Software engg | Supra.S

2" unit
3.Critical systems

Contents

3.1 A simple safety-critical system
3.2 System dependability

3.3 Availability and reliability

3.4 Safety

3.5 Security

Citical Systems? :are those whose failure can result in significant economic

losses, physical damage or threats to human life.

Critical systems are technical or socio-technical systems that people or
businesses depend on. If these systems fail to deliver their services as expected
then serious problems and significant losses may result.

There are three main types of critical systems:
1. Safety-critical systems A system whose failure may result in injury, loss of
life or serious environmental damage.

Example: control system for chemical manufacturing plant.

2. Mission-critical systems A system whose failure may result in the failure of
some goal -directed activity.

Example : navigational system for a spacecraft.

3. Business-critical systems A system whose failure may result in very high
costs for the business using that system.

Example :customer accounting system in a bank.

Software engg i Supra.S

System Dependability
1 .Most important property of acritical system is the dependability.

2. The term dependability was proposed by Laprie (Laprie 1995) to cover the
related systems attributes of availability, reliability, safety and security.
3 .Dependability of a system reflects the user’s degree of trust in that system

I mportance of dependability

a).Systems that are unreliable, unsafe or insecure are often rejected by their
USers.

If users don’t trust a system, they will refuse to use it and buy products from
the same company as the untrustworthy system
b).System failure costs may be enormous.

Example:For some applications, such as a an aircraft navigation system, the
cost of system failureis High than the cost of the control system.
c).Untrustworthy systems may cause information loss. Data is very expensive
to collect and maintain. A great deal of effort and money may have to be spent
duplicating valuable data to guard against data corruption.

4. Critical systems are usually developed using well-tried techniques, whose
strengths and weaknesses are understood rather than newer techniques that have
not been subject to extensive practical experience.

5. Critica systems are socio-technical systems where people monitor and
control the operation of computer-based systems. The costs of critical systems
failure are usualy so high that we need people in the system who can cope with
unexpected situations, and who can often recover from difficulties when things

go wrong.

Software engg i Supra.S

6. There are three ‘system components’ where critica systems failures may
occur:

a). System hardware failure This may because of mistakes in its design, and
manufacturing errors, or because the components have reached the end of their
naturd life.

b). System software failure This may because of mistakes in its specification,
design or implementation.

c). Operational Failure Human operators of the system may fail to operate the
system correctly. As hardware and software have become more reliable, failures

In operation are now probably the largest single cause of system failures.

These failures can be interrel ated._¢

-A failed hardware component may mean system operators have to cope with
an unexpected situation and additional workload.

-This puts them under stress—and people under stress often make mistakes.
This can cause the software to fail, which means more work for the operators,

more stress, and so on.

3.1 A simple safety-critical system

1-Here A medical system that simulates the operation of the pancreas is chosen
asaexample to specify why safety and reliability are so important for this type
of critical system.

2-The system chosen is intended to help people who suffer from diabetes.

Software engg | Supra.S

-Diabetesis arelatively common condition where the human pancreas is unable
to produce sufficient quantities of a hormone called insulin.

-Insulin metabolises glucose in the blood.

-Since level of insulin in the blood does not just depend on the blood glucose
level but is afunction of the time when the insulin injection was taken. This can
lead to very low levels of blood glucose (if there is too muchinsulin) or very
high levels of blood sugar (if there is too little insulin). This results in more

serious health problems

3. These problems results in development of safety critical system

-A software-controlled insulin delivery system might work by using a micro-
sensor embedded in the patient to measure blood parameter that is proportional
to the sugar level.

- Thisis then sent to the pump controller.

-This controller computes the sugar level and the amount of insulin that is
needed.

- It then sends signals to a miniaturised pump to deliver the insulin via a

permanently attached needle.

4. Figure 3.1 shows the components and organisation of the insulin pump.
Figure 3.2 is adata-flow model that illustrates how an input blood sugar level is

transformed to a sequence of pump control commands.

Software engg | Supra.S

Figure 3.1 Insulin
pump structure

Figure 3.2 Data-flow
model of the insulin

pump

Insulin reservoir
edle
Ne
assembly = Pump o Clock
J //
Sensof | Controller = Alarm
Display1 Display2
Power supply
Bload
Blood parameters
| Boodsugr | [Boodsugar) g sugat
Sensor analysis /' lovel
Insulin
requirement
computation
Pump control
IHSUEH : mmmands |n5u|in ||'|5-|JIiT|
. [r'ISLI[IFI dE‘]INE‘fF require.mem
pump controller

Software engg i Supra.S

5. There are two high-level dependability requirements for this insulin pump
system:

a).The system shall be available to deliver insulin when required.

b).The system shall perform reliably and deliver the correct amount of

insulin to counteract the current level of blood sugar.

3.2 System dependability

1-The dependability of a computer system is a property of the system that
equates to its trustworthiness.

2- Trustworthiness essentially means the degree of user confidence that the
system will operate as they expect and that the system will not “fail’ in normal
use.

