
Software engg Supra.S

1

3rd Unit

6Software requirements
Contents

6.1 Functional and non-functional requirements

6.2 User requirements

6.3 System requirements

6.4 Interface specification

6.5 The software requirements document

Requirement Engineering?

The requirements for a system are the descriptions of the services provided by the

system and its operational constraints.

The process of finding out, analysing, documenting and checking these services

and constraints is called requirement engineering (RE).

Requirement?

The requirements for a system are the descriptions of the services provided by the

system and its operational constraints. It may range from a high level abstract

statement of a service of a system constraint to a detailed mathematical functional

specification.

Software engg Supra.S

2

Types of requirement

1. User requirements are statements, in a natural language plus diagrams, of what

services the system is expected to provide and the constraints under which it must

operate.

2. System requirements set out the system’s functions, services and operational

constraints in detail. The system requirements document (sometimes called a

functional specification) should be precise. It should define exactly what is to be

implemented. It may be part of the contract between the system buyer and the

software developers.

Figure 6.1 illustrates the distinction between user and system requirements.

From Figure 6.1 the user requirement is more abstract, and the system

requirements add detail, explaining the services and functions that should be

provided by the system to be developed.

Note: write any
three system
requirements

Software engg Supra.S

3

Figure 6.2 shows the types of readers for the user and system requirements

1. The readers of the system requirements need to know more precisely

what the system will do because they are concerned with how it will

support the business processes or because they are involved in the system

implementation.

2. The readers of the user requirements are not usually concerned with how

the system will be implemented and may be managers who are not

interested in the detailed facilities of the system.

6.1 Functional and non-functional requirements

Software system requirements are often classified as functional requirements,

nonfunctional requirements or domain requirements:

1. Functional requirements These are statements of services the system should

provide, how the system should react to particular inputs and how the system

should behave in particular situations. In some cases, the functional requirements

Software engg Supra.S

4

may also explicitly state what the system should not do.

2. Non-functional requirements These are constraints on the services or functions

offered by the system. They include timing constraints, constraints on the

development process and standards.

Non-functional requirements often apply to the system as a whole. They do

not usually just apply to individual system features or services.

3. Domain requirements These are requirements that come from the application

domain of the system and that reflect characteristics and constraints of that domain.

6.1.1 Functional requirements

1. The functional requirements for a system describe what the system should do.

2. These requirements depend on the type of software being developed, the

expected users of the software and the general approach taken by the organisation

when writing requirements.

3. Functional system requirements describe the system function in detail, its inputs

and outputs, exceptions, and so on.

4. Functional requirements Example

Here are examples of functional requirements for a university library system

called LIBSYS, used by students and faculty to order books and documents from

other libraries.

a. The user shall be able to search either all of the initial set of databases or

select a subset from it.

Software engg Supra.S

5

b. The system shall provide appropriate viewers for the user to read

documents in the document store.

c. Every order shall be allocated a unique identifier (ORDER_ID), which the

user shall be able to copy to the account’s permanent storage area.

-The LIBSYS system is a single interface to a range of article databases. It

allows users to download copies of published articles in magazines, newspapers

and scientific journals.

-Consider the second example requirement for the library system that refers

to ‘appropriate viewers’ provided by the system. The library system can deliver

documents in a range of formats.

5. In principle, the functional requirements specification of a system should be

both complete and consistent.

Completeness means that all services required by the user should be defined.

Consistency means that requirements should not have contradictory

definitions.

6.1.2 Non-functional requirements

1. These are constraints on the services or functions offered by the system. They

include timing constraints, constraints on the development process and standards.

2. Failing to meet a non-functional requirement can mean that the whole system is

unusable.

For example, if an aircraft system does not meet its reliability requirements,

it will not be certified as safe for operation; if a real-time control system fails to

meet its performance requirements, the control functions will not operate correctly.

Software engg Supra.S

6

3. Non-functional requirements arise through user needs, because of budget

constraints, because of organisational policies, because of the need for

interoperability with other software or hardware systems, or because of external

factors such as safety regulations or privacy legislation.

Figure 6.3 is a classification of non-functional requirements.

4. The types of non-functional requirements are:

a. Product requirements These requirements specify product behaviour.

Software engg Supra.S

7

Examples : performance requirements on how fast the system must execute

and how much memory it requires; reliability requirements that set out the

acceptable failure rate; portability requirements; and usability requirements.

b. Organisational requirements These requirements are derived from

policies and procedures in the customer’s and developer’s organisation.

