Fifth Semester B.E. Degree Examination, Dec.08/Jan.09 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions selecting at least Two questions from each part.

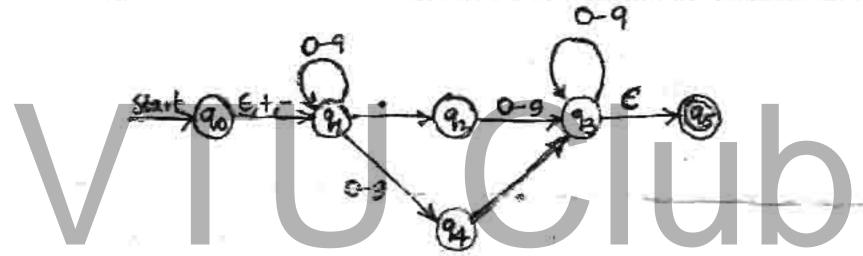
PART - A

a. What is Automata? Discuss why study automata.

(06 Marks)

- b. Define DFA and design the DFA for the following languages on $\Sigma = \{a, b\}$.
 - i) The set of all strings that either begings or ends or both with substring 'ab'.
 - ii) The set of all strings that ends with substring 'abb'.

iii) $L = \{W : |W| \mod 5 < > 0\}$


(08 Marks)

- c Define ∈ -NFA and design the E NFA or NFA for the following languages.
 - i) abc, abd, and aacd {Assume $\Sigma = a, b, c, d$ }
 - ii) {ab, abc}*

{Assume $\Sigma = \{a, b, c\}.$

(06 Marks)

 Convert the following ∈ I NFA to DFA using "Subset Construction scheme". (08 Marks)

- b. Define Regular expression and write Regular expression for the following languages.
 - $L = \{a^{2n} b^{2m+1} : m \ge 0, n \ge 0\}.$ -i)
 - $L = \{a^n b^m : (m + n) \text{ is even}\}.$
 - $L = \{a^n b^m : n > = 4, m < = 3\}.$

(06 Marks)

- c. Prove that every language defined by a Regular expression is also defined by Finite automata. (06 Marks)
- a. If L1 and L2 are regular languages then prove that family of regular language are closed 3 under $L_1 - L_2$. (06 Marks)
 - b. State and prove pumping lemma for regular languages. Apply pumping lemma for following languages and prove that it is not Regular $L = \{a^n : n \text{ is prime}\}.$ (08 Marks)
 - c. Consider the DFA

_ δ		0	1
$\rightarrow q_1$		q_2	q_3
*	q_2	q ₃	q 5
	93	q 4	q_3
*	q_4	\mathbf{q}_3	q_5
	q_5	92	q 5

- Draw the table of distinguishable and Indistinguishable states for the automata.
- ii) Construct minimum state equivalent of automata.

(06 Marks)

Define context-free grammer and write context free grammer for the following languages. i) $L = \{a^i b^j c^k : i + j = k, i > = 0, j > = 0\}.$ ii) $L = \{a^n b^m c^k : n + 2m = k\}$. (07 Marks) b. Consider the grammer. E→+EE * EE - EE x y Find leftmost and rightmost derivation for the string +*-xyxy and write parse tree. (08 Marks) c. What is ambigous grammer? Prove that the following grammer is ambigous on the string "aab" $S \rightarrow as$ as $bs \in .$ (05 Marks) PART - B a. Define PDA and construct a PDA that accepts the following languages. $L = \{w : w \in (a + b)^* \text{ and } n_a(w) = n_b(w)\}$. Write the instantaneous description for the string "aababb". (12 Marks) b. For the following grammer construct a PDA. S → aABB aAA $A \rightarrow aBB \mid a$ $B \rightarrow bBB \mid A$ $C \rightarrow a$. (08 Marks) a. Consider the grammer. S → ABC BaB A → aA BaC aaa $D \rightarrow bBU a D$ $C \rightarrow CA \mid AC$ $D \rightarrow \in$ i) Eliminate t – productions. ii) Eliminate Unit productions in the resulting grammer. iii) Eliminate Useless production in the resulting grammer. (09 Marks) b. What is Chomsky normal form? Convert the following grammer b Chomsky normal form. $S \rightarrow ABa$ $A \rightarrow aab$ $B \rightarrow Ac$. (05 Marks)

c. If L₁ and L₂ are context free languages then prove that family of Context-free-languages are closed under Union and concatenation operations. (05 Marks)

a. Explain with neat diagram, the working of a Turning machine model. (06 Marks)
b. Design a Turing Machine to accept all set of palindromes over {0, 1}*. Also write its transition diagram and Instantaneous description on the string "1 0 1 0 1". (14Marks)

8 Write short notes on following:

- i) Post's correspondence problem.
- ii) Recursive languages.
- iii) Universal Turning Machine.
- iv) Pumping lemma for CFL.

(20 Marks)

2 of 2