3-There are four principal dimensions to dependability, as shown in Figure 3.3:

a). Availability Informally, the availability of a system is the probability that
it will be up and running and able to deliver useful services at any given time.

b). Reliability Informally, the reliability of a system is the probability, over
given period of time, that the system will correctly deliver services as expected
by the user.

c) Safety Informally, the safety of a system is a judgement of how likely it is
that the system will cause damage to people or its environment.

d). Security Informally, the security of a system is a judgement of how
likely it isthat the system can resist accidental or deliberate intrusions.

Software engg | Supra.S

Dependability

Availability

The ability of the system
to deliver services when
requested

Figure 3.3
Dimensions of
dependability

specified

Reliability Satety
|
Y
The ability of the system The ability of the system
to deliver services as to operate without

catastrophic failure

Security

The ability of the system
to protect itelf against
accidental or deliberate

imtrsion

These are complex properties that can be decomposed into a number of

other,simpler properties.

For example, security includes

Integrity-ensuring that the systems program and data are not damaged

confidentiality-ensuring that information can only be accessed by people

who are authorised.

Reliability includes

correctness -ensuring the system services are as specified

precision-ensuring information is delivered at an appropriate level of detall

timeliness -ensuring that information is delivered when it is required.

The dependability properties of availability, security, reliability and safety

are al interrel ated.

Software engg i Supra.S

4. As well as these four main dimensions, other system properties can aso be
considered under dependability:

a) Repairability System failures are inevitable, but the disruption caused by
failure can be minimised if the system can be repaired quickly.

b). Maintainability As systems are used, new requirements emerge. It is
Important to maintain the usefulness of a system by changing it to
accommodate these new requirements.

¢) Survivability It is the ability of a system to continue to deliver service
whilst it is under attack and, potentially, while part of the system is disabled.

d). Error tolerance This property can be considered as part of usability ,
reflects the extent to which the system has been designed so that user input
error are avoided and tolerated. When user errors occur, the system should, as
far as possible, detect these errors and either fix them automatically or request

the user to re-input their data.

5. Relationship between cost and dependability

A .Dependable software includes extra, often redundant, code to perform the
necessary checking for exceptional system states and to recover from system
faults.

B. This reduces system performance and increases the costs of system
development.

C. Because of extra, additional design, implementation and validation costs,
Increasing the dependability of a system can significantly increase devel opment
costs

D .Figure 3.4 shows the relationship between costs and incremental

Improvements in dependability.

Software engg | Supra.S

Figure 3.4 i
Cost/dependability f
tunve {

Cost
=

-
Low Medium High Very Ultra-
high high

Dependability

E. The higher the dependability that you need, the more that you have to spend
on testing to check that you have reached that level.

F. Because of the exponential nature of this cost/dependability curve, it is not
possible to demonstrate that a system is 100% dependable, as the costs of
dependability assurance would then be infinite.

3.3 Availability and reliability
1. System reliability and availability may be defined more precisely as follows:

Reliability The probability of failure-free operation over a specified timein a
given environment for a specific purpose.

Availability The probability that a system, at a point in time, will be operational
and able to deliver the requested services.

Software engg | Supra.S

2. Difference between Availability and Reliability

Availability

Reliability

Availability does not simply depend on
the system itself but also on the time
needed to repair the faults that make the
system unavailable.

Example: assume that system A takes
three days to restart after a failure,
whereas system B takes 10 minutes to
restart. The availability of system B
over the year (120 minutes of down
time) is much better than that of system
A

Reliability depends on the system itself.
Example: system A fails once per year,
and system B fails once per month, then

A isclearly morereliable then B.

The probability that a system, at a point
in time, will be operational and able to

deliver the requested services.

The probability of failure-free operation
over a gpecified time in a given

environment for a specific purpose.

taken
consideration ,the system should be

Environment is not into
operational to deiver the requested

service

Environment in which the system is
used and the purpose that it is used for
must be taken into account.

-reliability in one environment, can’t be
the same in another environment where
the system is used in a different way.
Example:,reliability of a word processor
in an office environment where most

users do not try to experiment with the

10

Software engg i Supra.S

system.

Where as in auniversity environment,
students may explore the boundaries

of the system and use the system in
unexpected ways. These may result

in system failures that did not occur in
the office

more constrained

environment.

Human perceptions and patterns of use
are not dignificant. The significant
action is to be operational, to deliver the

requested service

Human perceptions and patterns of use
are also significant.

Example, say a car has a fault in its
windscreen wiper system that results in
failures of the wipers to operate
correctly in heavy rain.
The reliability of

perceived by a driver depends on where

that system as

they live and use the car.

A driver in Wet climate will probably
be more affected by this failure and it
will make system unreliable than a
driver in dry climate who will not

notice this problem only.

11

Software engg i Supra.S

3 -Reliability and availability are compromised by system failures. These may
be a failure to provide a service, a failure to deliver a service as specified, or the
delivery of aservicein such away that is unsafe or insecure.

4. When discussing reliability, t is helpful to distinguish between the terms

fault, error and failure, defined these termsin Figure 3.5

ok
terminology

System falure ~~ An event that occurs at some point in time when the system
does not deliver a senvice as expected by its users

System emor ~ An erroneous system state that can lead to system behaviour
that Is unexpected by system users

System fault A characteristic of 2 sofhuare system that can lead to a system
error. For example, falure to initialise 2 variable could lead 1o
that varizble having the wrong value when it is used

Humanemor — Human behaviour that results in the introduction of faults inta
or mistake a syste.