Examples process standards that must be used; implementation

requirements such as the programming language or design method used;

c. External requirements These requirements are derived from factors

external to the system and its development process.

Examples interoperability requirements that define how the system interacts

with systems in other organizations.

5-Non-functional Requirement Example

Figure 6.4 shows examples of product, organisational and external requirements

taken from the library system LIBSYS

Software engg Supra.S

8

6-Goals and verifiable Requirements –

A common problem with non-functional requirements is that they can be difficult

to verify. Users or customers intention is ease of use, the ability of the system to

recover from failure.

-Figure 6.6 shows a number of possible metrics that can be used to specify

non functional system properties, to measure whether or not the system has met its

non-functional requirements.

Software engg Supra.S

9

6.1.3 Domain requirements

1. Domain requirements are derived from the application domain of the system

rather than from the specific needs of system users. They usually include

specialised domain terminology or reference to domain concepts.

2. Domain requirements are important because they often reflect fundamentals of

the application domain. If these requirements are not satisfied, it may be

impossible to make the system work satisfactorily.

Software engg Supra.S

10

3. Example:

The LIBSYS system includes a number of domain requirements:

a. There shall be a standard user interface to all databases that shall be based

on the Z39.50 standard.

b. Because of copyright restrictions, some documents must be deleted

immediately on arrival.

-The first requirement is a design constraint. It specifies that the user interface

to the database must be implemented according to a specific library standard.

-The second requirement has been introduced because of copyright laws that

apply to material used in libraries. It specifies that the system must include an

automatic delete-on-print facility for some classes of document.

4. Major problems

a. They are written in the language of the application domain and it is often

difficult for software engineers to understand them.

b. Domain experts may leave information out of a requirement simply because

it is so obvious to them. However, it may not be obvious to the developers of the

system, and they may therefore implement the requirement in the wrong way.

6.2 User requirements

1. The user requirements for a system should describe the functional and

nonfunctional requirements so that they are understandable by system users

without detailed technical knowledge (you should not use software jargon,

structured notations or formal notations, or describe the requirement by describing

the system implementation. You should write user requirements in simple

language, with simple tables and forms and intuitive diagrams).

Software engg Supra.S

11

2. They should only specify the external behavior of the system and should avoid,

as far as possible, system design characteristics.

However, various problems can arise when requirements are written in natural

language sentences in a text document:

a. Lack of clarity It is sometimes difficult to use language in a precise and

unambiguous way without making the document wordy and difficult to read.

b.Requirements confusion Functional requirements, non-functional

requirements, system goals and design information may not be clearly

distinguished.

c. Requirements amalgamation together as a single requirement.

3. As an illustration of some of these problems, consider one of the requirements

for the library shown in Figure 6.8.

A). This requirement includes both conceptual and detailed information.

the conceptual- that there should be an accounting system as an inherent

part of LIBSYS.

the detail- that the accounting system should support discounts for regular

LIBSYS users.

Software engg Supra.S

12

B). It is necessary to separate user requirements from more detailed system

requirements in a requirements document. Otherwise, non-technical readers of the

user requirements Get confused.

C). The user requirement should simply focus on the key facilities to be

provided. As in Figure 6.10 to focus only on the essential system features.

4. Guidelines to minimise misunderstandings when writing user requirements,

a). Invent a standard format and ensure that all requirement definitions adhere

to that format.

b) Use language consistently. distinguish between mandatory and desirable

requirements.

Mandatory requirements are requirements that the system must support and

are usually written using ‘shall’.

Desirable requirements are not essential and are written using ‘should’.

c) Use text highlighting (bold, italic or colour) to pick out key parts of the

requirement. Avoid, as far as possible, the use of computer jargon.

Software engg Supra.S

13

6.3 System requirements

1. System requirements are expanded versions of the user requirements that

are used by software engineers as the starting point for the system design. Explain

how the user requirements should be provided by the system.

2. Ideally, the system requirements should simply describe the external

behavior of the system and its operational constraints. They should not be

concerned with how the system should be designed or implemented. But it is not

possible in practice.

a) Intial architecture of the system have to be designed to structure the

requirements specification.

b) systems must interoperate with other existing systems. These constrain the

design, and these constraints impose requirements on the new system.

c) The use of a specific architecture to satisfy non-functional requirements

may be necessary.

