wants (validation).

3. Figure 7.1 illustrates the relationship between these activities. It also
shows the documents produced at each stage of the requirements engineering
process

4. Figure 7.2 presents the process as a three-stage activity where the

activities are organised as an iterative process around a spiral.

23

Software engg i Supra.S

a) The amount of time and effort devoted to each activity in an
iteration depends on the stage of the overall process and the
type of system being devel oped.

b) Early in the process, most effort will be spent on understanding
high-level business and non-functional requirements and the
user requirements.

c) Later in the process, in the outer rings of the spiral, more effort

will be devoted to system requirements engineering and system

modelling.
Figure 7.1 The iy I Requirements \
requirements : FE:;'E'W :'r:.. elictation and :,.._
Engineering process MY L analyss o —
N { Requirements
l ™\ specfication ;lq_'
' e ——
‘ Feasibility | | | { Requirements \
report ‘ T\ validation
!
System
models |
User and system
requirements
¥

—* Requirements
o document

24

Software engg | Supra.S

Figure 7.2 Spiral

model of SYSIEM rEquUEMEnts Requirements
\ specification and necihication
requirements modeling i /
ENGINEETINE : ‘
PIOCESSES User requirements
gpeciicalion

Business regquirerments
pecitication

Siedlerm i
raquiramants User I'Eﬂt!;;glhl}'
elicitation raquiements ey
elicitatian
Fliﬂuryplng
H'EL]UII"EI'I'IEI'ITE =
e / Revies Reguitermiests
= vafidatinn
Sysbem requiremaents
document

7.1 Feasibility studies
For al new systems, the requirements engineering process should start with a
feasibility study.

1. The input to the feasibility study is a set of preliminary business
requirements, an outline description of the system and how the system is
Intended to support business processes.

2. The results of the feasibility study should be a report that recommends
whether or not it is worth carrying on with the requirements engineering and

system development process.

25

Software engg i Supra.S

3. A feasibility study is ashort, focused study that aims to answer a number of
guestions:

a. Does the system contribute to the overall objectives of the organisation?

b. Can the system be implemented using current technology and within given cost
and schedul e constraints?

c. Can the system be integrated with other systems which are already in place?

4. Carrying out a feasibility study involves information assessment, information
collection and report writing.

-The information assessment phase identifies the information that is required to
answer the three questions set out above.

-Once the information has been identified, tak with information sources to

discover the answers to these questions

Some exampl es of possible questions that may be put are:

1. How would the organisation cope if this system were not implemented?

2. What are the problems with current processes and how would a new system

help aleviate these problems?

3. What direct contribution will the system make to the business objectives and
requirements?

4. Can information be transferred to and from other organisational systems?

5. Does the system require technology that has not previously been used in the
organisation?

6.What must be supported by the system and what need not be supported?

26

Software engg i Supra.S

5. Once the information is ready, write the feasibility study report. In feasibility
report make a recommendation about whether or not the system development
should continue,may propose changes to the scope, budget and schedule of the
system and suggest further high-level requirements for the system.

7.2 Requirements elicitation and analysis

1. In this activity, software engineers work with customers and system end-users to
find out about the application domain, what services the system should provide, the
required performance of the system, hardware constraints, and so on.

Requirements elicitation and analysis may involve a variety of people in an
organisation.

2. The term stakeholder is used to refer to any person or group who will be
affected by the system, directly or indirectly.

3. Stakeholders include end-users who interact with the system and everyone else
In an organisation that may be affected by its installation.

Eliciting and understanding stakeholder requirements is difficult for severa
reasons:

a). Stakeholders often don’t know what they want from the computer system
except in the most general terms. They may find it difficult to articulate what they
want the system to do or make unrealistic demands because they are unaware of
the cost of their requests.

b). Stakeholders naturally express requirements in their own terms and with
implicit knowledge of their own work. Requirements engineers, without

experience in the customer’s domain, must understand these requirements.

27

Software engg i Supra.S

c¢) Different stakeholders have different requirements, which they may express in
different ways. Requirements engineers have to consider all potential sources of
requirements and discover commonalities and conflict.

d). Political factors may influence the requirements of the system. For example,
managers may demand specific system requirements that will increase their
influence in the organisation.

€). The economic and business environment in which the analysis takes place is
dynamic. It inevitably changes during the analysis process. Hence the importance
of particular requirements may change. New requirements may emerge

From new stakeholders who were not originally consulted.