5. Complementary approaches that are used to improve the reliability of a

system are:

a) Fault avoidance Development techniques are used that either minimise
the possibility of mistakes and/or that trap mistakes before they result in
the introduction of system faults.

Examples : avoiding error-prone programming language constructs such

as pointers and the use of static analysis to detect program anomalies.

12

Software engg i Supra.S

b) Fault detection and removal The use of verification and validation
techniques that increase the chances that faults will be detected and
removed before the system is used.

Example : Systematic system testing and debugging
¢). Fault tolerance Techniques that ensure that faults in a system do not
result in system errors or that ensure that system errors do not result in
system failures.
Examples. The incorporation of self-checking facilities in a system and
the use of redundant system modules.
Reliability M odelling
-Software faults cause software failures when the faulty code is executed with a

set of inputs.
- Figure 3.6, derived from Littlewood shows a software system as a mapping of an
input to an output set. Given an input or input sequence, the program responds by

producing a corresponding output

13

Software engg i Supra.S

Figure 3.6 A system

a5 an inputfoutput Inputs causing
ma inp e erroneous outputs
5 gL nputse‘ la)
\; ;'_’/
{
a
{

— Erraneous
outputs
\u‘tpmt_//

1.Some of these inputs or input combinations, shown in the shaded ellipsein
Figure 3.6, cause erroneous outputs to be generated.

2.1f an input causing an erroneous output is associated with a frequently used
part of the program, then failures will be frequent. However, if it is associated with
rarely used code, then users will hardly ever seefailures.

3. Each user of a system uses it in different ways. Faults that affect the
reliability of the system for one user may never be revealed under someone else’s
mode of working .

4. In Figure 3.7, the set of erroneous inputs correspond to the shaded ellipse
in Figure 3.6. The set of inputs produced by User 2 intersects with this erroneous

14

Software engg i Supra.S

input set. User 2 will therefore experience some system failures. User 1 and User 3,
however, never use inputs from the erroneous set. For them, the software will

aways bereliable.

Figure 3.7 Software
usage patterns

Erroneous
inputs

15

Software engg | Supra.S

2" Unit
4, Software processes

Contents

4.1 Software process models

4.2 Process iteration

4.3 Process activities

4.4 The Rational Unified Process

4.5 Computer-Aided Software Engineering

A software process is a set of activities that leads to the production of a

software product.
These activities involve

1.The development of software from scraich in a standard
programming language like Java or C.
2. or new software is developed by extending and modifying existing
systems and by configuring and integrating off-the-shelf software or
system components.

some fundamental activities of software processes are:
1. Software specification The functionality of the software and
constraints on its operation must be defined.
2. Software design and implementation The software to meet the
specification must be produced.
3. Software validation The software must be validated to ensure that it

does what the customer wants.

16

Software engg i Supra.S

4. Software evolution The software must evolve to meet changing

customer needs.

4.1 Softwar e process models

A software process model is an abstract representation of a software process. Each
process model represents a process from a particular perspective, and thus provides
only partial information about that process.

The process models are:

1. The waterfall model This takes the fundamental process activities of
specification, development, validation and evolution and represents them as
Separate process phases such as requirements specification, software design,
implementation, testing and so on.

2. Evolutionary development This approach interleaves the activities of
specification, development and validation. An initial system is rapidly developed
from abstract specifications. Thisis then refined with customer input to produce a
System that satisfies the customer’s needs.

3. Component-based software engineering This approach is based on the
existence of a significant number of reusable components. The system
development process focuses on integrating these components into a system rather

than developing them from scratch.

4.1.1 The waterfall model

The first published model of the software development process was derived from
more genera system engineering processes. Because of the cascade from one
phase to another, this model is known as the waterfall model or software life cycle.

Thisisillustrated in Figure 4.1.

17

Software engg | Supra.S

Figure 4.1 The
software life cycle Requirements
definition
'l' |
System and
software design
|
Implementation |
and unit testing
A

Integration and

system testing

| Operation and
maintenance

The principal stages of the model map onto fundamental development activities:
1. Requirements analysis and definition The system’s services, constraints and
goals are established by consultation with system users. They are then defined in
detail and serve as a system specification.
2. System and software design The systems design process partitions the
requirements to either hardware or software systems. It establishes an overall
system architecture.

Software design involves identifying and describing the fundamental
software system abstractions and their relationships.
3. Implementation and unit testing During this stage, the software design is
realised as a set of programs or program units. Unit testing involves verifying that
each unit meets its specification.

18

Software engg i Supra.S

4. Integration and system testing The individual program units or programs are

integrated and tested as a compl ete system to ensure that the software requirements

have been met. After testing, the software system is delivered to the customer.

5. Operation and maintenance Normally (although not necessarily) this is the

longest life-cycle phase. The systemisinstalled and put into practical use.
Maintenance involves correcting errors which were not discovered in

earlier stages of the life cycle, improving the implementation of system units and

enhancing the system’s services as new requirements are discovered.