3. Natural language is often used to write system requirements specifications

as well as user requirements. However , natural language specifications can be

confusing and hard to understand:

a) Natural language understanding relies on the specification readers and

writers using the same words for the same concept. This leads to

misunderstandings because of the ambiguity of natural language.

b) A natural language requirements specification is overflexible. We can say

the same thing in completely different ways. It is up to the reader to find out

when requirements are the same and when they are distinct.

c) There is no easy way to modularise natural language requirements. It may be

difficult to find all related requirements.

Software engg Supra.S

14

It is essential to write user requirements in a language that non-specialists can

understand.

Therefore consider system requirements in more specialised notations (Figure

6.11). These include stylised, structured natural language, graphical notations.

6.3.1 Structured language specifications

1. Structured natural language is a way of writing system requirements

where the freedom of the requirements writer is limited and all requirements are

written in a standard way.

2. The advantage of this approach is that it maintains most of the

expressiveness and understandability of natural language but ensures that some

degree of uniformity is imposed on the specification.

Software engg Supra.S

15

Form Based specification

1. Special-purpose forms were designed to describe the input, output and

functions of an software system. The system requirements were specified

using these forms.

2. To use a form-based approach to specify system requirements, define one

or more standard forms or templates to express the requirements.

An example of such a form-based specification is shown in Figure 6.12. The

insulin pump bases its computations of the user’s insulin requirement on the rate of

change of blood sugar levels.

Software engg Supra.S

16

When a standard form is used for specifying functional requirements, the following

information should be included:

1. Description of the function or entity being specified

2. Description of its inputs and where these come from

3. Description of its outputs and where these go to

4. Indication of what other entities are used (the requires part)

5. Description of the action to be taken

6. If a functional approach is used, a pre-condition setting out what must be true

before the function is called and a post-condition specifying what is true after the

function is called

7. Description of the side effects (if any) of the operation.

3. Advatages

1.Using formatted specifications removes some of the problems of natural

language specification.

2.Variability in the specification is reduced and requirements are organised more

effectively.

4. Disadvantages

1. It is difficult to write requirements in an unambiguous way, particularly when

complex computations are required.

2. Things cannot be specified clearly.

Tabular specification

1. Tables are particularly useful when there are a number of possible

alternative situations and need to describe the actions to be taken for each

of these.

Software engg Supra.S

17

2. Graphical models are most useful when you need to show how state

changes or where you need to describe a sequence of actions.

3. Figure 6.13 is a revised description of the computation of the insulin

dose.

4. Figure 6.14 illustrates the sequence of actions when a user wishes to

withdraw cash from an automated teller machine (ATM).

In Figure 6.14, there are three basic sub-sequences:

a) Validate card The user’s card is validated by checking the card number and

user’s PIN.

b)Handle request The user’s request is handled by the system. For a

withdrawal, the database must be queried to check the user’s balance and to debit

the amount withdrawn. Notice the exception here if the requestor does not have

enough money in their account.

c). Complete transaction The user’s card is returned and, when it is removed,

the cash and receipt are delivered.

Software engg Supra.S

18

Software engg Supra.S

19

6.4 Interface specification

Almost all software systems must operate with existing systems that have already

been implemented and installed in an environment. If the new system and the

existing systems must work together, the interfaces of existing systems have to be

precisely specified.

There are three types of interface that may have to be defined:

1. Procedural interfaces where existing programs or sub-systems offer a range of

services that are accessed by calling interface procedures. These interfaces are

sometimes called Application Programming Interfaces (APIs).

2. Data structures that are passed from one sub-system to another. Graphical data

models are the best notations for this type of description.

Example: program descriptions in Java or C++ can be generated automatically

from these descriptions.

3.Representations of data (such as the ordering of bits) that have been established

for an existing sub-system. These interfaces are most common in embedded, real-

time system.

Figure 6.15 is an example of a procedural interface definition defined in Java. In

this case, the interface is the procedural interface offered by a print server. This

manages a queue of requests to print files on different printers. Users may

examine the queue associated with a printer and may remove their print jobs from

that queue. They may also switch jobs from one printer to another.

Software engg Supra.S

20

6.5 The software requirements document

1. The software requirements document (sometimes called the software

requirements specification or SRS) is the official statement of what the system

developers should implement. It should include both the user requirements for a

system and a detailed specification of the system requirements.

2. The requirements document has a diverse set of users, ranging from the

senior management of the organisation that is paying for the system to the

engineers responsible for developing the software.

Figure 6.16, illustrates possible users of the document and how they use it.

Software engg Supra.S

21

3. The level of detail that you should include in a requirements document depends

on the type of system that is being developed and the development process used.