4. A very general process model of the elicitation and analysis processis shown in
Figure 7.3.

Figure 7.3 The

requirements
alicitation and
analysis process

Hequirements Hequirsments

classification and pricrtization and
nrganisatinn negntiatinn
Requirements Requiraments
discovery documentation

28

Software engg | Supra.S

5. The process activities are:

A). Requirements discovery Thisis the process of interacting with stakeholdersin
the system to collect their requirements. Domain requirements from stakeholders
and documentation are also discovered during this activity.

B) Requirements classification and organisation This activity takes the
unstructured collection of requirements, groups related requirements and organises
them into coherent clusters.

C) Requirements prioritisation and negotiation Inevitably, where multiple
stakeholders are involved, requirements will conflict. This activity is concerned
with prioritising requirements, and finding and resolving requirements conflicts
through negotiation.

D). Requirements documentation The requirements are documented and input into
the next round of the spiral. Formal or informal requirements documents may be
produced.

Figure 7.3 shows that requirements elicitation and analysis is an iterative process
with continual feedback from each activity to other activities. The process cycle
Starts with requirements discovery and ends with requirements documentation.
The analyst’s understanding of the requirements improves with each round of the
cycle.

7.2.1 Requirements discovery

1. Requirements discovery is the process of gathering information about the
proposed and existing systems and distilling the user and system requirements
from this information.

2. Sources of information during the requirements discovery phase include

documentation, system stakeholders and specifications of similar systems.

29

Software engg | Supra.S

3. For example,
system stakeholders for abank ATM include:
1. Current bank customers
2. Representatives from other banks who have reciprocal agreements that
allow each other’s ATMs to be used
3. Managers of bank branches who obtain management information from
the system
4. Counter staff at bank branches who are involved in the day-to-day
running of the system
5. Database administrators who are responsible for integrating the system
with the bank’s customer database
6. Bank security managers who must ensure that the system will not pose a
security hazard
7. The bank’s marketing department who are likely be interested in using the
sys-tem as a means of marketing the bank
8. Hardware and software maintenance engineers who are responsible for
maintaining and upgrading the hardware and software
9. National banking regulators who are responsible for ensuring that the

system conforms to banking regul ations

Viewpoints
1. Viewpoint-oriented approaches to requirements engineering organise
both the elicitation process and the requirements using viewpoints.
2. A key strength of viewpoint-oriented analysis is that it recognises
multiple perspectives and provides a framework for discovering conflicts

In the requirements proposed by different stakeholders.

30

Software engg i Supra.S

3. Viewpoints can be used as a way of classifying stakeholders and other

sources of requirements. There are three generic types of viewpoint:

a)

b)

| nteractor viewpoints represent people or other systems that
interact directly with the system.

In the bank ATM system, examples of interactor viewpoints
are the bank’s customers and the bank’s account database.
Indirect viewpoints represent stakeholders who do not use
the system themselves but who influence the requirements in
some way.

In the bank ATM system, examples of indirect viewpoints
are the management of the bank and the bank security staff.
Domain viewpoints represent domain characteristics and
constraints that influence the system requirements.

In the bank ATM system, an example of a domain viewpoint
would be the standards that have been developed for

interbank communications.

4. The initial identification of viewpoints that are relevant to a system can

sometimes be difficult. To help with this process, you should try to identify more

specific viewpoint types:

a) Providers of servicesto the system and receivers of system services
b) Systems that should interface directly with the system being specified

¢) Regulations and standards that apply to the system

d) The sources of system business and non-functional requirements

e) Engineering viewpoints reflecting the requirements of people who have to

develop manage and maintain the system

31

Software engg i Supra.S

f) Marketing and other viewpoints that generate requirements on the product
features expected by customers and how the system should reflect the
external image of the organization

5. Advantages: Engineering viewpoints important for two reasons
Firstly, the engineers developing the system may have experience with
similar systems and may be able to suggest requirements from that experience.
Secondly, technical staff who have to manage and maintain the system may
have requirements that will help ssmplify system support.
6. Asanillustration, consider the viewpoint hierarchy shown in Figure 7.4. Thisis

the diagram of the viewpoints for the LIBSY S system.