The result of each phase is one or more documents that are approved (‘signed off’).
The next phase should not start until the previous phase has finished.
Advantages
1. waterfall model will be used when the requirements are well understood and
unlikely to change radically during system devel opment.
2. Itisasimplest model
3. Documentation done at each phase

Disadvantages
1.Reusahility is not encouraged.
2.1t isvery difficult to make any changes after the process is completed.
3.Inflexible portioning of project into distinct stages makes it difficult to
response to changing customer requirements.

4.one phase has to complete before moving to next phase.

19

Software engg | Supra.S

4.1.2 Evolutionary development

Evolutionary development is based on the idea of developing an initial
implementation, exposing this to user comment and refining it through many

versions until an adequate system has been developed (Figure 4.2).

Figure 4.2 Concurrent
Evolutionary activities
development
[— N — Initial
ecification | bt
P version

ﬁ¢

Outline D | — % | Intermediate [h
i A 0
description —* evelopment , o VETSIONS
r ‘ L |
x Final
\alidation JI — version
%, s

There are two fundamental types of evolutionary devel opment:

1. Exploratory development where the objective of the process is to work with the
customer to explore ther requirements and deliver a fina system. The
development starts with the parts of the system that are understood. The system
evolves by adding new features proposed by the customer.

2. Throwaway prototyping where the objective of the evolutionary development
process is to understand the customer’s requirements and hence develop a better
requirements definition for the system. The prototype concentrates on

experimenting with the customer requirements that are poorly understood.

20

Software engg | Supra.S

Advantages

1. The advantage of a software process that is based on an evolutionary approach
Isthat the specification can be developed incrementally.

2.In evolutionary approach users develop a better understanding of their problem,
this can be reflected in the software system.

3.Suitable For small and medium-sized systems

Disadvantages

1. The process is not visble Managers need regular deliverables to measure
progress. If systems are developed quickly, it is not cost-effective to produce
documents that reflect every version of the system.

2. Systems are often poorly structured Continual change tends to corrupt the
software structure. Incorporating software changes becomes increasingly difficult
and costly.

3.The problems of evolutionary development become particularly acute for large,
complex, long-lifetime systems, where different teams develop different parts of
the system. It is difficult to establish a stable system architecture using this

approach, which makes it hard to integrate contributions from the teams.

For large systems, mixed process that incorporates the best features of the waterfall
and the evolutionary development model s are recommended

Applicability of Evolutionary development approach

1.for short —lifetime systems

2.for small-medium sized interactive systems

3.for parts of large systems

21

Software engg i Supra.S

2.3 Component-based softwar e engineering

1. It is based on systematic reuse where systems are integrated from
existing components or COTS(commercial off the shelf)systems

2. In the maority of software projects, there is some software reuse. This
usually happens informally when people working on the project know of
designs or code which is similar to that required. They look for these,
modify them as needed and incorporate them into their system.

3 This reuse-oriented approach relies on a large base of reusable software

components and some integrating framework for these components.

4. The generic process model for CBSE is shown in Figure 4.3.

F [I\"'- F 4 [} % i
/ Requirements | { Component / Requirements | lr‘ System design)
\ spedhiation | analysis \ modification | with reuse
Canuel? I 8 R 4\ 4

I

R y
[Deeopment \ [Sytem

(. and integrafion idation |
\ gaon / "\ validation

Figure 43
Component-based
software engineering

22

Software engg i Supra.S

5. The initial requirements specification stage and the validation stage are
comparable with other processes, the intermediate stages in a reuse-oriented
process are different.

These stages are:

Component analysis Given the requirements specification, a search is made
for components to implement that specification. Usually, there is no exact match,
and the components that may be used only provide some of the functionality
required.

Requirements modification During this stage, the requirements are analysed
using information about the components that have been discovered. They are then
modified to reflect the available components. Where modifications are impossible,
the component analysis activity may be re-entered to search for alternative
solutions.

System design with reuse During this phase, the framework of the system is
designed or an existing framework is reused. The designers take into account the
components that are reused and organise the framework to cater to this. Some new
software may have to be designed if reusable components are not available.

Development and integration Software that cannot be externally procured is
developed, and the components and COTS systems are integrated to create the new
system.

System integration, in this model, may be part of the development process

rather than a separate activity.
Advantages
1.reduces the amount of software to be developed
2.reduces cost and risks

3.leadsto faster delivery of the software. However, requirements compromises

23

Software engg i Supra.S

Disadvantages
1.As requirements are compromised, the evolved system does not meet the real
need of users.
2.This a'so may affect control over system evolution /control over them islost.
4.2 Processiteration

The software process is not a one-off process; rather, the process activities
are regularly repeated as the system is reworked in response to change requests, As
new technologies become available.
Two process models that have been explicitly designed to support process
iteration:
1. Incremental delivery The software specification, design and implementation are
broken down into a series of increments that are each developed in turn.
2. Spiral development The development of the system spirals outwards from an
initial outline through to the final developed system.

- " 1\'\ f’-‘- % " -\-\H\ g b !
[Define outline '\ /Assign requirements ') | Design system
. fequirements | ™\ tincrements JJ \ architecture

iy j_/

Y

F
f

Fa h"\ F i i "',,' '.f g f ; *

/Developsystem, [/ \elidte \ _/ integrate Y\ [/ |Validate)

[H " _}[| - F_h H

. mcrement 4\ increment /| incement \ §stem)

: 1 H | " " Final

— S— — — i
system
System incomplete
Figure 44

Incremental delivery

24

Software engg i Supra.S

4.2.1 Incremental delivery

1. In an incremental development process (Figure 4.4), customers identify,
in outline, the services to be provided by the system.