4. IEEE suggests standard for requirements documents:

1. Introduction

1.1 Purpose of the requirements document

1.2 Scope of the product

1.3 Definitions, acronyms and abbreviations

1.4 References

1.5 Overview of the remainder of the document

2. General description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 General constraints

2.5 Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface

requirements. This is obviously the most substantial part of the document but

because of the wide variability in organisational practice, it is not appropriate

to define a standard structure for this section. The requirements may

document external interfaces, describe system functionality and performance,

specify logical database requirements, design constraints, emergent system

properties and quality characteristics.

4. Appendices

5. Index

By contrast, when the software is part of a large system engineering project that

includes interacting hardware and software systems, it is often essential to define

Software engg Supra.S

22

the requirements to a fine level of detail. This means that the requirements

documents are likely to be very long and should include most if not all of the

chapters shown in Figure 6.17.

Software engg Supra.S

23

2nd chapter
7.Requirements engineering processes

.

Contents

7.1 Feasibility studies

7.2 Requirements elicitation and analysis

7.3 Requirements validation

7.4 Requirements management

1. The goal of the requirements engineering process is to create and maintain

a system requirements document.

2. The overall process includes four high-level requirements engineering

sub-processes.

a. These are concerned with assessing whether the system is

useful to the business (feasibility study);

b. discovering requirements (elicitation and analysis);

c. converting these requirements into some standard form

(specification);

d. checking that the requirements actually define the system that

the customer wants (validation).

3. Figure 7.1 illustrates the relationship between these activities. It also

shows the documents produced at each stage of the requirements engineering

process

4. Figure 7.2 presents the process as a three-stage activity where the

activities are organised as an iterative process around a spiral.

Software engg Supra.S

24

a) The amount of time and effort devoted to each activity in an

iteration depends on the stage of the overall process and the

type of system being developed.

b) Early in the process, most effort will be spent on understanding

high-level business and non-functional requirements and the

user requirements.

c) Later in the process, in the outer rings of the spiral, more effort

will be devoted to system requirements engineering and system

modelling.

Software engg Supra.S

25

7.1 Feasibility studies

For all new systems, the requirements engineering process should start with a

feasibility study.

1. The input to the feasibility study is a set of preliminary business

requirements, an outline description of the system and how the system is

intended to support business processes.

2. The results of the feasibility study should be a report that recommends

whether or not it is worth carrying on with the requirements engineering and

system development process.

Software engg Supra.S

26

3. A feasibility study is a short, focused study that aims to answer a number of

questions:

a. Does the system contribute to the overall objectives of the organisation?

b. Can the system be implemented using current technology and within given cost

and schedule constraints?

c. Can the system be integrated with other systems which are already in place?

4. Carrying out a feasibility study involves information assessment, information

collection and report writing.

-The information assessment phase identifies the information that is required to

answer the three questions set out above.

-Once the information has been identified, talk with information sources to

discover the answers to these questions

Some examples of possible questions that may be put are:

1. How would the organisation cope if this system were not implemented?

2. What are the problems with current processes and how would a new system

help alleviate these problems?

3. What direct contribution will the system make to the business objectives and

requirements?

4. Can information be transferred to and from other organisational systems?

5. Does the system require technology that has not previously been used in the

organisation?

6.What must be supported by the system and what need not be supported?

Software engg Supra.S

27

5. Once the information is ready, write the feasibility study report. In feasibility

report make a recommendation about whether or not the system development

should continue,may propose changes to the scope, budget and schedule of the

system and suggest further high-level requirements for the system.

7.2 Requirements elicitation and analysis

1. In this activity, software engineers work with customers and system end-users to

find out about the application domain, what services the system should provide, the

required performance of the system, hardware constraints, and so on.

Requirements elicitation and analysis may involve a variety of people in an

organisation.

2. The term stakeholder is used to refer to any person or group who will be

affected by the system, directly or indirectly.

3. Stakeholders include end-users who interact with the system and everyone else

in an organisation that may be affected by its installation.

Eliciting and understanding stakeholder requirements is difficult for several

reasons:

a). Stakeholders often don’t know what they want from the computer system

except in the most general terms. They may find it difficult to articulate what they

want the system to do or make unrealistic demands because they are unaware of

the cost of their requests.

b). Stakeholders naturally express requirements in their own terms and with

implicit knowledge of their own work. Requirements engineers, without

experience in the customer’s domain, must understand these requirements.