All'VPs

Indirect - Interactor Domain

Libra Article Library ul Classification
manag:fr Fiaie providers Usess ‘ staff standards system
/ \H\
System | |
Students Staff External mafnsq:;ers Cataloguers
Figure 7.4

Viewpoints in LIBSYS

32

Software engg | Supra.S

Interviewing

1. In these interviews, the requirements engineering team puts questions to
stakeholders about the system that they use and the system to be developed.
Requirements are derived from the answers to these questions.

2. Interviews may be of two types:

a). Closed interviews where the stakeholder answers a predefined set of
guestions.

b). Open interviews where there is no predefined agenda. The requirements
engineering team explores a range of issues with system stakeholders and hence
develops a better understanding of their needs.

3. Advantages. Interviews are good for getting an overall understanding of what
stakeholders do, how they might interact with the system and the difficulties that
they face with current systems.

4. Dis-advantages::

a).However, interviews are not so good for understanding the requirements
from the application domain.

It is hard to elicit domain knowledge during interviews for two reasons:

A. All application specialists use terminology and jargon that is
specific to a domain. It is impossible for them to discuss
domain requirements without using this terminology.

B. Some domain knowledge is so familiar to stakeholders that they
either find it difficult to explain or they think it is so
fundamental that it isn’t worth mentioning.

For example, for alibrarian, it goes without saying that all acquisitions

Are catalogued before they are added to the library. However, this may not be

33

Software engg i Supra.S

Obvious to the interviewer so it isn’t taken into account in the requirements.

b) Interviews are not an effective technique for eliciting knowledge about
organizationa requirements and constraints because there are subtle power and
Influence relationships between the stakeholders in the organisation.

5. Effective interviewers have two characteristics:

a. They are open-minded, avoid preconceived ideas about the
requirements and are willing to listen to stakeholders. If the
stakeholder comes up with surprising requirements, they are willing to
change their mind about the system.

b. They prompt the interviewee to start discussions with a question, a
requirements proposal or by suggesting working together on a
prototype system.

Scenarios
1. Scenarios can be particularly useful for adding detail to an outline requirements
description. They are descriptions of example interaction sessions.
2. Each scenario covers one or more possible interactions.
3. The scenario starts with an outline of the interaction, and, during elicitation,
details are added to create a complete description of that interaction. At its most
general, a scenario may include:
a. A description of what the system and users expect when the scenario starts
b) A description of the normal flow of eventsin the scenario
¢) A description of what can go wrong and how thisis handled
d) Information about other activities that might be going on at the same time

€) A description of the system state when the scenario finishes.

34

Software engg i Supra.S

4. Scenario-based elicitation can be carried out informally, where the requirements

engineer works with stakeholders to identify scenarios and to capture details of

these scenarios.

5.Scenarios may be written as text, supplemented by diagrams, screen shots, and so

on.

6. As an example of a simple text scenario, consider how a user of the LIBSYS

library system may use the system. This scenario is shown in Figure 7.5.

Figure 7.5 Scenano
for article
downloading in
LIB5YS

Initial assumption: The user has logged on to the LIBSYS system and has located
the journal containing the copy of the article,

Normal: The user selects the article to be copied. The system prompts the user to
provide subscriber information for the joumal or to indicate & method of payment

for the article. Payment can be made by credit card or by quoting an organisational
account number,

The user is then asked to fill in a copynght form that maintains details of the
transaction and submit it to the LIBSYS system.

The copyright form is checked and, if it is approved, the PDF version of the article is
downloaded to the LIBSYS working area on the user's computer and the user is
informed that it is available, The user is asked to select a printer and a copy of the
article is printed. f the article has been flagged as ‘prnt-only’ it is deleted from the
user's system once the user has confirmed that printing is complete.

What can go wrong: The user may fail to fill in the copynight form comedtly. In this
case, the form should be re-presented to the user for comection. If the resubmitted
form & still incorredt, then the user's request for the article is rejected.

The payment may be rejected by the system, in which case the user's request for the
article s rejected.

The article download may fall, causing the system to retry until successhul or the user
terminates the session,

It may not be possible to print the article. If the article is not flagged as ‘print-only’ it
is held in the LIBSYS workspace. Othenwise, the arficle is deleted and the user's
account credited with the cost of the article.

Other activities: Simultaneous downloads of other aricles.

System state on completion: User is logged on. The downloaded article has been
deleted from LIBSYS workspace if it has been flagged as print-only.