2. They identify which of the services are most important and which are
least important to them.

3. A number of delivery increments are then defined, with each increment
providing a sub-set of the system functionality.

4. Once the system increments have been identified, the requirements for the
services to be delivered in the first increment are defined in detail, and that
increment is devel oped.

5. During development, further requirements analysis for later increments
Can take place, but requirements changes for the current increment are not
accepted.

6. Once an increment is completed and delivered, customers can put it into
service.

7. This means that they take early delivery of part of the system
functionality. They can experiment with the system that helps them clarify their
requirements for later increments and for later versions of the current increment.

8. As new increments are completed, they are integrated with existing
increments so that the system functionality improves with each delivered

increment.

25

Software engg i Supra.S

9. Thisincremental development process has a number of advantages:

a). Customers do not have to wait until the entire system is delivered before
they can gain value from it. The first increment satisfies their most critica
requirements so they can use the software immediately.

b). Customers can use the early increments as prototypes and gan
experience that informs their requirements for later system increments.

c). There is a lower risk of overal project failure. Although problems may
be encountered in some increments, it is likely that some will be successfully
delivered to the customer.

d). As the highest priority services are delivered first, and later increments
are integrated with them, it is inevitable that the most important system services
receive the most testing. This means that customers are less likely to encounter

software failures in the most important parts of the system.

10. However, there are problems with incremental delivery.

a). Increments should be relatively small (no more than 20,000 lines of
code), and each increment should deliver some system functionality. It can be
difficult to map the customer’s requirements onto increments of the right size.

b). Most systems require a set of basic facilities that are used by different
parts of the system. As requirements are not defined in detail until an increment is
to be implemented, it can be hard to identify common facilities that are needed by

all increments.

26

Software engg i Supra.S

4.2.2 Spiral development
The spiral model of the software process (Figure 4.5) was originally proposed by
Boehm (Boehm, 1988).

Each loop in the spiral represents a phase of the software process. Thus, the
innermost loop might be concerned with system feasibility, the next loop with
requirements definition, the next loop with system design and so on.

Each loop in the spiral is split into four sectors:

1. Objective setting Specific objectives for that phase of the project are
defined. Constraints on the process and the product are identified and a detailed
management plan is drawn up. Project risks are identified. Alternative strategies,
depending on these risks, may be planned.

2. Risk assessment and reduction For each of the identified project risks, a
detailled analysisis carried out. Steps are taken to reduce the risk.

Example, if there is a risk that the requirements are inappropriate, a
prototype system may be developed.

3.Development and validation After risk evaluation, a development model
for the system is chosen.

Example, if user interface risks are dominant, an appropriate development

model might be evolutionary prototyping.

4. Planning The project is reviewed and a decision made whether to continue
with a further loop of the spiral. If it is decided to continue, plans are drawn
up for the next phase of the project.

The main difference between the spiral model and other software process modelsis

the explicit recognition of risk in the spiral model.

27

Software engg | Supra.S

Determine objecives,
a‘tematives and
constraints

[RevEW anakysis

Eualuate altematives,
identify resolve risks

\
n
| i \

||| \ k thuiremenls plan --“"""-a.._h__. JI Simuiatinnsi madels, I:le;h:hmaris
\ "5\ Ueodeplan | conceptot /] 3 ," |
\ \ Operation /s ey L] "F

Plan next phase

Figure 4.5 Boehm's
spiral model of the
softwiare pracess
(EIEEE, 1988)

Development
plan

Integration
and test plan

28

Requirzment
validetion

Service

Integration
test

Azceplance
test Develop, verify

next-evel procuct

Software engg | Supra.S

4.3 Process activities

The four basic process activities are
1.Software specification
2.software development and implementation
3.Software validation
4.Software evolution
4.3.1 Softwar e specification

1. Software specification or requirements engineering is the process of
understanding and defining what services are required from the system and
Identifying the constraints on the system’s operation and development.

2. Requirements engineering is a particularly critical stage of the software
process as errors at this stage inevitably lead to later problems in the system design
and implementation.

3. This process leads to the production of a requirements document that is
the specification for the system. Requirements are usually presented at two levels

of detail in this document. End-users and customers need a high-level statement of

the requirements; system developers need a more detailed system specification.

4. The requirements engineering process is shown in Figure 4.6.

5. There are four main phases in the requirements engineering process.
a). Feasibility study An estimate is made of whether the identified user needs may
be satisfied using current software and hardware technologies. The study considers
whether the proposed system will be cost-effective from a business point Of view
and whether it can be developed within existing budgetary constraints,
b). Requirements elicitation and analysis This is the process of deriving the
system requirements through observation of existing systems, discussions with
potential users and procurers, task analysis and so on. This may involve the
development of one or more system models and prototypes. These help the analyst

understand the system to be specified.

29

Software engg i Supra.S

¢).Requirements specification The activity of trandating the information gathered
during the analysis activity into a document that defines a set of requirements.
Two types of requirements may be included in this document.