Software engg Supra.S

28

c) Different stakeholders have different requirements, which they may express in

different ways. Requirements engineers have to consider all potential sources of

requirements and discover commonalities and conflict.

d). Political factors may influence the requirements of the system. For example,

managers may demand specific system requirements that will increase their

influence in the organisation.

e). The economic and business environment in which the analysis takes place is

dynamic. It inevitably changes during the analysis process. Hence the importance

of particular requirements may change. New requirements may emerge

From new stakeholders who were not originally consulted.

4. A very general process model of the elicitation and analysis process is shown in

Figure 7.3.

Software engg Supra.S

29

5. The process activities are:

A). Requirements discovery This is the process of interacting with stakeholders in

the system to collect their requirements. Domain requirements from stakeholders

and documentation are also discovered during this activity.

B) Requirements classification and organisation This activity takes the

unstructured collection of requirements, groups related requirements and organises

them into coherent clusters.

C) Requirements prioritisation and negotiation Inevitably, where multiple

stakeholders are involved, requirements will conflict. This activity is concerned

with prioritising requirements, and finding and resolving requirements conflicts

through negotiation.

D). Requirements documentation The requirements are documented and input into

the next round of the spiral. Formal or informal requirements documents may be

produced.

Figure 7.3 shows that requirements elicitation and analysis is an iterative process

with continual feedback from each activity to other activities. The process cycle

Starts with requirements discovery and ends with requirements documentation.

The analyst’s understanding of the requirements improves with each round of the

cycle.

7.2.1 Requirements discovery

1. Requirements discovery is the process of gathering information about the

proposed and existing systems and distilling the user and system requirements

from this information.

2. Sources of information during the requirements discovery phase include

documentation, system stakeholders and specifications of similar systems.

Software engg Supra.S

30

3. For example,

system stakeholders for a bank ATM include:

1. Current bank customers

2. Representatives from other banks who have reciprocal agreements that

allow each other’s ATMs to be used

3. Managers of bank branches who obtain management information from

the system

4. Counter staff at bank branches who are involved in the day-to-day

running of the system

5. Database administrators who are responsible for integrating the system

with the bank’s customer database

6. Bank security managers who must ensure that the system will not pose a

security hazard

7. The bank’s marketing department who are likely be interested in using the

sys-tem as a means of marketing the bank

8. Hardware and software maintenance engineers who are responsible for

maintaining and upgrading the hardware and software

9. National banking regulators who are responsible for ensuring that the

system conforms to banking regulations

Viewpoints

1. Viewpoint-oriented approaches to requirements engineering organise

both the elicitation process and the requirements using viewpoints.

2. A key strength of viewpoint-oriented analysis is that it recognises

multiple perspectives and provides a framework for discovering conflicts

in the requirements proposed by different stakeholders.

Software engg Supra.S

31

3. Viewpoints can be used as a way of classifying stakeholders and other

sources of requirements. There are three generic types of viewpoint:

a) Interactor viewpoints represent people or other systems that

interact directly with the system.

In the bank ATM system, examples of interactor viewpoints

are the bank’s customers and the bank’s account database.

b) Indirect viewpoints represent stakeholders who do not use

the system themselves but who influence the requirements in

some way.

In the bank ATM system, examples of indirect viewpoints

are the management of the bank and the bank security staff.

c) Domain viewpoints represent domain characteristics and

constraints that influence the system requirements.

In the bank ATM system, an example of a domain viewpoint

would be the standards that have been developed for

interbank communications.

4. The initial identification of viewpoints that are relevant to a system can

sometimes be difficult. To help with this process, you should try to identify more

specific viewpoint types:

a) Providers of services to the system and receivers of system services

b) Systems that should interface directly with the system being specified

c) Regulations and standards that apply to the system

d) The sources of system business and non-functional requirements

e) Engineering viewpoints reflecting the requirements of people who have to

develop manage and maintain the system

Software engg Supra.S

32

f) Marketing and other viewpoints that generate requirements on the product

features expected by customers and how the system should reflect the

external image of the organization

5. Advantages: Engineering viewpoints important for two reasons

Firstly, the engineers developing the system may have experience with

similar systems and may be able to suggest requirements from that experience.

Secondly, technical staff who have to manage and maintain the system may

have requirements that will help simplify system support.

6. As an illustration, consider the viewpoint hierarchy shown in Figure 7.4. This is

the diagram of the viewpoints for the LIBSYS system.