35

Software engg | Supra.S

Use-cases
1. Use-cases are a scenario-based technique for requirements elicitation.
2. Intheir simplest form, a use-case identifies the type of interaction and the actors
involved .
3. Figure 7.6 illustrates the essentials of the use-case notation.
Actorsin the process are represented as stick figures,

Each class of interaction is represented as a named ellipse.

Figure 7.6 A simple P
use-ase for article % - o 7
printing /

Article printing

4. Figure 7.7 develops the LIBSY S example and shows other use-cases in that
environment.

5. use-case encapsulates a set of scenarios, and each scenario is a single thread
through the use-case.

6. Use-cases identify the individual interactions with the system. They can be
documented with text or linked to UML models that develop the scenario in more
detail.

7. Sequence diagrams are often used to add information to a use-case. These
sequence diagrams show the actors involved in the interaction, the objects they
interact with and the operations associated with these objects.

8. Figure 7.8 shows the interactions involved in using LIBSYS for downloading
and printing an article. In Figure 7.8, there are four objects of classes—Article,
Form, Workspace and Printer—involved in this interaction.

The labels on the arrows between the actors and objects indicate the names of

operations.

36

Software engg i Supra.S

Essentially, a user request for an article triggers a request for a copyright form.
Once the user has completed the form, the article is downloaded and sent to the
printer. Once printing is complete, the article is deleted from the LIBSYS
workspace.
9. Advantages:

a).Scenarios and use-cases are effective techniques for eliciting requirements
for interactor viewpoints, where each type of interaction can be represented as a
usecase.

b).They can also be used in conjunction with some indirect viewpoints
where These viewpoints receive some results (such as a management report) from
the system.
10. Disadvantages.

a). Because they focus on interactions, they are not as effective for eliciting
congtraints or high-level business and non-functional requirements from indirect

viewpoints or for discovering domain requirements.

Fgure 7.7 Use cases W
for the library system L A
e
s Article search
."-f
o
i - |__-- . -::.
Library ™. Article printing
Liser M
,
* _ B ™
I_: ._I -
L 5
User admimnistration Library
vl Staff
% .' -.--___--.-.-ﬁ *
—_ =)]
supplier Catalogue services

37

Software engg | Supra.S

Figure 7.8 System
interactions for Pre— copyrightrorm: | | myWorkspace: | | myPrinter,
article printing Article Form Waorkspace Printer
Usey
fl1, fequas! J
L] .] request 1
|
Bt
complete
-
L retumn
-:'-I
copyright OK
I deliver
I article 0K
prin send |
-
' inform M confirm
-
- "
delete
7.2.2 Ethnography

1. Software systems do not exist in isolation—they are used in a socia and
organizationa context. Satisfying these social and organisational requirements is
often critical for the success of the system.

2. Ethnography is an observational technique that can be used to understand social
and organisational requirements.

3. Ethnography is particularly effective at discovering two types of requirements:

38

Software engg i Supra.S

a). Requirements that are derived from the way in which people actually
work rather than the way in which process definitions say they ought to
work.
For example, air traffic controllers may switch off an aircraft conflict aert
system that detects aircraft with intersecting flight paths even though normal
control procedures specify that it should be used. Because air traffic
controllers distracts from their work.
b) Requirements that are derived from cooperation and awareness of other
people’s activities.
For example, air traffic controllers may use an awareness of other
controllers” work to predict the number of aircraft that will be entering their
control sector.
4. Ethnography may be combined with prototyping (Figure 7.9). The prototyping
focuses the ethnography by identifying problems and questions that can then be
discussed with the ethnographer.

kil | 'Ethnugraphf; 'Uehnelmgll ! Foosd
g o | gt ;_H.I metngs .'_}'-. ctinograpy /™
protatyping for R WP |,
equrEments | | Prlofpe "|
I]ﬁﬂ|lr-5|5 , : s | praliation .. /
[Gaercstem | h;'* e | fe=
| development \ pototypng

39

Software engg i Supra.S

5. Advantages:

1. Ethnographic studies can reveal critical process details that are often
missed by other requirements elicitation techniques.
6. Disadvantages:

1. Because of its focus on the enduser, this approach is not appropriate for
discovering organisational or domain requirements.

2.Ethnographic studies cannot always identify new features that should be
added to a system.

3. Ethnography is not, a complete approach to elicitation on its own, and it

should be used to complement other approaches, such as use-case analysis.

7.3 Requirements validation

1. Requirements validation is concerned with showing that the requirements
actually define the system that the customer wants.