User requirements are abstract statements of the system requirements for the

customer and end-user of the system

system requirements are a more detailed description of the functionality to be

provided.
d)Requirements validation This activity checks the requirements for realism,
consistency and completeness. During this process, errors in the requirements

document are inevitably discovered. It must then be modified to correct these

problems.
Figure &5 Tne e\ (Requiements
requirements Wi }—)-{ elicitation and

engineering process | SUQYy

e

\ analsis / —_—
{ Requirements '\

\ specification
Y \
Feasibility /' Requirements |
report \ Vvaliaation

System

models Y

| User and system
requirements
Y

| Requirements
o document

30

Software engg i Supra.S

4.3.2 Softwar e design and implementation

1. The implementation stage of software development is the process of

converting a system specification into an executable system.

2. A software design is a description of the structure of the software to be

implemented, the data which is part of the system, the interfaces between system

components and, sometimes, the algorithms used.

3. The design process involves adding formality and detail as the design is

developed with constant backtracking to correct earlier designs.

4. Figure 4.7 is a model of this design process are sequential process

showing the design descriptions.

'l '
If Requiremants “-i
\ specfication

J Design activities
- /’Jﬁ - =,
[Architm \ [Abstradt)_._{ 'ntﬂd=)_Hf’ Component
| desigr /, \ e ﬁcatmn desagn \ desngn
. { ™

s f’ o

‘rr_"’f :f- -:ff
. v/ v / Y

J—>| sTucture ;

¢
#
'
#
P

#
I
&
&
A

i Fd
System Software Interface Component
arch tecture specfication specification specification
Design produds
Figure 4.7 A general
madel of the design
Process

31

0 \

ita

Y desin
"-._.|E

Data
ST ctre

f Algorithm 1
\ :Ifsngn

¥

specificalion

Algorithm

specification

Software engg i Supra.S

5. The specific design process activities are:

a). Architectural design The sub-systems making up the system and ther
relationships are identified and documented.

b). Abstract specification For each sub-system, an abstract specification of its
services and the constraints under which it must operate is produced.

C). Interface design For each sub-system, its interface with other sub-systems is
designed and documented. This interface specification must be unambiguous as it
allows the sub-system to be used without knowledge of the sub-system operation.
d). Component design Services are allocated to components and the interfaces of
these components are designed.

€). Data structure design The data structures used in the system implementation
are designed in detail and specified.

f). Algorithm design The algorithms used to provide services are designed in detail
and specified.

6. Thisis a genera model of the design process and real, practical processes may
adapt it in different ways. Possible adaptations are:

a). The last two stages of design—data structure and algorithm design—may be
delayed until the implementation process.

b). If an exploratory approach to design is used, the system interfaces may be
designed after the data structures have been specified.

C). The abstract specification stage may be skipped, although it is usually an

essential part of critical systems design.

32

Software engg i Supra.S

Structured Methods
structured methods for design rely on producing graphical models of the system,

automatically generating code from these models.
A structured method includes a design process model, notations to represent the

design, report formats, rules and design guidelines.

Structured methods may support some or al of the following models of a system:

1. An object model that shows the object classes used in the system and their
dependencies.

2. A sequence model that shows how objects in the system interact when the

system is executing.
3. A state transition model that shows system states and the triggers for the

transitions from one state to another.

4. A structural model where the system components and their aggregations are

documented.

5. A data flow model where the system is modelled using the data transformations

that take place as it is processed. Thisis not normally used in object-oriented
Methods but is still frequently used in real-time and business system design.
Programming and Debugging

1-After design process programming is done for implementing the design ideas
2-Programming is a personal activity and there is no general process that is usualy
followed.

3-After programming programmers carry out some testing of the code they have
developed. This often reveals program defects that must be removed from the
program. Thisis called debugging

33

Software engg i Supra.S

4.Figure 4.8 illustrates the stages of debugging. Defects in the code must be
located

and the program modified to meet its requirements. Testing must then be repeated
to ensure that the change has been made correctly. Thus the debugging processis

part of both software devel opment and software testing.

"I'-.- h“\ .l"r) \".h -"-- L] .\'. |I.I-—h-
; [loate \ [Desgn \ / Repar \ / Retet
Figure 48 The | - ‘|)
| I. , | ; , . | "
debljgg”-@ PTﬂEEES \ Emor rj |L‘ Ermor I'EPEII' ‘.J |-n el J \ jmhﬂ y
4 s . W F F

4.3.3 Softwar e validation

1. Software validation or, more generaly, verification and validation (V &
V) is intended to show that a system conforms to its specification and that the
system meets the expectations of the customer buying the system.

2. Figure 4.9 shows a three-stage testing process where system components are
tested, the integrated system is tested and, finally, the system is tested with the
customer’s data.
3. The stages in the testing process are:
a) Component (or unit) testing Individual components are tested to ensure
that they operate correctly. Each component is tested independently, without
other system components. Components may be simple entities such as

functions or object classes, or may be coherent groupings of these entities.

34

Software engg i Supra.S

b) System testing The components are integrated to make up the system. This
process is concerned with finding errors that result from unanticipated
Interactions

4. Between components and component interface problems. It is aso concerned
with Validating that the system meets its functiona and non-functional
requirements and testing the emergent system properties.

a)Acceptance testing/Alpha testing Thisisthe final stage in the testing process

before the system is accepted for operational use. The system is tested with
data supplied by the system customer rather than with smulated test data.