Software engg Supra.S

33

Interviewing

1. In these interviews, the requirements engineering team puts questions to

stakeholders about the system that they use and the system to be developed.

Requirements are derived from the answers to these questions.

2. Interviews may be of two types:

a). Closed interviews where the stakeholder answers a predefined set of

questions.

b). Open interviews where there is no predefined agenda. The requirements

engineering team explores a range of issues with system stakeholders and hence

develops a better understanding of their needs.

3. Advantages: Interviews are good for getting an overall understanding of what

stakeholders do, how they might interact with the system and the difficulties that

they face with current systems.

4. Dis-advantages :

a).However, interviews are not so good for understanding the requirements

from the application domain.

It is hard to elicit domain knowledge during interviews for two reasons:

A. All application specialists use terminology and jargon that is

specific to a domain. It is impossible for them to discuss

domain requirements without using this terminology.

B. Some domain knowledge is so familiar to stakeholders that they

either find it difficult to explain or they think it is so

fundamental that it isn’t worth mentioning.

For example, for a librarian, it goes without saying that all acquisitions

Are catalogued before they are added to the library. However, this may not be

Software engg Supra.S

34

Obvious to the interviewer so it isn’t taken into account in the requirements.

b) Interviews are not an effective technique for eliciting knowledge about

organizational requirements and constraints because there are subtle power and

influence relationships between the stakeholders in the organisation.

5. Effective interviewers have two characteristics:

a. They are open-minded, avoid preconceived ideas about the

requirements and are willing to listen to stakeholders. If the

stakeholder comes up with surprising requirements, they are willing to

change their mind about the system.

b. They prompt the interviewee to start discussions with a question, a

requirements proposal or by suggesting working together on a

prototype system.

Scenarios

1. Scenarios can be particularly useful for adding detail to an outline requirements

description. They are descriptions of example interaction sessions.

2. Each scenario covers one or more possible interactions.

3. The scenario starts with an outline of the interaction, and, during elicitation,

details are added to create a complete description of that interaction. At its most

general, a scenario may include:

a. A description of what the system and users expect when the scenario starts

b) A description of the normal flow of events in the scenario

c) A description of what can go wrong and how this is handled

d) Information about other activities that might be going on at the same time

e) A description of the system state when the scenario finishes.

Software engg Supra.S

35

4. Scenario-based elicitation can be carried out informally, where the requirements

engineer works with stakeholders to identify scenarios and to capture details of

these scenarios.

5.Scenarios may be written as text, supplemented by diagrams, screen shots, and so

on.

6. As an example of a simple text scenario, consider how a user of the LIBSYS

library system may use the system. This scenario is shown in Figure 7.5.

Software engg Supra.S

36

Use-cases

1. Use-cases are a scenario-based technique for requirements elicitation.

2. In their simplest form, a use-case identifies the type of interaction and the actors

involved .

3. Figure 7.6 illustrates the essentials of the use-case notation.

Actors in the process are represented as stick figures,

Each class of interaction is represented as a named ellipse.

4. Figure 7.7 develops the LIBSYS example and shows other use-cases in that

environment.

5. use-case encapsulates a set of scenarios, and each scenario is a single thread

through the use-case.

6. Use-cases identify the individual interactions with the system. They can be

documented with text or linked to UML models that develop the scenario in more

detail.

7. Sequence diagrams are often used to add information to a use-case. These

sequence diagrams show the actors involved in the interaction, the objects they

interact with and the operations associated with these objects.

8. Figure 7.8 shows the interactions involved in using LIBSYS for downloading

and printing an article. In Figure 7.8, there are four objects of classes—Article,

Form, Workspace and Printer—involved in this interaction.

The labels on the arrows between the actors and objects indicate the names of

operations.

Software engg Supra.S

37

Essentially, a user request for an article triggers a request for a copyright form.

Once the user has completed the form, the article is downloaded and sent to the

printer. Once printing is complete, the article is deleted from the LIBSYS

workspace.

9. Advantages:

a).Scenarios and use-cases are effective techniques for eliciting requirements

for interactor viewpoints, where each type of interaction can be represented as a

usecase.

b).They can also be used in conjunction with some indirect viewpoints

where These viewpoints receive some results (such as a management report) from

the system.

10. Disadvantages:

a). Because they focus on interactions, they are not as effective for eliciting

constraints or high-level business and non-functional requirements from indirect

viewpoints or for discovering domain requirements.