2. During the requirements validation process, checks should be carried out
on the requirements in the requirements document.

These checks include:

a). Validity checks: checks whether the system meets user needs?

b).Consistency checks Requirements in the document should not conflict.
there should be no contradictory constraints or descriptions of the same system
function.

¢).Completeness checks The requirements document should include
requirements, which define al functions, and constraints intended by the system
user.

d).Realism checks using knowledge of existing technology, the
requirements should be checked to ensure that they could actually be implemented.

40

Software engg i Supra.S

e). Verifiability system requirements should always be written so that they

are verifiable.

3. A number of requirements validation techniques can be used in
conjunction or individualy:

a). Requirements reviews The requirements are analysed systematically by a
team of reviewers.

b). Prototyping an executable model of the system is demonstrated to end
users and customers.

c). Test-case generation Requirements should be testable, by using test
Cases.

7.3.1 Requirementsreviews

1. A requirements review is a manual process that involves people from both
client and contractor organisations. They check the requirements document for
anomalies and omissions.

2. Requirements reviews can be informal or formal.

Informal reviews -involve contractors discussing requirements with as many

system stakeholders as possible. Many problems can be detected about the system

to stakeholders before making a commitment to aformal review.

formal requirements review- the development team should ‘walk’ the client
through the system requirements, explaining the implications of each requirement.

3. The review team should check each requirement for consistency as well
as check the requirements as a whole for completeness. Reviewers may also check
for:

a) Verifiability Is the requirement as stated redlistically testable?

41

Software engg i Supra.S

b) Comprehensibility Do the procurers or end-users of the system properly
understand the requirement?

¢) Traceability Isthe origin of the requirement clearly stated?

d) Adaptability Is the requirement adaptable? That is, can the requirement be

changed without large-scale effects on other system requirements?

7.4 Requirements management

1. The requirements for large software systems are always changing.
Requirement management is the process of managing changing requirements
during the requirement engineering process.

2. Once end-users have experience of a system, they discover new needs and
priorities:

a. Large systems usualy have a diverse user community where

users have different requirements and priorities. These may be

conflicting or contradictory.

b) System customers impose requirements because of
organisational and budgetary constraints. These may conflict
with end-user requirements and, after delivery, new features
may have to be added for user support if the system is to meet
its goals.

¢) The business and technical environment of the system changes
after installation, and these changes must be reflected in the
system. New hardware may be introduced, it may be necessary
to interface the system with other systems etc

3. Requirements management is the process of understanding and

controlling changes to system requirements.

42

Software engg i Supra.S

7.4.1 Enduring and volatile requirements

1. Requirements evolution during the RE process and after a system has
goneinto serviceisinevitable.

2. As the requirements definition is developed, leads to a better
understanding of users’ needs. This feeds information back to the user, who may

then propose a change to the requirements (Figure 7.10).

Figure 7.10
Requirements
ayolution

nifad | Changed
understanding understanding
ol problem of prablem
| T

!

I |
ntidl | || Changed
requirements requirements

—E
Time

From an evolution perspective, requirements fall into two classes:

a). Enduring requirements These are relatively stable requirements that
derive from the core activity of the organisation and which relate directly to the
domain of the system.

example, in a hospital, there will aways be requirements concerned with
patients, doctors, nurses and treatments.

b). Volatile requirements These are requirements that are likely to change
during the system development process or after the system has been become
operational.

example would be requirements resulting from government heathcare

policies.

43

Software engg i Supra.S

volatile requirements fall into five classes. As shown in Figure 7.11.

Figure 7.1 Requirement Descrivtion
Classification of Type
volatile requirements

Mutable Requirements which change because of changes to the
requirements enviranment in which the organisation s operabing, For example,

in hospital systems, the funding of patient care may change and
thus require different treatment information to be collected.

Emergent Reguirements which emerge as the customer’s understanding of
requirements the system develops dunng the system development. The design
process may reveal new emergent requirements.

Consequential Requirements which result from the introduction of the computer

requirements system. Introducing the computer system may change the
organisation’s processes and open up new ways of working which
generate new system requirements.