Acceptance testing may Revea errors and omissions in the system

requirements definition. Acceptance testing may also revea requirements
problems where the system’s facilities do not really meet the user’s needs or

the system performance is unacceptabl e.

Figure 4.9 The
testing process 1

[Cumpunent‘ l/r %Q;:m lf’Acceptance \
. testing) INg \ lesting
; N ;{_/

5. Programmers make up their own test data and incrementally test the code asit is
developed.
6-1f an incremental approach to development is used, each increment should be
tested as it is developed, with these tests based on the requirements for that
Increment.
7-1n extreme programming, tests are developed aong with the requirements before

development starts.

35

Software engg i Supra.S

8. This helps the testers and devel opers to understand the requirements and ensures
that there are no delays as test cases are created.

O-Later stages of testing involve integrating work from a number of programmers
and must be planned in advance. An independent team of testers should work from
preformulated test plans that are developed from the system specification and

design.

10. Figure 4.10 illustrates how test plans are the link between testing and
development

activities.

Requirements System System [Detailed
speciﬁ:aiior._/) \ P ecification design design

| Y ¥ Y 1 "
System Sub-system Module and
AEF tT;fE ntegration ntegration unit code
plan test plan test pian and test

¥ ¥ | ¥

Si—
(¢ fﬁ.EEEp’[ECE System i'J'.-Sul:l-sy'stem
= test infegration test | integration test

Figure 4.10 Testing
phases in the
software process

36

Software engg i Supra.S

4.3.4 Softwar e evolution

-The flexibility of software systems is one of the main reasons why more and
more software is being incorporated in large, complex systems.

-Thus requirement change through changing business circumstances the

software that supports the business must also evolve and change.

Figure 4,11 System |
euolution

"._"‘*-».
fDehnes em FESESE el stmcr ’Pmmae SYSIE'TI Mndﬂv

"|
| reqmrements thanga systes)

Bxising New
syrstems System

4.4 The Rational Unified Process

The Rational Unified Process (RUP) is an example of a modern process
model that has been derived from work on the UML and the associated Unified
Software Development Process.
The RUP isnormally described from three perspectives:
1. A dynamic perspective that shows the phases of the model over time.
2. A static perspective that shows the process activities that are enacted.

37

Software engg i Supra.S

3. A practice perspective that suggests good practices to be used during the
process.

The RUP is a phased model that identifies four discrete phases in the software
process. The phasesin the RUP are more closely related to business rather

Than technical concerns

Figure 4.12 shows the phases in the RUP.

Figure 4.12 Phases 4

f

In the Rebional L Phase feration

Unified Process % »
Sy ¥
nception Elaboration Construction Transition

These are:

1.Inception The goal of the inception phase is to establish a business case for

the system. Identify all external entities (people and systems) that will interact

with the system and define these interactions. Then use this information to

assess the contribution that the system makes to the business. If this

contribution is minor, then the project may be cancelled after this phase.

2. Elaboration The goals of the elaboration phase are to develop an
understanding of the problem domain Establish an architectural framework
for the system Devel op the project plan and identify key project risks.

38

Software engg i Supra.S

On completion of this phase, requirements model for the system (UML use
cases are specified), an architectural description and a development plan for the
software will be ready.

3.Construction The construction phase is essentially concerned with system
design, programming and testing. Parts of the system are developed in parallel
and integrated during this phase.

On completion of this phase, you should have a working software system and
associated documentation that is ready for delivery to users.

4. Trangition The final phase of the RUP is concerned with moving the system
from the development community to the user community and making it work
inarea environment.

On completion of this phase, you should have a documented software system

That isworking correctly in its operational environment.

Iteration within the RUP is supported in two ways, as shown in Figure 4.12.
Each phase may be enacted in an iterative way with the results developed
incrementally.

In addition, the whole set of phases may also be enacted incrementadly, as

shown by the looping arrow from Transition to Inception in Figure 4.12.

Workflowsin RUP

1. The static view of the RUP focuses on the activities that take place during the
development process. These are called workflows in the RUP description. There
are six core process workflows identified in the process and three core
supporting workflows.

2. The core engineering and support workflows are described in Figure 4.13.

39

Software engg | Supra.S

Business modelling

Requirements

Analysis and design

Implementation

Testing

Deployment

Configuration and
change management

Project management

Enviranment

Figure 4.13 Static
workflows in
Raticnal Unified
Process

The business processes ar2 modelled using business use cases.

Actors who interact with the system are identified and use ceses are developed to
madel the system requirements,

A design model is created and documented using architectural models, component

madels, object models and sequence models.

The companents in the system are implemented and structured into
implementation sub-systems. Automatic code generation from design models helps
atcelerate this process,

Testing is an iteralive process hat is camied out in conjunction with
implementation. System testing follows Ihe completion of tne implementation.,

A product release is created, distributed to users and installed in their workplace.

This supparting workliow manages chenges to the system (see Chapter 28).

This supporting workflow manages the system development (see Chapter 5).

This workAow is concemed with making apprapriate software tools aveilable to the
software development team.