Software engg Supra.S

38

7.2.2 Ethnography

1. Software systems do not exist in isolation—they are used in a social and

organizational context. Satisfying these social and organisational requirements is

often critical for the success of the system.

2. Ethnography is an observational technique that can be used to understand social

and organisational requirements.

3. Ethnography is particularly effective at discovering two types of requirements:

Software engg Supra.S

39

a). Requirements that are derived from the way in which people actually

work rather than the way in which process definitions say they ought to

work.

For example, air traffic controllers may switch off an aircraft conflict alert

system that detects aircraft with intersecting flight paths even though normal

control procedures specify that it should be used. Because air traffic

controllers distracts from their work.

b) Requirements that are derived from cooperation and awareness of other

people’s activities.

For example, air traffic controllers may use an awareness of other

controllers’ work to predict the number of aircraft that will be entering their

control sector.

4. Ethnography may be combined with prototyping (Figure 7.9). The prototyping

focuses the ethnography by identifying problems and questions that can then be

discussed with the ethnographer.

Software engg Supra.S

40

5. Advantages:

1. Ethnographic studies can reveal critical process details that are often

missed by other requirements elicitation techniques.

6. Disadvantages:

1. Because of its focus on the enduser, this approach is not appropriate for

discovering organisational or domain requirements.

2.Ethnographic studies cannot always identify new features that should be

added to a system.

3. Ethnography is not, a complete approach to elicitation on its own, and it

should be used to complement other approaches, such as use-case analysis.

7.3 Requirements validation

1. Requirements validation is concerned with showing that the requirements

actually define the system that the customer wants.

2. During the requirements validation process, checks should be carried out

on the requirements in the requirements document.

These checks include:

a). Validity checks: checks whether the system meets user needs?

b).Consistency checks Requirements in the document should not conflict.

there should be no contradictory constraints or descriptions of the same system

function.

c).Completeness checks The requirements document should include

requirements, which define all functions, and constraints intended by the system

user.

d).Realism checks using knowledge of existing technology, the

requirements should be checked to ensure that they could actually be implemented.

Software engg Supra.S

41

e). Verifiability system requirements should always be written so that they

are verifiable.

3. A number of requirements validation techniques can be used in

conjunction or individually:

a). Requirements reviews The requirements are analysed systematically by a

team of reviewers.

b). Prototyping an executable model of the system is demonstrated to end

users and customers.

c). Test-case generation Requirements should be testable, by using test

cases.

7.3.1 Requirements reviews

1. A requirements review is a manual process that involves people from both

client and contractor organisations. They check the requirements document for

anomalies and omissions.

2. Requirements reviews can be informal or formal.

Informal reviews -involve contractors discussing requirements with as many

system stakeholders as possible. Many problems can be detected about the system

to stakeholders before making a commitment to a formal review.

formal requirements review- the development team should ‘walk’ the client

through the system requirements, explaining the implications of each requirement.

3. The review team should check each requirement for consistency as well

as check the requirements as a whole for completeness. Reviewers may also check

for:

a) Verifiability Is the requirement as stated realistically testable?

Software engg Supra.S

42

b) Comprehensibility Do the procurers or end-users of the system properly

understand the requirement?

c) Traceability Is the origin of the requirement clearly stated?

d) Adaptability Is the requirement adaptable? That is, can the requirement be

changed without large-scale effects on other system requirements?

7.4 Requirements management

1. The requirements for large software systems are always changing.

Requirement management is the process of managing changing requirements

during the requirement engineering process.

2. Once end-users have experience of a system, they discover new needs and

priorities:

a. Large systems usually have a diverse user community where

users have different requirements and priorities. These may be

conflicting or contradictory.

b) System customers impose requirements because of

organisational and budgetary constraints. These may conflict

with end-user requirements and, after delivery, new features

may have to be added for user support if the system is to meet

its goals.

c) The business and technical environment of the system changes

after installation, and these changes must be reflected in the

system. New hardware may be introduced, it may be necessary

to interface the system with other systems etc

3. Requirements management is the process of understanding and

controlling changes to system requirements.

Software engg Supra.S

43

7.4.1 Enduring and volatile requirements

1. Requirements evolution during the RE process and after a system has

gone into service is inevitable.

2. As the requirements definition is developed, leads to a better

understanding of users’ needs. This feeds information back to the user, who may

then propose a change to the requirements (Figure 7.10).