Compatibility Requirements which depend on the particular systems or business

requirements processes within an organisation. As these changs, the compatibility
requirements on the commissioned or deliverad system may also
have to evolve

7.4.2 Requirements management planning

1. Planning is an essentia first stage in the requirements management
process. Requirements management is very expensive. For each project, the
planning stage establishes the level of requirements management detail that is
required. That decide on:

a. Requirements identification Each requirement must be uniquely
identified so that it can be cross-referenced by other requirements and so that
it may be used in traceability assessments.

b. A change management process This is the set of activities that

assess the impact and cost of changes. section.

44

Software engg i Supra.S

c. Traceability policies These policies define the relationships
between requirements, and between the requirements and the system design
that should be recorded and how these records should be maintained.

d. CASE tool support provides automated support for system
development. Tools that may be used range from specialist requirements

management systems to spreadsheets and simple database systems.

Traceability
Traceability is the property of a requirements specification that reflects the
ease of finding related requirements.

There are three types of traceability information that may be
maintai ned:

a) Source traceability information links the requirements to the
stakeholders who proposed the requirements and to the rationale
for these requirements. When a change is proposed, this
information is used to find and consult the stakeholders about
the change.

b). Requirements traceability information links dependent
requirements within the requirements document. This
information is used to assess how many requirements are likely
to be affected by a proposed change and the extent of
consequential requirements changes that may be necessary.

C). Design traceability information links the requirements to the
design modules where these requirements are implemented.
This information is used to assess the impact of proposed

requirements changes on the system design and implementation.

45

Software engg | Supra.S

Traceability Matrices

1. Traceability information is often represented using traceability matrices, which
relate requirements to stakeholders, each other or design modules.

2. In arequirements traceability matrix, each requirement is entered inarow and in
a column in the matrix. Where dependencies between different requirements exist,

these are recorded in the cell at the row/column intersection.

3. Figure 7.12 shows a simple traceability matrix that records the dependencies
between requirements.

-A ‘D’ in the row/column intersection illustrates that the requirement in the
row depends on the requirement named in the column;

-an ‘R’ means that there is some other, weaker relationship between the
requirements.

exampleithey may both define the requirements for parts of the same
subsystem.
4.Advantages:

-Traceability matrices may be used when a small number of requirements

have to be managed
- Traceability matrices can be generated automatically from the database.

5.Disavantages.
- Unwieldy and expensive to maintain for large systems with many

requirements.

46

Software engg i Supra.S

e T
L1 D R
12 D R 0
13 R R
i1 R 1] D
D
R D
5 R
11 R

CASE Tools

Requirements management needs automated support; the CASE tools for
this should be chosen during the planning phase, need tool support for:

1. Requirements storage The requirements should be maintained in a secure,
managed data store that is accessible to everyone involved in the requirements
engineering process.

2. Change management The process of change management (Figure 7.13) is
simplified if active tool support is available.

3. Traceability management tool support for traceability alows related
requirements to be discovered. Some tools use natural language processing

techniques to discover possible relationships between the requirements.

47

Software engg i Supra.S

For small systems, it may not be necessary to use specialised requirements

management tools. However, for larger systems, more speciaised tool support is

required.
Identified _ Revisad
pru:lnlem* Problem analysis and | Change an il.|"|l‘¢ﬁ Change reqmrememi
change spf-clin:atlun and costing implementation
Figure 7.13
Requiremants

change management

7.4.3 Requirements change management

1. Requirements change management (Figure 7.13) should be applied to al
proposed changes to the requirements.

2. The advantage of using a formal process for change management is that all
change proposals are treated consistently and that changes to the requirements
document are made in a controlled way.

There are three principa stages to a change management process:

a) Problem analysis and change specification The process starts with an
Identified requirements problem or, sometimes, with a specific change
proposal.

-During this stage, the problem or the change proposal is analysed to
check that it isvalid.

-The results of the analysis are fed back to the change requestor, and
sometimes a more specific requirements change proposal is then made.

48

Software engg i Supra.S

b) Change analysis and costing The effect of the proposed change is
assessed using traceability information and general knowledge of the
system requirements.

-The cost of making the change is estimated in terms of modifications to
the reguirements document and, if appropriate, to the system design and
Implementation.

-Once this analysisis completed, a decision is made whether to proceed
with the requirements change.

c)Change implementation The requirements document and, where
necessary, the system design and implementation are modified.

-Then organise the requirements document so that changes can be made
to it without extensive rewriting or reorganisation.

-As with programs, changeability in documents is achieved by
minimising external references and making the document sections as
modular as possible.

-Thus, individual sections can be changed and replaced without affecting

other parts of the document.

49