40

Software engg i Supra.S

Engineering practices
The practice perspective on the RUP describes good software engineering

practices that are recommended for use in systems development.

Six fundamental best practices are recommended:

1.Develop software iteratively: Plan increments of the system based on
customer priorities and develop and deliver the highest priority system features
early in the development process.

2.Manage requirements. Explicitly document the customer’s requirements and
keep track of changes to these requirements. Analyse the impact of changes on
the system before accepting them.

3. Use component-based architectures. Structure the system architecture into
components as discussed earlier in this chapter.

4. Visually model software. Use graphical UML models to present static and
dynamic views of the software.

5. Verify software quality. Ensure that the software meets the organisational
guality standards.

6. Control changes to software. Manage changes to the software using a
change management system and configuration management procedures and

tools.

4.5 Computer-Aided Software Engineering
1. Computer-Aided Software Engineering (CASE) is the name given to
software used to support software process activities such as requirements

engineering, design, program development and testing.

41

Software engg i Supra.S

2 .CASE tools therefore include design editors, data dictionaries, compilers,
debuggers, system building tools and so on.

3. CASE technology provides software process support by automating some
process activities and by providing information about the software that is being
developed.

Examples of activities that can be automated using CA SE include:

a. The development of graphical system models as part of the requirements
specification or the software design.

b. Understanding a design using a data dictionary that holds information about

the entities and relations in a design.

c. The generation of user interfaces from a graphical interface description that is
created interactively by the user.

d. Program debugging through the provision of information about an executing
program.

e. The automated trandation of programs from an old version of a programming

language such as COBOL to amore recent version.

4. CASE technology is now available for most routine activities in the software
process. This has led to some improvements in software quality and productivity,
although these have been less than predicted.

5. The improvements from the use of CASE are limited by two
factors/Disadvantages of CASE:

a). Software engineering is, essentially, a design activity based on creative thought.
Existing CASE systems automate routine activities but attempts to harness
artificial intelligence technology to provide support for design have not been
successful.

42

Software engg i Supra.S

b). In most organisations, software engineering is a team activity, and software
engineers spend quite a lot of time interacting with other team members. CASE
technology does not provide much support for this.

4.5.1 CASE classification

CASE classifications help us understand the types of CASE tools and their role in
supporting software process activities.

CASE tools are classified from three of these perspectives:

1. A functional perspective where CASE tools are classified according to their
specific function.

2. A process perspective where tools are classified according to the process
activities that they support.

3. An integration perspective where CASE tools are classified according to how
they are organised into integrated units that provide support for one or more
process activities.

Figure 4.14 is a classification of CASE tools according to function. This table lists
anumber of different types of CASE tools and gives specific examples of each

43

Software engg i Supra.S

Figure 4.14
Functional
classification of
(CASE tools

Planning tools
Editing tools

Change
management tools

Configuration
management tools

Prototyping fools
Method-support tooks

Language-processing
tools

Program analysis tools
Testing tools
Debugging tools
Documentation tools

Reengineering tools

PERT tools, estimation tools, spreadsheets
Text editors, diagram editors, word processors

Requirements traceability tools, change control systems

Version management systems, system building tools

Very high-level languages, user interface generators
Design editors, data dictionaries, code generators

Compilers, interpreters

Cross reference generators, stetic analysers, dynamic analysers
Test data generators, flle comperators

Interactive debugging systems

Page layoul programs, image editors

Cross-reference systems, program restructuring systems

Figure 4.15 presents an aternative classification of CASE tools. It shows the

process phases supported by a number of types of CASE tools. Tools for planning

And estimating, text editing, document preparation and configuration management

May be used throughout the software process.

44

Software engg i Supra.S

The breadth of support for the software process offered by CASE technology is
another possible classification dimension. Fuggetta (Fuggetta, 1993) proposes that
CA SE systems should be classified in three categories:

1. Tools support individual process tasks such as checking the consistency of
a design, compiling a program and comparing test results. Tools may be general-
purpose, standalone tools (e.g., aword processor) or grouped into workbenches.

2. Workbenches support process phases or activities such as specification,
design, etc. They normally consist of a set of tools with some greater or lesser
degree of integration.

3. Environments support al or at least a substantia part of the software

process. They normally include several integrated workbenches.

Figure 4.15 Activily- o eripinasing ks ®
based dessification - "
Debugging tools o L
Program analysis lools & &
Language-processing & i
tools
Methad support tanls G L4
Mrototyping tools @ ¢
Configuration
management fools @ ¢
Change management tools ® @ @ ¢
Documentation tools s o ® ®
Editing toals o @ & ®
Manning tocls & & (4])
Specification Design Implementation Verilication
and
Validatinn

45

Software engg i Supra.S

Figure 4.16 illustrates this classification and shows some examples of these

classes of CASE support.

technology

CASE

I o

Tools Workbenches \ Ervironments
Editors ” Complers ‘ Fila In.tegraled ‘ Prnc?:ycemd ‘
comparators environments environments
Analysis and . .
dzsign] Frogramming ‘ Testing
Multi-method Single-method Ceneral-purpose Language-specific
workbenches workbenches warkbenches workbenches

Figure 4.16 Tools,
workbenches and
environments

46