From an evolution perspective, requirements fall into two classes:

a). Enduring requirements These are relatively stable requirements that

derive from the core activity of the organisation and which relate directly to the

domain of the system.

example, in a hospital, there will always be requirements concerned with

patients, doctors, nurses and treatments.

b). Volatile requirements These are requirements that are likely to change

during the system development process or after the system has been become

operational.

example would be requirements resulting from government healthcare

policies.

Software engg Supra.S

44

volatile requirements fall into five classes. As shown in Figure 7.11.

7.4.2 Requirements management planning

1. Planning is an essential first stage in the requirements management

process. Requirements management is very expensive. For each project, the

planning stage establishes the level of requirements management detail that is

required. That decide on:

a. Requirements identification Each requirement must be uniquely

identified so that it can be cross-referenced by other requirements and so that

it may be used in traceability assessments.

b. A change management process This is the set of activities that

assess the impact and cost of changes. section.

Software engg Supra.S

45

c. Traceability policies These policies define the relationships

between requirements, and between the requirements and the system design

that should be recorded and how these records should be maintained.

d. CASE tool support provides automated support for system

development. Tools that may be used range from specialist requirements

management systems to spreadsheets and simple database systems.

Traceability

Traceability is the property of a requirements specification that reflects the

ease of finding related requirements.

There are three types of traceability information that may be

maintained:

a) Source traceability information links the requirements to the

stakeholders who proposed the requirements and to the rationale

for these requirements. When a change is proposed, this

information is used to find and consult the stakeholders about

the change.

b). Requirements traceability information links dependent

requirements within the requirements document. This

information is used to assess how many requirements are likely

to be affected by a proposed change and the extent of

consequential requirements changes that may be necessary.

c). Design traceability information links the requirements to the

design modules where these requirements are implemented.

This information is used to assess the impact of proposed

requirements changes on the system design and implementation.

Software engg Supra.S

46

Traceability Matrices

1. Traceability information is often represented using traceability matrices, which

relate requirements to stakeholders, each other or design modules.

2. In a requirements traceability matrix, each requirement is entered in a row and in

a column in the matrix. Where dependencies between different requirements exist,

these are recorded in the cell at the row/column intersection.

3. Figure 7.12 shows a simple traceability matrix that records the dependencies

between requirements.

-A ‘D’ in the row/column intersection illustrates that the requirement in the

row depends on the requirement named in the column;

-an ‘R’ means that there is some other, weaker relationship between the

requirements.

example:they may both define the requirements for parts of the same

subsystem.

4.Advantages:

-Traceability matrices may be used when a small number of requirements

have to be managed

- Traceability matrices can be generated automatically from the database.

5.Disavantages:

- Unwieldy and expensive to maintain for large systems with many

requirements.

Software engg Supra.S

47

CASE Tools

Requirements management needs automated support; the CASE tools for

this should be chosen during the planning phase, need tool support for:

1. Requirements storage The requirements should be maintained in a secure,

managed data store that is accessible to everyone involved in the requirements

engineering process.

2. Change management The process of change management (Figure 7.13) is

simplified if active tool support is available.

3. Traceability management tool support for traceability allows related

requirements to be discovered. Some tools use natural language processing

techniques to discover possible relationships between the requirements.

Software engg Supra.S

48

For small systems, it may not be necessary to use specialised requirements

management tools. However, for larger systems, more specialised tool support is

required.

7.4.3 Requirements change management

1. Requirements change management (Figure 7.13) should be applied to all

proposed changes to the requirements.

2. The advantage of using a formal process for change management is that all

change proposals are treated consistently and that changes to the requirements

document are made in a controlled way.

There are three principal stages to a change management process:

a) Problem analysis and change specification The process starts with an

identified requirements problem or, sometimes, with a specific change

proposal.

-During this stage, the problem or the change proposal is analysed to

check that it is valid.

-The results of the analysis are fed back to the change requestor, and

sometimes a more specific requirements change proposal is then made.

Software engg Supra.S

49

b) Change analysis and costing The effect of the proposed change is

assessed using traceability information and general knowledge of the

system requirements.

-The cost of making the change is estimated in terms of modifications to

the requirements document and, if appropriate, to the system design and

implementation.

-Once this analysis is completed, a decision is made whether to proceed

with the requirements change.

c)Change implementation The requirements document and, where

necessary, the system design and implementation are modified.

-Then organise the requirements document so that changes can be made

to it without extensive rewriting or reorganisation.

-As with programs, changeability in documents is achieved by

minimising external references and making the document sections as

modular as possible.

-Thus, individual sections can be changed and replaced without affecting

other parts of the document.

