Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN

Fourth Semester B.E. Degree Examination, May/June 2010

Analysis and Design of Algorithms

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Compare the orders of growth of $\log_2(n)$ and \sqrt{n} . What is your conclusion? (06 Marks)
 - b. Define O-notation. If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, prove that $f_1(n) + f_2(n) \in O(\max\{g_1(n), g_2(n)\})$.
 - c. Given a positive decimal integer n, write a recursive algorithm which computes the number of binary digits in the binary representation of n. Write the corresponding recurrence relation and solve it.

 (08 Marks)
- 2 a. Explain the algorithm for selection sort. If A is an array of size n, obtain an expression for the number of key comparisons.

 (06 Marks)
 - b. Using bubble sort algorithm, arrange the letters of the word 'QUESTION' in alphabetical order.

 (06 Marks)
 - c. Show how divide and conquer technique can be used to compute the product of two n-digit integers. If n is a power of 2, obtain a recurrence relation for M(n), the number of multiplications and solve it.

 (08 Marks)
- 3 a. What are the three major variations of decrease and conquer technique? Explain each with an example.

 (06 Marks)
 - b. Sort the letters of the word "EXAMPLE" in alphabetical order using insertion sort.
 - c. Describe the Johnson Trotter algorithm for generating permutations. Generate all permutations of {3, 5, 7} using the following:
 - i) Bottom up minimal change algorithm
 - ii) Johnson Trotter algorithm.

(08 Marks)

- 4 a. Write an algorithm for DFS. With an example, explain how this algorithm can be used to solve topological sorting problem.

 (10 Marks)
 - b. Using quick sort, arrange the letters of the word "QUICKSORT" in alphabetical order. Show all the steps clearly and draw the tree of the recursive calls made. (10 Marks)

PART - B

- 5 a. Define a 2-3 tree. For any 2-3 tree of height h consisting of n nodes, prove the following: $\log_3(n+1)-1 \le h \le \log_2(n+1)-1$ (06 Marks)
 - b. Describe the algorithm for heap sort.

(06 Marks)

c. Show how Horspool's algorithm can be used to search for the pattern BARBER in a given text. Consider all the four cases.

(08 Marks)

6 a. Apply Warshall's algorithm to find the transitive closure of the graph defined by the following adjacency matrix:

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
(05 Marks)

b. Using Floyd's algorithm, solve the all-pairs shortest path problem for the graph whose weight matrix is given below:

$$\begin{pmatrix}
0 & 2 & \infty & 1 & 8 \\
6 & 0 & 3 & 2 & \infty \\
\infty & \infty & 0 & 4 & \infty \\
\infty & \infty & 2 & 0 & 3 \\
3 & \infty & \infty & \infty & 0
\end{pmatrix}$$
(10 Marks)

c. Using Kruskal's algorithm, obtain a minimum cost spanning tree for the graph Fig.Q6(c) given below:

(05 Marks)

7 a. Construct a Huffman code for the following data:

(06 Marks)

the state of the s		7			
Character	A	В	C	D	E
Probability	0.4	0.1	0.2	0.15	0.15

Decode the text whose encoding is 100010111001010 using the above Huffman code.

b. Write short notes on P, NP and NP-complete problems.

(06 Marks)

- c. Explain how backtracking is used for solving 4 queens problem. Show the state space tree.
 (08 Marks)
- 8 a. Solve the following instance of knapsack problem using branch and bound algorithm:

Item	1	2	3	4
Weight	4	7	5	3
Value	\$ 40	\$ 42	\$ 25	\$ 12

The capacity of the knapsack is W = 10.

(08 Marks)

- b. When does collision occur in hashing? What are the different mechanisms used to resolve collisions? (04 Marks)
- c. What are decision trees? Explain how decision trees are used in sorting algorithms.

(08 Marks)